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Abstract. We study isochronous centres of plane polynomial Hamiltonian systems, and more
generally, isochronous Morse critical points of complex polynomial Hamiltonian functions. Our
first result is that if the Hamiltonian functionH is a non-degenerate semi-weighted homogeneous
polynomial, then it cannot have an isochronous Morse critical point, unless the associate
Hamiltonian system is linear, that is to sayH is of degree two. Our second result gives a
topological obstruction for isochronicity. Namely, letγ (h) be a continuous family of one-
cycles contained in the complex level setH−1(h), and vanishing at an isochronous Morse
critical point of H , as h → 0. We prove that ifH is a good polynomial with only simple
isolated critical points and the level setH−1(0) contains a single critical point, thenγ (h)
represents a zero homology cycle on the Riemann surface of the algebraic curveH−1(h). We
give several examples of ‘non-trivial’ complex Hamiltonians with isochronous Morse critical
points and explain how their study is related to the famous Jacobian conjecture.

AMS classification scheme numbers: 58F22, 34C25

1. Introduction

Let H ∈ R[x, y] be a real polynomial of the form

H = (x2+ y2)/2+ ‘higher order terms’.

The plane Hamiltonian system

ẋ = ∂H/∂y
ẏ = −∂H/∂x (1)

has an equilibrium point (a centre) at the origin surrounded by a family of periodic solutions
parameterized by the energyH . Each periodic orbitγ (h) is contained in an unique level
set

{(x, y) ∈ R2 : H(x, y) = h}
for h > 0 sufficiently small and its period equal to

T (h) =
∮

dt =
∫
γ (h)

dx

∂H/∂y
.

The centre is calledisochronousif the period T (h) of these solutions does not depend
on h. Another interpretation of the period functionT (h) is the following. LetS(h) =∫∫
H6h dx ∧ dy be the area of the set bounded by the periodic orbitγ (h) on the planeR2.

Then the derivative of the area functionS(h) is the period functionT (h).
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The study of isochronous systems goes back at least to Galileo who discovered in 1632
the isochronicity of small oscillations of simple pendulum and the formula for its period
was given by Huygens in 1673 [23, p 72]. Huygens also described the first nonlinear
isochronous pendulum: a particle constrained to move on a cycloid under the action of
gravity [13] (see [23, p 111, example 1] for exact formulation). Isochronous systems were
later studied by Euler, Bernoulli and Lagrange (see for example [15]). The plane quadratic
isochronous systems are completely classified by Loud [16]. For more recent results on
isochronicity of plane systems of differential equations we refer the reader to [7] (for a
local study) and to [18].

As the period functionT (h) is given by an Abelian integral, it is more natural to study it
in a complex domain, and even for complex Hamiltonian functionsH . This will be the point
of view adopted in the present paper. Namely, to any complex polynomialf ∈ C[x, y]
having a Morse critical point at the origin,f (0, 0) = 0, we associate a one-cycleγ (t) in
the fibref −1(t) vanishing at the origin inC2 as t tends to 0, and a period function

T (t) =
∫
γ (t)

ω

where

ω = dx ∧ dy

df
= − dx

∂f/∂y

is the Gel’fand–Leray form of the ‘volume form’ dx ∧ dy. If f = H = (x2 + y2)/2+ · · ·
is a real polynomial, and the orientation ofγ (t) is appropriately chosen, then this period
function coincides with the period function associated to the centre of (1). We shall say
that a Morse critical point of the complex polynomial functionf is isochronousprovided
that the associated period functionT (t) is constant int .

Further, we shall not use the real structure of the system. Thus, we shall make no
difference between (non-degenerate) saddle-points and centres. Both will be for us simply
Morse critical points. Our main results are theorems 4.1 and 3.1 where we find necessary
conditions for isochronicity of a large class of complex plane polynomial Hamiltonian
systems. In particular theorem 4.1 suggests that the monodromy of the cycleγ (t) is an
obstruction for a Morse critical point to be isochronous. This also leads to the following
question

Is it true that if a Morse critical point is isochronous, then the associated vanishing cycle
γ (t) represents a zero homology cycle on the Riemann surface of the fibref −1(t)?

As we show in section 6, a positive answer to the above question would imply the
famous Jacobian conjecture.

The paper is organized as follows. In section 2 we summarize some basic facts on the
topology of the polynomial fibrationf −1(t)→ t , f ∈ C[x, y], which are used through the
paper. For the convenience of the reader we also sketch the proofs. In section 3 we prove
that a non-degenerate semi-weighted homogeneous polynomial cannot have an isochronous
Morse critical point, unless its degree is two (theorem 3.1 provides a natural complex
generalization of results obtained earlier in [7, 18]). We show that such a polynomial defines
a Milnor fibration ‘at infinity’ so the asymptotic behaviour of the period function can be
easily studied. From that we deduce that the period function is not a constant. We note that
in the same way one may compute the asymptotic behaviour of any Abelian integral along
a cycle contained in the level sets of the polynomial under consideration.

Suppose thatf ∈ C[x, y] has only simple (in the sense of singularity theory) isolated
critical points, and that it definies a Milnor fibration ‘at infinity’. We prove in section 4
that if the critical level setf −1(0) contains a single critical point which is Morse and
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isochronous, then the associated vanishing cycleγ (t) represents a zero homology cycle on
the Riemann surface of the fibref −1(t) (theorem 4.1). We use a monodromy argument
which in fact can be applied to a larger class of polynomials. Thus, the proof seems to be
more important than the result itself. We believe that a further progress can be achieved by
a more careful study of the monodromy of polynomials.

In section 5 we give examples of polynomials with isochronous Morse critical points. It
is seen in particular that the genus of the Riemann surface of the generic fibref −1 is not an
obstruction for isochronicity. Finally, in section 6, we explain how the sudy of isochronous
Morse critical points is related to the well known Jacobian conjecture.

After this paper was submitted for publication we learned that the relation between
isochronous systems and the Jacobian conjecture was also noted by M Sabatini (Connection
between isochronous Hamiltonian centres and the Jacobian conjecture, preprint, Università
degli Studi di Trento, 1995).

2. The topology of the fibrationC2 f→ C

In this section we summarize some basic facts on the topology of the polynomial fibration
f −1(t)→ t , f ∈ C[x, y], which will be used through the paper. Letf be a polynomial in
two complex variables with only isolated critical points and which is written in the form

f (x, y) = yd + a1(x)y
d−1+ · · · + ad(x) (2)

whereai(x) are polynomials inx of degree at mosti.
To each isolated critical pointp ∈ C2 of f we associate its Milnor number

µp(f ) = dimCOp(x, y)/〈fx, fy〉
whereOp(x, y) is the local ring ofC2 at p (it may be any of the rings of rational functions
defined atp, formal or convergent power series in a neighbourhood ofp) and 〈fx, fy〉 is
the Jacobian ideal inOp(x, y) generated by the gradient off . We define also the global
Milnor numberµ(f ) of f

µ(f ) =
∑
p

µp(f ) = dimC2[x, y]/〈fx, fy〉.

The polynomialf has only isolated critical points if and only ifµ(f ) is finite.
Note thatµ(f ) is a topological invariant off . It means that iff is topologically

conjugate to the polynomialg thenµ(f ) = µ(g). We shall now define another topological
invariant off .

Denote by1(t, x) the discriminant off (x, y) − t with respect toy. Let d(t) be
the degree of1(t, x) in x and let d be the degree of1(t, x) for generic t . Obviously
d − d(t) > 0 and there is only a finite number of values fort such thatd − d(t) > 0.

Definition 1. We denote

λt (f ) = d − d(t) λ(f ) =
∑
t∈C

λt (f ).

The fact thatλ(f ) is a topological invariant will follow from theorem 2.2. The number
λt0(f ) counts the number of ramification points of the curve0t = {f (x, y) = t} which tend
to infinity as t tends tot0 and then the numberλ(f ) is the total number of ramification
points which tend to infinity ast varies.

Following [5, p 236], we shall give another (equivalent) interpretation of the number
λt (f ). Let0t be the projective closure inCP2 of the affine curve0t = {f (x, y) = t} ⊂ C2.
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For anyp ∈ 0t − 0t let µ(0t , p) be the Milnor number of the germ of the analytic curve
0t at p. As µ(0t , p) is upper semicontinuous int [5], then for t sufficiently close tot0,
but t 6= t0 the number

λt0p (f ) = µ(0t , p)− µ(0t0, p)
is well defined.

Definition 2. We denote

λt (f ) =
∑

p∈0t−0t
λtp(f ) λ(f ) =

∑
t∈C

λt (f ).

Proposition 2.1. For any t the numbersλt (f ) from definitions 1 and 2 coincide.

The proof is given for example in [9].

Theorem 2.2. If f is a polynomial with isolated critical points then the Euler characteristic
of the fibref −1(t) is given by

χ(f −1(t)) = 1− µ(f )− λ(f )+ µt(f )+ λt (f ). (3)

In the case wheref −1(t) is a generic fibre (µt(f ) = λt (f ) = 0) the above theorem is
yet contained in [22] (see also [5], theorem 5.2). To prove the formula in general we use
that for anyt (see for example lemma 8 in [12])

χ(0t ) = 2− (d − 1)(d − 2)+
∑
p∈0t

µ(0t , p).

Let Af ⊂ C be the smallest set such thatf : C2 − f −1(Af ) → C − Af is a locally
trivial fibration. Then by definitionAf is the set ofnon-generic valuesof t and it is often
called a set ofatypical values. Let Ac be the set of critical values off ,

Ac = {t ∈ C : µt(f ) > 0}
and put

A∞ = {t ∈ C : λt (f ) > 0}.
It is well known thatAf is a finite set (see [12, 8] for a discussion). The following theorem
is due to Ha Huy Vui and Nguyen Le Anh who described completely the set of atypical
values

Theorem 2.3 ([10, 11]).Af = Ac ∪ A∞.

Definition 3 ([5]). A polynomial f : Cn → C is called a ‘tame’ polynomial if there is a
compact neighbourhoodU of the critical points off such that‖grad(f )‖ is bounded away
from the origin on the setCn − U .

It is known that iff is a tame polynomial then it defines a ‘Milnor fibration at infinity’
and in particularλ(f ) = 0 [5]. On the other hand, the class of polynomials defining a
fibration at infinity is larger than the class of tame polynomials.

Definition 4 ([20]). A fibre f −1(t) is regular at infinity if there exists a neighbourhoodD
of t and a compact subsetK of C2 such that

f −1(D)−K f→ D

is a locally trivial fibration. If all fibres off are regular at infinity then we say thatf is
good.

Here is an equivalent definition of a good polynomial

Definition 5. f is good if and only ifλ(f ) = 0.
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Figure 1.

Examples. All quadratic polynomials are tame. Up to linear changes of the independent
and the dependent variables, the only non-good (and hence non-tame) cubic polynomial
is f (x, y) = y(xy + 1) (see [5, 6]). Asf is not in the form (2) then we consider
f̃ (x, y) = f (x + y, y). The discriminant off̃ (x, y)− t with respect toy is

1(x, t) = 4tx3+ x2− 18tx − 27t2− 4

and henceλ(f ) = λ0(f ) = 1, χ(f −1(0)) = 1, andχ(f −1(t)) = 0 for t 6= 0. Asµ(f ) = 0
then for t 6= 0 the fibref −1(t) has the homotopy type of a circle and hencef −1(t) is a
Riemann sphere with two removed points.

Let f = c(y2 + x)k + y, c 6= 0, k > 1. As λ(f ), µ(f ) are topological invariants and
the bi-polynomial change of variablesx → x + y2, y → y putsf into the formcxk + y,
thenµ(f ) = λ(f ) = 0. Thusf is a good polynomial but nevertheless it is not tame.

2.1. Vanishing cycles

According to theorem 2.2 the generic fibref −1(t) of a polynomial with isolated critical
points has the homotopy type of a bouquet ofµ(f ) + λ(f ) = dimH1(f

−1(t),Z) circles.
By analogy to the local case we may defineµ(f )+ λ(f ) ‘vanishing cycles’ which form a
base ofH1(f

−1(t),Z). Namely, following [6], letDi ⊂ C be small closed disks centred
at the atypical pointsti ∈ Af of f , ωi be continuous paths, nonintersecting except att0,
connecting some fixed typical valuet0 /∈ Af to ti (figure 1). DenoteXi = f −1(Di ∪ ωi),
Xt = f −1(t), X = ∪iXi . DefineV i ⊂ H1(Xt0,Z) to be the kernel of the homomorphism

H1(Xt0,Z)→ H1(Xi,Z)

induced by the inclusionXt0 → Xi .

Theorem 2.4.

H1(Xt0,Z) = ⊕iV i

whererangV i = µti (f )+ λti (f ). If λti (f ) = 0, thenV i has a basis of

µti (f ) =
∑

p∈f −1(ti )

µp(f )

1-cycles in the fibref −1(t0) that vanish ast tends toti along the pathωi .
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Proof. As X is a deformation retract ofC2 then

H1(Xt0,Z)
∼= H2(X,Xt0) (4)

and by the direct sum theorem we have the decomposition

H2(X,Xt0) = ⊕iH2(Xi,Xt0). (5)

Consider the long exact sequence associated with the pair(Xi,Xt0)

· · · → H2(Xi,Xt0)
∂∗→ H1(Xt0,Z)→ H1(Xi,Z)→ · · · .

By (4) and (5) the map∂∗ is an injection and henceH1(Xt0,Z) = ⊕iV i . Further, if
λti (f ) = 0 then the singular fibref −1(ti) is a deformation retract ofXi (the proof is the
same as in the ‘local’ case, see [1]). It follows that there are exactly

µti (f ) =
∑

p∈f −1(ti )

µp(f )

one-cycles in the fibref −1(t) that vanish ast → ti . Finally, if λti (f ) 6= 0, then the formula
for the rank ofV i is a by-product from the proof of theorem 3.1 in [21].

Remark. Note that ifλti (f ) 6= 0 then the singular fibref −1(ti) may not be a deformation
retract ofXi . Nevertheless the notion ‘vanishing cycle’ still has a sense but the fibref −1(t)

should be replaced by its projective closuref −1(t) ⊂ CP2 (see [21] for details).

2.2. (λ, µ) constant deformations

Let f ∈ Cd [x, y] be a polynomial of degreed with isolated critical points, and consider a
polynomial deformationfθ ∈ Cd [x, y] of f depending continuously on the parameterθ .

Definition 6. We shall say thatfθ is a(λ, µ) constant deformation provided thatλ = λ(fθ ),
µ = µ(fθ ) do not depend onθ .

Theorem 2.5.Consider a(λ, µ) constant polynomial deformationfθ , 0 6 θ 6 1, of the
polynomialf (x, y) = f0(x, y), and suppose in addition that0 ∈ C is a typical value offθ
for all θ . Then the fibration

[0, 1]× C2→ [0, 1] : (θ, f −1
θ (0)) 7→ θ

is trivial.

The above theorem claims that if two polynomialsf0, f1 are connected by a(λ, µ)
constant deformation, then their generic fibres are equivalent up to an isotopy. Note,
however, thatf0 andf1 may have different atypical points and values with different fibre
numbersλt andµt and only the global numbersλ, µ are the same. Thus (in contrast to the
local case [17])f0 andf1 may not be topologically conjugate.

Proof of theorem 2.5. As 0 ∈ C is a typical value offθ then the fibre numbersλ0(fθ ),
µ0(fθ ) are equal to zero and hence fort sufficiently small and allθ ∈ [0, 1] holds

λt (fθ ) = µt(fθ ) = 0.

Without loss of generality we may suppose that the polynomialfθ is written in the form

fθ (x, y) =
d∑
i=0

ad−i,θ (x)yi

wheread−i,θ (x) are polynomials inx of degree at mostd− i which depend continuously on
the parameterθ . After an appropriate linear change of the variablesx, y we may suppose
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that the leading coefficienta0,0 = a0,0(x) is a non-zero constant. To simplify the notations
we shall also suppose thata0,θ = a0,θ (x) 6= 0 for all θ ∈ [0, 1]. This is not a restriction as,
to prove theorem 2.5, it is enough to establish the triviality of the fibration forθ sufficiently
small. For suchθ clearly holdsa0,θ 6= 0.

Let

1θ(t, x) =
N∑
i=0

δi,θ (t)x
i

be the discriminant of the polynomialfθ (x, y)− t with respect toy. We haveδN,θ (0) 6= 0
(definition 1) and hence there existsc0 > 0, ε > 0, such that ifθ ∈ [0, 1], |t | < ε, then
1θ(t, x) 6= 0 on the set{x ∈ C : |x| > c0}. Then an elementary calculation shows that for
t, θ, c such thatθ ∈ [0, 1], |t | < ε, c > c0 the cylinder

Cc = {(x, y) ∈ C2 : |x| = c}
is transverse to the smooth affine curve{(x, y) ∈ C2 : fθ (x, y) = t}. Thusf −1

θ (t) ∩ Cc,
c > c0, is smooth and asa0,θ 6= 0 thenf −1

θ (t) ∩ Cc is a finite unramified covering over
the circle {x : |x| = c}. We conclude that for anyθ ∈ [0, 1], |t | < ε, c > c0, the set
f −1
θ (t) ∩ Cc is a finite disjoint union of circles and hence we obtain the following two

proper submersions

f −1
θ (t) ∩ {(x, y) ∈ C2 : |x| 6 c0} → (t, θ) |t | < ε, θ ∈ [0, 1] (6)

and

f −1
θ (t) ∩ Cc → (t, c) |t | < ε, θ ∈ [0, 1], c > c0. (7)

The Ehresmann fibration theorem implies that (6) and (7) are locally trivial fibrations. Tying
them up together we obtain a locally trivial fibration

(θ, f −1
θ (t))→ (θ, t) |t | < ε, θ ∈ [0, 1].

which implies the local triviality (and hence triviality) of the fibration

[0, 1]× C2→ [0, 1] : (θ, f −1
θ (0)) 7→ θ.

3. Semiweighted homogeneous systems

A function f : Cn → C is called weighted homogeneous (wh) of weighted degreed and
typew = (w1, w2, . . . , wn), wi = weight(xi) if

f (tw1x1, t
w2x2, . . . , t

wnxn) = tdf (x1, x2, . . . , xn) ∀t ∈ C∗.
We shall also suppose thatd > 2wi > 0, i = 1, 2, . . . , n. A polynomial f ∈
C[x1, x2, . . . , xn] is called semiweighted homogeneous (swh) of weighted degreed and
type w if it can be written asf = ∑d

i=0 fi , wherefi are wh polynomials of weighted
degreei and typew.

Definition 7. A swh polynomialf =∑d
i=0 fi ∈ C[x1, x2, . . . , xn] of degreed and typew

is called non-degenerated if its highest weighted homogeneous partfd is a polynomial with
isolated critical points.

Theorem 3.1.A Morse critical point of a non-degenerate swh polynomial in two complex
variables cannot be isochronous unless the polynomial is of degree two.

The above theorem is a generalization of theorem 7.2 [18].
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Example ([7, p 466]). Let f = y2+ V (x), V (x) = x2+ a3x
3+ · · · + anxn, an 6= 0. f is

a non-degenerate swh polynomial and hence the Hamiltonian system

d2

dt2
x = − d

dx
V (x)

is not isochronous.
To prove theorem 3.1 we need the following

Proposition 3.2. Letf =∑d
i=0 fi ∈ C[x1, x2, . . . , xn] be a non-degenerate swh polynomial

of degreed and typew. Thenf is tame and its global Milnor number is given by the formula

µ(f ) =
n∏
i=1

(
d

wi
− 1

)
.

Proof. Consider the family of topological spheres

St = {(x1, x2, . . . , xn) ∈ Cn : |x1|1/w1 + |x2|1/w2 + · · · + |xn|1/wn = t}.
As fd is a wh polynomial with isolated critical points then the spheresSt are transversal to
its fibresf −1

d (t) for t > 0. In particular there existsc > 0 such that on the compact setS1

holds

max
i

∣∣∣∣ ∂∂xi fd
∣∣∣∣ > c

and hence on the sphereSt we have

max
i
| ∂
∂xi

fd | > ctd−w0 w0 = max{w1, w2, . . . , wn}. (8)

Consider now the polynomial deformation

fθ = fd + θf ′ f ′ =
d−1∑
i=0

fi 06 θ 6 1.

If

C = max
i,x∈S1

∣∣∂f ′/∂xi∣∣
then onSt holds∣∣∣∣ ∂∂xi f ′

∣∣∣∣ 6 Ctd−1−wi . (9)

Comparing (8) with (9) we conclude that there existst0 > 0 such that for anyθ ∈ [0, 1]
and t > t0 the functionfθ has no critical points onSt . This shows thatfθ (and hencef )
is tame. On the other hand, the global Milnor numberµ(fθ ) is the degree of the map [19]

(x1, x2, . . . , xn)→ ∇fθ
‖∇fθ‖ ∇fθ = (∂fθ/∂x1, . . . , ∂fθ/∂xn) x ∈ St

for t sufficiently large and hence

µ(f ) = µ(fθ ) = µ(fd).
Finally the global Milnor numberµ(f ) of a wh polynomial with isolated critical points
is easily computed by the Poincaré series of the corresponding gradient map∇fd (see for
instance [4, p 104]). �



Isochronicity of plane polynomial Hamiltonian systems 441

Remark. The above result can be considered as a special case of Kushnirenko’s theorem
[14]. Suffice it to note that a non-degenerate swh polynomial is also non-degenerate with
respect to its Newton boundary (at infinity). Moreover, asf is tame, then without loss
of generality it may be also supposed convenient (in the sense of [14]). Thus, the global
Milnor number of a non-degenerate swh polynomial coincides with its Newton number.

Proof of theorem 3.1. Let f ∈ C[x1, x2] be a non-degenerate swh polynomial of type
w = (w1, w2) and degreed, f =∑d

i=0 fi , fi—weighted homogeneous of weighted degree
i. Consider the polynomial deformation

gt (x1, x2) =(f (x1t
w1/d , x2t

w2/d)− t)/t = fd(x1, x2)+ t−1/dfd−1(x1, x2)+· · ·+ t−1f0− 1.

defined fort ∈ [1,∞], g1(x1, x2) = f (x1, x2)− 1, g∞(x1, x2) = fd(x1, x2)− 1. According
to proposition 3.2 the polynomialgt is tame (soλ(gt ) = 0) andµ(gt ) = µ(fd) is a constant
in t . Thus, theorem 2.5 applies and the fibration

[t0,∞] × C2→ [t0,∞] : (t, g−1
t (0))→ t (10)

is trivial, provided that 0∈ C is a typical value ofgt for all t > t0. Clearly the last condition
is satisfied fort0 sufficiently large.

Let γ̃ (t0) ∈ H1(g
−1
t0
(0),Z) be any cycle. Trivializing the fibration (10) we obtain a

continuous family of cycles̃γ (t) ∈ H1(g
−1
t (0),Z) defined for allt > t0. Denote byγ (t)

the image of the cyclẽγ (t) in H1(f
−1(t),Z) under the map

(x1, x2)→ (x1t
−w1/d , x2t

−w2/d).

To compute the asymptotic behaviour of any Abelian integral along the cycleγ (t) we have
just to change the variables. In particular consider the ‘area’ functionS(t). We have

S(t) =
∫
γ (t)

x2 dx1 =
∫
γ̃ (t)

tw2/dx2 dtw1/dx1 = t (w1+w2)/d

∫
γ̃ (t)

x2 dx1.

As
∫
γ̃ (∞) x2 dx1 is well defined and finite then fort sufficiently large and some non-zero

constantc holds

|S(t)| 6 ct(w1+w2)/d .

If the period functionT (t) = ∫
γ (t)

dx1/fx2 = S ′(t) is identically a constant, say 2π , then
S(t) = 2πt and hencew1 + w2 > d. On the other hand, we suppose thatw1, w2 6 d/2.
We conclude thatw1 = w2 = d/2 and the polynomialf = ∑d

i=0 fi is of (non-weighted)
degree at most two. �

4. Systems with simple critical points

We recall that an isolated singularity of a germ of a holomorphic functionf : (Cn, 0) →
(C, 0) is called simple (or du Val singularity, or rational double point) if its modality is
0 [1]. Such singularities are classified according to the Coxeter groupsAk,Dk,E6, E7, E8

(i.e. according to regular polyhedra inR3).

Theorem 4.1.Let f ∈ C[x, y] be a good polynomial having only simple singularities. If a
critical level set off contains a single critical point which is Morse and isochronous, then
the corresponding vanishing cycle represents a zero homology cycle on the Riemann surface
of the algebraic curvef −1(t).
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Figure 2.

Proof. Suppose that(0, 0) is an isolated isochronous Morse critical point of the good
polynomial f = (x2 + y2)/2 + · · ·. Let us suppose that the associated cycleγ (t) ∈
H1(f

−1(t),Z) vanishing at(0, 0) as t → 0 is not homologous to zero on the Riemann
surface off −1(t). This implies that the genus of this surface is at least one and hence
one may always find another non-zero cycleγ̃ (t) ∈ H1(f

−1(t),Z) having a non-zero
intersection number withγ (t). Further, according to theorem 2.4, we may suppose that
γ̃ (t) is a vanishing cycle. Namely, lett̃ be the critical value corresponding tõγ (t). Choose
a diskD ⊂ C centred at the origin and containing the set of critical pointsAc. Let t0 ∈ ∂D
be a non-critical point, andu and ũ be non-intersecting paths inD connectingt0 and the
critical valuest = 0 andt = t̃ , andl, l̃ ∈ π1(D−Ac, t0) be loops correspond tou and ũ as
on figure 2. Further we shall suppose thatγ (t) (γ̃ (t)) is a cycle vanishing along the path
u (ũ) as t → 0 (t → t̃), and that the intersection number(γ (t0) ◦ γ̃ (t0)) is non-zero. Note
that we do not suppose thatf −1(t̃) contains a single critical point.

Trivializing the fibrationf −1(t)→ t along l and l̃ we obtain homeomorphisms

hl, hl̃ : f −1(t0)→ f −1(t0)

which induce automorphisms

hl∗, hl̃∗ : H1(f
−1(t0),Z)→ H1(f

−1(t0),Z).

We claim that the intersection number(hl̃∗γ (t0) ◦ γ (t0)) is not zero. Assuming that it is not
difficult to prove theorem 4.1. Indeed, letδ̃(t), δ(t) be a continuous family of cycles in the
fibre f −1(t) defined fort ∼ t0 and such that

δ̃(t0) = hl̃∗γ (t0), δ(t0) = hl∗ ◦ hl̃∗γ (t0).
Then the Picard–Lefschetz formula reads

δ(t0) = hl∗δ̃(t0) = δ̃(t0)− (δ̃(t0) ◦ γ (t0))γ (t0)
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and hence fort ∼ t0
δ(t) = δ̃(t)− (δ̃(t0) ◦ γ (t0))γ (t)

or equivalently∫
δ(t)

ω =
∫
δ̃(t)

ω − (δ̃(t0) ◦ γ (t0))
∫
γ (t)

. (11)

On the other hand, the analytic continuation of the period functionT (t) along the loops̃l
and l gives (for t ∼ t0)

T (t) =
∫
γ (t)

ω =
∫
δ̃(t)

ω =
∫
δ(t)

ω ≡ 2π

which, combined with (11) implies that the intersection number

(hl̃∗γ (t0) ◦ γ (t0)) = (δ̃(t0) ◦ γ (t0))
is zero.

Finally to show that the above intersection number is non-zero we use the fact that the
quadratic form of simple singularity is negative definite [1]. More precisely, letγ̃ (t) be a
cycle vanishing at the critical point(x̃, ỹ) ast → t̃ . For simplicity, suppose first that(x̃, ỹ)
is the only critical point contained in the fibref −1(t̃). Denote byft the local Milnor fibre
of the singularity

f : (C2, (x̃, ỹ))→ (C, t̃).

This means thatft = f −1(t) ∩ Bε(x̃, ỹ), t ∈ Dδ(t̃), where

Bε(x̃, ỹ) = {(x, y) ∈ C2 : |x − x̃|2+ |x − ỹ|2 6 ε} Dδ(t̃) = {t ∈ C : |t − t̃ | 6 δ}
and 0< δ � ε � 1. The fibration

(ft , ∂ft )→ t t ∈ Dδ(t̃)− t̃ (12)

is locally trivial. We may suppose that the pathũ is transversal to∂Dδ(t̃). Then the path
ũ∩Dδ(t̃) connecting̃t0 = ũ∩∂Dδ(t̃) and t̃ defines a loop̃l′ ∈ π1(Dδ(t̃)− t̃ , t̃0). Trivializing
the fibration (12) along̃l′ we obtain a smooth map (monodromy)

hl̃′ : ft̃0 → ft̃0

which on its turn induces an automorphism (monodromy operator)

hl̃′∗ : H1(ft̃0,Z)→ H1(ft̃0,Z)

and a homomorphism (variation operator)

var̃l′ = Varf : H1(ft̃0, ∂ft̃0)→ H1(ft̃0,Z).

Consider also the natural ‘restriction’ homomorphism

H1(f
−1(t̃0),Z)→ H1(ft̃0, ∂ft̃0) : γ (t̃0)→ γr(t̃0)

which maps a cycle in the global fibref −1(t̃0) to its ‘part’ lying in the local Milnor fibre
ft̃0. We have now

(hl̃∗γ (t0) ◦ γ (t0)) = (hl̃′∗γ (t̃0) ◦ γ (t̃0)) = (Varf γr(t̃0), γr(t̃0)) = S(Varf γr(t̃0),Varf γr(t̃0))

where

S : (H1(ft ,Z),H1(ft ,Z))→ Z
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is the Seifert bilinear form [1] of the singularity

f : (C2, (x̃, ỹ))→ (C, t̃).

As the quadratic formQ(a, b) = S(a, b)+S(b, a) is negative definite then(hl̃∗γ (t0)◦γ (t0) is
not zero unless Varf γr(t̃0) ∈ H1(ft̃ ,Z) is homologous to zero. But the variation operator is
in fact an isomorphism and the relative homology groupH1(ft̃0, ∂ft̃0) is identified canonically
with the dual group(H1(ft̃ ,Z))

∗ via the intersection form. Thus, it remains to prove that
γr(t̃0) is not in the kernel of the intersection form onH1(ft̃0,Z). As (γ (t0) ◦ γ̃ (t0)) is not
zero then(γr(t̃0) ◦ γ̃ (t̃0)) 6= 0 and hence(hl̃∗γ (t0) ◦ γ (t0)) 6= 0.

Suppose at last that the critical level setf −1(t̃) contains several critical points(x̃i , ỹi).
We associate to each critical point(x̃i , ỹi) a local Milnor fibref it and a variation operator

Varif : H1(f
i
t̃0
, ∂f i

t̃0
)→ H1(f

i
t̃0
,Z).

If γ (t̃0) ∈ H1(ft̃0,Z) then we denote, as before, byγ ir (t̃0) its ‘part’ lying in the local Milnor
fibre f it . We have

(hl̃∗γ (t0) ◦ γ (t0)) =
(∑

i

Varif γ
i
r (t̃0),

∑
i

γ ir (t̃0)

)
=
∑
i

(Varif γ
i
r (t̃0), γ

i
r (t̃0))

=
∑
i

Si(Varif γ
i
r (t̃0),Varif γ

i
r (t̃0))

whereSi is the Seifert bilinear form of the singularity

f : (C2, (x̃i , ỹi))→ (C, t̃).

The same argument as before shows that(hl̃∗γ (t0) ◦ γ (t0)) < 0 which completes the proof
of theorem 4.1. �

5. Examples

In this sectionf ∈ C2[x, y] will be a polynomial with a Morse critical point at the origin
and γ (t) will be a one-cycle in the fibref −1(t) that vanish at the origin ast tends to
0. We denote byS(t) the area function

∫
γ (t)

y dx and byT (t) the period function
∫
γ (t)

ω,

ω = dx/fy . The generic level setf −1(t) and the vanishing cycleγ (t) in the examples that
follow are shown in figure 3.

An algebraic automorphism ofC2 is a bi-polynomial map(x, u) → (u, v). Clearly
dx∧dy = c du∧dv for some non-zero constantc that may be supposed equal to 1. Now if
we putf (x, y) = ((u(x, y)−u(0, 0))2+ (v(x, y)− v(0, 0))2)/2, then the canonical change
of variables

(x, y)→ (u(x, y)− u(0, 0), v(x, y)− v(0, 0))

transforms the Hamiltonian system

ẋ = ∂f/∂y
ẏ = −∂f/∂x

into a linear oneu̇ = v, v̇ = −u. As a time-independent inversible (complex) change of
variables preserves the isochronicity of a centre (Morse critical point), we conclude that
any centre of the initial Hamiltonian system is isochronous too. The first natural guess is
that in this way we obtain all polynomial Hamiltonian isochronous systems. The following
example shows that it is not so.
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Figure 3.

Example 1. The generic fibre of the polynomialf = yx(x − 1) is C∗∗ (Riemann sphere
with three removed points) and hence there is no algebraic automorphism that putsf into
the formx2+y2. On the other hand,f has an isochronous Morse critical point at the origin.
Indeed, its period function is given by the residue at the origin of the form dx/x(x − 1).

Example 2. The cubic polynomialf = x(xy + x + y) has an isochronous Morse critical
point at the origin. To check the above assertions we compute thatf is a good polynomial
(λ(f ) = 0) with a global Milnor numberµ(f ) = 2. The fibref −1(0) has two components:
C (Riemann sphere with a removed point) andC∗ (Riemann sphere with two removed
points) with one common point which is a normal crossing. We have

S(t) =
∫
γ (t)

y dx = 2π
√−1 Res∞1(y dx) = 2π

√−1 Res0
t − x2

x(1+ x) = 2π
√−1t

and henceT (t) = S ′(t) = 2π
√−1= constant.

The next guess may be that if a polynomial has an isochronous Morse critical point
then its generic fibre is a Riemann sphere with several removed points. The next examples,
suggested by E Artal and I Luengo, show that it is not so.

Example 3. The polynomialf = y(x2y2+ x + y) has an isochronous Morse critical point
at the origin. Indeed,λ(f ) = 0, µ(f ) = 4, and the generic fibre off is a genus one
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Riemann surface with three removed points. As above

S(t) =
∫
γ (t)

x dy = 2π
√−1 Res∞1(x dy) = 2π

√−1t.

Example 4. The polynomialf = y((y + x2)y2+ x − y) has an isochronous Morse critical
point at the origin. We check thatλ(f ) = 0, µ(f ) = 6, and the generic fibre off is a
genus two Riemann surface with three removed points. As before the area functionS(t) is
the residue ofx dy at∞1 and hence it equals to 2π

√−1t .
In the above examples the vanishing cycle is homologous to zero on the Riemann surface

of the fibref −1(t), as it was conjectured in the introduction. The next example shows,
however, that it does not guarantee the isochronicity.

Example 5. The generic fibre of the polynomialf = (x2 + y2(x + 1)2)/2 is a Riemann
sphere with four removed points. Nevertheless the Morse critical point(0, 0) of f is not
isochronous. Indeed

T (t) =
∫
γ (t)

dx

fy
=
∫
γ (t)

dx

y(x + 1)2
= 2π

√−1 Res∞1

dx

y(x + 1)2
= 2π√

1− t .

It is seen that the period function is not single-valued. Thus, although the intersection form
on H1(f

−1(t),Z) is identically zero, the cycleγ (t) has a monodromy. This is explained
by the fact thatf is not good. We haveµ(f ) = 1, λ1(f ) = λ(f ) = 2.

6. Isochronous systems and the Jacobian conjecture

Jacobian conjectureany polynomial canonical map

C2→ C2 : (x, y) 7→ (u, v) dx ∧ dy = du ∧ dv

is globally inversible.
The Jacobian conjecture was first formulated by O H Keller in 1939 (see [3] for a

survey). It is, in fact, equivalent to prove that the map(x, y) 7→ (u, v) is injective. We
shall show, however, that this is not compatible to the conclusion of theorem 4.1.

Let (x, y) 7→ (u, v) be a polynomial map, such that dx ∧ dy = du ∧ dv, and put

f (x, y) = (u2(x, y)+ v2(x, y))/2.

We may also suppose thatu(0, 0) = 0, v(0, 0) = 0 so the origin inC2 is an isochronous
Morse critical point off (section 5). Denote, as usual, byγ (t) a continuous family of
one-cycles contained in the fibref −1(t) and vanishing at the origin ast → 0.

Proposition 6.1. If the map(x, y) 7→ (u, v) is not injective, thenγ (t) represents a non-zero
homology cycle on the Riemann surface of the algebraic curvef −1(t).

The above proposition raises the natural question (asked in the introduction), whether there
are isochronous Morse critical points with non-zero homology cycle. A negative answer
would imply the injectivity of the map(x, y) 7→ (u, v), and hence the Jacobian conjecture.

Proof of proposition 6.1. Suppose that the map(x, y) 7→ (u, v) is not injective, that is to
say there are two distinct points(x0, y0) and (x1, y1) such thatu(x0, y0) = u(x1, y1) = 0,
v(x0, y0) = v(x1, y1) = 0. Without loss of generality we shall put(x0, y0) = (0, 0). Suppose
that the vanishing cycleγ (t) associated to(0, 0) is homologous to zero on the compactified
algebraic curvef −1(t), or equivalently, the intersection number(γ (t) ◦ α(t)) is zero for
any cycleα(t) ∈ H1(f

−1(t),Z). We shall prove that this leads to a contradiction.
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Figure 4.

As u, v are polynomials with isolated critical points (in fact they have no critical
points at all) then their generic level sets are smooth and irreducible. Further without
loss of generality we shall suppose that the affine curvesu(x, y) + √−1v(x, y) = 0 and
u(x, y)−√−1v(x, y) = 0 are smooth and irreducible (and hence connected). Letα+ (α−)
be a continuous path on the curveu(x, y)+√−1v(x, y) = 0 (u(x, y)−√−1v(x, y) = 0)
connecting the two points(x0, y0) and(x1, y1). We may suppose that the only intersection
points ofα+ andα− are their ends and denoteα = α+∪α−. We claim that by continuity the
closed loopα defines, for all sufficiently smallt , a closed loopα(t) ⊂ f −1(t), α(0) = α.
Indeedf = (u + √−1v)(u − √−1v)/2 and it suffice to defineα(t) in a neighbourhood
of the Morse critical points(x0, y0) ((x1, y1)). We may suppose that(x0, y0) = (0, 0),
u+√−1v = x, u−√−1v = y, t ∈ R, t > 0, and define in a neighbourhood of(0, 0) the
loop α(t) to be the real curvexy = 2t wherex, y > 0. As t → 0 the loopα(t) tends to
α+ ∪ α−, whereα+ is defined byx = 0, y > 0, andα− by y = 0, x > 0. The loopα(t) is
shown on figure 4.

We note finally that if

γ (t) = {x =
√

2t expiϕ, y =
√

2t exp−iϕ, ϕ ∈ [0, 2π ]}

is a cycle vanishing at(0, 0) as t → 0, then the intersection number(α(t) ◦ γ (t)) equals to
±1 and we arrived at a contradiction. �
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