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Abstract. It is shown that, for a planar Hamiltonian quadratic system with a center, the
period of the associated periodic orbits isca strictly increasing function of the energy.

1. Introduction. Let

dx/dt = Hy, dy/dt = -Hx (1)

be a planar Hamiltonian system with a eenter, which for definiteness we assume
loeated at the origin. The origin is surrounded by a eontinuous family of periodie
orbits. Eaeh periodic orbit in this eontinuous family lies on an energy level set
H(x, y) = h and may be denoted by 'Y(h), sinee it is uniquely determined by h. The
period function T(h) is the (least) period of 'Y(h).

The dependenee of the period on the energy has been extensively studied. On
the one hand there is interest in isochronous systems, for whieh T( h) is a constant.
On the other hand, in studying the perturbation of periodic orbits by Melnikov's
method (see, e.g., Guekenheimer and Holmes [8]) it is assumed that the derivative
T'(h) is nonzero, so that T(h) is a strictly monotonie function.

Conditions whieh ensure that T'(h) =1 0 have been given for specifie types of
Hamiltonian system by several authors. Sehaaf [10] has eonsidered systems of the
form

dx/dt = g(y), dy/dt = - f(x),

and the special case
d2x/dt2 + f(x) = 0 (2)

has reeeived partieular attention. It is known that the period funetion for a eenter of
(2) is monotonie if J;f(~) ~/ P(x) is eonvex (Chieone [1]), or if fis a polynomial
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with only simple real zeros (Schaaf [10]), or if fis a quadratic polynomial (Chow
and Sanders [4], Schaaf [10]). On the other hand, if f is a cubic polynomial then
T(h) may have one, but not more than one, critical point (Chow and Sanders [4],
Gavrilov [7]).

ln the present work we show that T'(h) > 0 whenever the Hamiltonian system (1)
is quadratic, Le., when H(x, y) is a cubic polynomial in x and y. It is interesting that
the proof depends on reducing the Hamiltonian system to a differential equation of
the form (2), although with a different independent variable t (which changes the
p~riod function).

2. The differential equation (2). We are going to study first the period
function of the second-order differential equation (2) under the following general
hypotheses on the function f : .

(*) f is a three times continuously differentiable function on an open interval
(a, {3),where a < 0 < {3,such that f(O) = 0, 1'(0) > 0 and f(x) :f 0 if
x:f~ .

, The hypotheses (*) imply that f(x) < 0 for x E (a, 0) and f(x) > 0 for x E (0,{3).
Hence, if we put .

F(x):= lXf(~) dÇ,

then F(x) > 0 for all x E (a, {3)with x:f O.If wefurther put

(3)

"p(x) := F(x)/f2(x), (4)

then also "p(x) > 0 for all xE (a,{3) with x :f O. ln fact "p(x) is well-defined and
positive even for x = O. For, when x - 0,

f(x) = l'(O)x + ~f"(0)x2 + l[f"'(O) + 0(1)]x3

and hence

1 /"(0) 1
[

(5/3)1"(0)2 - f'(O)f"'(O)
]"p(x) = 2f'(0) - 3f'(0)2x + 2 4f'(0)3 + 0(1) X2.

Thus, "p(0)= 1/2f'(0), "p'(0)= -1"(0)/31'(0)2 and

"pl/(O) = [(5/3)1"(0)2 - l' (O)f'" (0)]/41' (0)3. (5)

It followsthat"p is twice continuously differentiable on the interval (a,{3).
It is convenient to replace the differential equation (2) by the equivalent system

dx/dt = y, dy/dt = - f(x). (6)

The system (6) is Hamiltonian with Hamiltonian function

H(x,y) =y2/2+F(x). (7)

It has a center at the origin surrounded by a continuous family of periodic orbits,
each lying on an energy level set. We denote the periodic orbit lying on the energy
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level set H(x, y) = h by 'Y(h) and its period by T(h). Since the origin is the only
critical point of (6) under the hypotheses (*), we may call T(h) the period function
of the differential equation (2).

The or bit 'Y(h) is symmetric with respect to the x-axis. The portion above the
x-axis is given explicitly by

y = y(x, h) := 21/2[h - F(x)]1/2 (8)

and is defined for xl(h) :::;x :::; x2(h), where xl(h) and x2(h) are the (unique) r

negative and positive roots of the equation F(x) = h.
Since dx/dt = y, the period function T(h) is given by the line integral

T(h) = J dx/y.
fr(h)

Moreover, since 'Y(h) is described clockwise, we can write this in the form

l
X2(h)

T(h) = 2 dx/y,
Xl (h)

-'

(9)

where y =,y(x,h).

Lemma 1. Let the function f satisfy the hypotheses (*). Then the period function
T(h) for the differential equation (2) has a derivative with respect tô h given by

T'(h) = 2~ Jl(h) (F/f2)" dxdy, (10)
where O'(h) is the compact region bounded bY'Y(h).

Proof. For y = y(x, h) we have ây/âx = - f /y. Hence, by integrating by parts
repeatedly we obtain

x2(h) x2(h) x2(h) '."

~ f y3(F/f2)"dx= f (F/f2)'yfdx= f . (F/y-Ff'y/f2)dx}XI(h) }xI(h) }xI(h)

l X2(h)

l
X2(h)

= {F/y-y+(F/f)'y}dx= (2F/y-y)dx
xI(h) j xI(h)

l
X2(h)

= (2h/y - 2y)dx.
Xl (h)

Therefore, by (9),

lX2(h) l

1
X2(h) 0'

hT(h)=2 ydx+"3 y3(F/f2)"dx.xI(h) xI(h)

We now differentiate (11) with respect to h. Noting that yây/âh = 1, ànd that
y[xj(h), h] = 0 and f[xj(h)]xj(h) = 1 for j = 1,2, we obtain

l
X2(h)

l
X2(h)

hT'(h)+T(h)=2 dx/y+ y(F/f2)"dx.
Xl (h) xI(h)

(11)

Thus

l
X2(h)

i2hT'(h) = 2 y(F/f2)"dx = y(F/f2)"dx.
xI(h) ~(h)

The formula (10) for T'(h) follows immediately by applying Green's theorem (and
remembering that 'Y(h) is described clockwise).
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Lemma 2. Let the function f satisfy the hypotheses (*). If f"'(x) < 0 for aU
xE (a,{3), then the function 'IjJ= F/f2 satisfies 'IjJ"(X)> 0 for aUxE (a,{3). The
same conclusion holds if f'lI(X) = 0, f"(x) -:F0 for aUxE (a,{3).

Pro of. Consider first the case f'" < O. From (5) weimmediately obtain 'IjJ"(0)> O.
If x -:F0, then from 'IjJ(x)= F(x)/ f2(x) we obtain

'IjJ"(X) = N(x)/ f4(x),

where
N = -2Fff" - 3(f2 - 2Ff')f'.

Hence
N' = -2Fff'" - 5(f2 - 2Ff')!".

It follows that if 'IjJ"(XO)= 0 forsome Xo -:F 0 with f'(xo) -:F0, then

'IjJ"'(xo) = (2/3)[5!"(xO)2 - 3f'(xo)f"'(xo)JF(xo)/ f'(XO)3f'(xo). (12)

Suppose that f'(x) > 0 for 0 ::; x < 8, where 0 < 8 ::; {3.We will show that
'IjJ"(X)> 0 for 0 ::; x < 8. Assume,on the contrary, that 'IjJ"(X)= 0 for some
xE (0,8) and let xo be the nearest such x to O. Then 'IjJ"'(xo)::;0, since 'IjJ"(X)> 0
for 0 ::; x < Xo. But, since f(xo) > 0, f'(xo) > 0 and f"'(xo) < 0, it followsfrom
(12) that 'IjJ"'(xo)> O.Thuswehavea contradiction.

Similarly we can show that if f'(x) > 0 for "Y < x ::;0, wherea ::;"Y < 0, then
'IjJ"(X)> 0 for "Y< x ::;O.

Thus we may now assume that f'(x) = 0 for some x E (a,{3). Suppose that
f'(x) = 0 for some xE (0,{3). Then we can choose 8 E (0,{3)so that 1'(8) = 0
and f'(x) > 0 for 0 ::; x < 8. This implies 1"(8) ::; 0 and actuaily 1"(8) < 0, since
f"'(8) < O. Since f'" < 0, it follows that f"(x) < 0 for 8 ::; x < {3and hence
f'(x) < 0 for 8 < x < {3.Therefore, (P -2Ff')(x) > 0 for 8 < x < {3and N(x) > 0
for 8::; x < {3.This proves that 'IjJ"(X)> 0 for all xE [0,{3).

Similarly we can show that if f'(x) = 0 for some xE (a,O), then 'IjJ"(X)> 0 for
all x E (a,OJ.

Consider next the case f'" == 0, 1" -:FO.ln this case f(x) = kx(1 + ax) for some
constants k > 0, a -:F 0, and without loss of generality w~ may assume k = 1. But
then, by direct calculation,

'IjJ"(X) = a2(5 + 2ax)/3(1 + ax)4.

Sinee f(x)/x = 1 + ax > 0, this shows that 'IjJ"(X)> 0 for ail x E (a, {3). D

From Lemmas 1 and 2 we obtain at once
1

Proposition 1. Let the function f satisfy the hypothes'es(*). If either flll(X) < 0
for aU x E (a, {3), or f'" (x) = 0, 1" (x) -:F0 for aU x E (a, {3), then the period
function T(h) of the differential equation (2) satisfies T'(h) > 0 wherever it is
defined, i.e., for 0 < h < h*, with

h* = min{F(a + 0), F({3- on.
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1
Remark. The formula (10) shows that T'(h) _1r(F/J2)"(0) > 0 as h - +0.

The interest of the preceding discussion lies more in the derivations than in the
results. The formula (10) for T'(h) appears to be new, but it is equivalent to one
given by Chicone [1] by a less transparent argument. Furthermore, Proposition
1 is contained in Theorem 1 of Schaaf [10], which has more general hypotheses.
However, the hypothesis Jill < 0 makes the proof of Proposition 1 very simple and
natural.
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3. Hamiltonian quadratic systems. We now return to the Hamiltonian sys-
tem'(l), where H(x, y) is a cubic polynomial in x and y. Without loss of generality
we can write H = H2 + H3, where

H2 = (Ax2 + 2Bxy + Cy2)/2

is a positive definite quadratic form and H3 is a homogeneous cubic polynomial. By
a linear transformationwith determinant+1 we may suppose:& = 0 and A = C.
By a constant magnification of the time scale we may further suppose A = C = 1.
Thus we may assume

H2 = (X2 + y2)/2, H3 = (1/3)ax3+ bx2y+ cxy2+ (1/3)dy3.

Furthermore, by a rotation of the axes we may alsoassume d = O.The Hamiltonian
system (1) now has the form

dxjdt = y + bX2 + 2cxy

dy/dt = -x - ax2 - 2bxy - cy2.
(13)

A periodic orbit of (13) which surrounds the origin must lie in the half-plane 1 +
2cx > 0 if c ~ 0, since dx/dt = b/4c2 on the bounding line x = -1/2c. If (also for
c = 0) we define a new independent variable r by setting dt/dr = c,o(x), where

c,o(x) = (1 + 2cx)-1/2, (14)

then it is not difficult to verify that (13) is replaced by the second-order differential
equation

d2x/dr2 +J(x) = 0, .(15)

where

J(x) = x -fax2 - 2b2x3(1 + 2CX)-1 + b2cx4(1 + 2cx)-2.

(The mysterious choice of c,ois explained at the end of the paper.) We can rewrite
this expression for J in the form

. b2 b2 b2x 3b2x2 2

J(x) = 16(:3(1+ 2CX)2- 16c3+ 4C2- 4z- + x + ax .

Evidently J(O) = 0,1'(0) = 1 and JIII(X) = -12b2/(1 + 2cx)5. We note also that

(16)

b2 4t 1 2 1 3 X

F(x) = Jo J(~)~ = '2x + '3ax - 2(1+ 2cx) .
(17)

ii
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il 'Yis a periodic orbit of (13) which surrounds the origin then, since the system
is quadratic, the interior of 'Yis a convex region which contains no critical point
of (13) besides the origin (see, e.g., [5]). The critical points of (13) are the points
(xo, Yo), where f(xo) = 0 and Yo = -bx~/(1 + 2cxo). On the line x = xo, dx/dt
has opposite signs on opposite sides of the critical point (xo, yo). It follows that 'Y
cannot intersect the line x = Xo.Hence for the system

dx/dr = y, dy/dr = -f(x) (18)

equivalent to (15), every periodic orbit which surrounds the origin must lie in a
strip a < x < {3,where a < 0 < {3,such that f(x) =10 for all x E (a,{3) with
x =1 O. Thus the function f in (15) satisfies the hypotheses (*). ln addition we have
ffl/(x) < 0 for aIl x E (a, {3)if b =1 O.If b = 0 and a =1 0, then ffl/(x) = 0, f"(x) =10
for aIl xE (a,{3). Nevertheless, because of the change of time scale, Proposition 1
cannot be applied to the original system (13). Without changing the time scale the
system (13) is equivalent to the system

cp(x)dx/dt = y, cp(x)dy/dt= - f(x), (19)

where cpis given by (14). Consider the system (19) for any positive, twice contin-
uously differentiable function cp. The systems (18) and (19) have the same phase
portraits, but different period functions. Denote the period function of (19) by
T(h). Then in the same way that we proved Lemma 1 we can prove

Lemma 3.

T' (h) = (1/2h) jr r [2cp'F / f2 + cp(F/ f2)']' dx dy.Jcr(h)

Hence, in order to prove that T'(h) > 0 for the system (13), it is sufficient to
show that for all x E (a, {3)

[2cp'F/f2 + cp(F:/f2)']' > 0, ,.

where cpis given by (14). That is, with the notation (4), it is sufficient to show that
for all x E (a, {3)

'IjJ"(X) - 3c(1 + 2CX)-1'1j;'(X) + 6c2(1 + 2CX)-2'1j;(x) > O.

Lemma 4. Let f satisfy the hypotheses (*) and suppose either f"'(x) < 0 for aU
xE (a,{3) or ffl/(x) = 0, f"(x) =10 for aU xE (a,{3). If'lj; = F/f2 then, for aU
x E (a, {3)and every realu,

'lj;1I(X) - (3/2)'Ij;'(x)u + (3/2)'Ij;(x)u2 > O.

Proof. This is certainly true for u = 0, by Lemma 2. Consequently we need only
show that the discriminant

'Ij;'(X)2 - (8/3)'Ij;(X)'Ij;II(X)
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is negative for all xE (a,(3). ln fact, since t/J(x)t/J"(x)> 0 for all x E (a,(3), it is
sufficient to show that

Ll(x) := t/J'(X)2 - (2/3)t/J(x)t/J"(x)

is negative for all x E (a, (3).
From the values of t/Jand its derivatives at x = 0 we obtain

Ll(O) = [3f'(0)f"'(0) - 1"(0)21/36f'(0)4 < O.

Hence we will prove that Ll(x) < 0 for aIl x E (a,(3) if we show that Ll(xo) = 0
implies Ll'(xo) < 0 if Xo E (0,(3)and Ll'(xo) > 0 if Xo E (a, 0).

From t/J = F/ f2, t/J' = (f2 - 2F1')/ f3 and t/J"= N /f4, we obtain Ll = M / f5 ,
where

M:= (f2 - 2Ff')f + (4/3)F2f".

Consequently

M' = (f2 - 2Ff')f' + (2/3)Fff" + (4/3)F2f"'.

If M(xo) = 0 for some Xo =F 0, then

FfI" = -3(f2 - 2Ff')f2/4F

and hence
M'(xo) = _(f2 - 2Ff')2/2F + (4/3)F2 f"'.

ln the case f'" < 0 this shows at once that M'(xo) < O. ln the other case we
reach the same conclusion, since it is easily verified that f2 - 2Fl' vanishesonly
for x = o. 0

We can now establish our main result:

Theorem 1. For any Hamiltonian quadraticsystem with a center, the periodfunc-
tion T(h) associated with the center satisfies T'(h) > 0 throughout its interual of
definition.

Proof. We may suppose that the Hamiltonian quadratic system has the form (13).
Then the functionf, defined by (16), satisfies the hypotheses of Lemma 4 if ~ =F0
or if b = 0, a =FO.Thus in these cases the result foIlowsimmediately from Lemma
4 and the discussion preceding its statement. ln the remaining case a = b = 0 the
result is obviousfromLemma3, sinceF/ f2 == 1/2. 0

4. Concluding remarks. A period function T(h) can be associated with a
center, not only of any Hamiltonian system, but of any plane autonomous system

dx/dt = P(x, y), dy/dt = Q(x, y),

where P and Q are, say, holomorphic functions. ln this case the parameter h is no
longer the energy, but a local parameter on a smooth transversal to the periodic
orbits surrounding the center. Such a transversal, and the local parameter on it,

'j
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are not. uniquely determined. However, the number of critical points of the period

function T( h) - and in particular its monotonicity - is independent of their choice.

A nice result for non-Hamiltonian systems, due to Rothe [9] and Waldvogel [11],

states that the period function of the Lotka- Volterra system

dx/dt = x(a - by), dy/dt = y(cx - d)

is monotonic.

ln this connection it is natural to conjecture that Theorem 1 remaiqs valid if

the word "Hamiltonian" is omitted from its statement. However, the conjecture is

false, as Chicone and Dumortier [2] first showed by an explicit example. Chicone

and Jacobs [3] later proved that there exist quadratic systems with centers whose

period functions have at least two criticalpoints. Moreover, their work suggests that

two may indeed be the maximum number of criticalpoints for the period function

associated with the center of any quadratic system. It is natural to distinguish

between the different types of center of a quadratic system. Any quadratic system

with a center at the origin can, by a non-singular linear transformation of the

coordinates and a constant magnification of the time scale, be brought to the form

dx/dt = y + bx2+ (2c+ /3)xy

dy/dt = -x - ax2- (2b+ a)xy - cy2,
(20)

..

where one of the following sets of conditions is satisfied:.

(i) a = /3= 0;
(ü) a = b = 0;

(ü)' ab -# 0, /3/a = (a + c)/b and a - (3b + a)/3/a + (3c + /3)/32/a2 = 0;

(üi) a + c = b = 0;

(iv) a + 5b = /3+ 5c = a = 0;

(iv)' a + 5b,= /3 - 5a = 2a + c = O.

These conditions are obtained by setting d = 0 in the conditions given in Coppel
[5]. However, by a rotation of axes (ii)' is reduced to (ii) and (iv)' to (iv).

A general procedure for transforming a quadratic system into a Liénard equation

d2x/dr2 -f{x)dx/dt + f(r) = 0

by a change of independent variable dt/dr = cp(x) is described in Coppel [6]. The
manner in which we replaced the Hamiltonian system (13), which is case (i) above,
by the second-order differential equation (15) was simply an application of this
procedure. r

If we write 8 = 2c + /3, the corresponding formulae in cases (ü) and (üi) may be
giventhe commonform

cp(x) = (1 + 8xy/li-1,

j(x) = -axcp(x),

f(x) = x(l + ax)(l + 8x)cp2(x).
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However, in case (ii) we have et = O.Since the example of Chicone and Dumortier
[2] belongs to this type, the period function need not be monotonie in case (ii). ln
case (iv) the corresponding formulae are 1

cp(x) = (1- 3cx)-4/3,

j(x) = 5bx(1- 2cx)(1- 3CX)-7/3;

f(x) = x[(1- 3CX)2+ 3b2x2- 8b2cx3](1- 3CX)-U/3.

It is conjectured by Chicone and Jacobs [3],p. 459, that, except for the isochronous
system

dx/dt = y - 2cxy

dy/dt = -x + CX2- cy2,

the period function is strictly monotonie in case (iii). Perhaps this may be estab-
lished by methods similar to those used in the present paper.1
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