Equations Différentielles

Exercice 1 On considère l'équation différentielle

$$y' = \exp(-xy)$$

.

- 1. Montrer que tout problème de Cauchy admet une solution maximale sur un intervalle de \mathbb{R} .
 - On note (I, ϕ) la solution maximale passant par (0, 0).
- 2. Montrer que $I = \mathbb{R}$ puis que ϕ est impaire.
- 3. Déterminer la limite de ϕ quand x tend vers $+\infty$.
- 4. Tracer l'allure du graphe de ϕ .

Exercice 2 On considère l'équation différentielle suivante :

$$x' - t\sin x = 0 \quad (E)$$

ainsi que le problème de Cauchy associé

$$\begin{cases} (E) \\ x(t_0) = x_0 \end{cases}$$

- 1. Montrer que le problème de Cauchy a une unique solution maximale définie sur un intervalle ouvert I contenant t_0 .
- 2. Démontrer que $I = \mathbb{R}$.
- 3. (a) Montrer que toute solution maximale est paire.
 - (b) Montrer que si (I, x) est une solution maximale, alors la fonction définie par $f(t) = x(t) + 2\pi$ l'est aussi.
 - (c) Montrer que si (I, x) est une solution maximale, alors la fonction définie par f(t) = -x(-t) l'est aussi.
 - (d) Déduire des questions précédentes des informations sur les graphes des solutions maximales.
- 4. Résoudre le problème de Cauchy dans les cas suivants :

$$-x_0 = 0$$

$$-x_0=\pi$$

$$-t_0 = 0$$
 et $0 < x_0 < \pi$.

Exercice 3 Soit $A : \mathbb{R} \longrightarrow M_n(\mathbb{R})$ une application continue. On suppose que A est périodique de période T > 0. On considère l'équation différentielle linéaire homogène suivante :

$$x' = A(t)x,$$
 (E)

et on note R(.,.) la résolvante associée.

- 1. Les solutions de (E) sont elles nécessairement périodiques de période T?
- 2. Montrer que $R(t, t_0) = R(t + T, t_0 + T)$ pour tout t_0 et tout t.
- 3. On pose $C(t_0) = R(t_0 + T, t_0)$. Montrer que si les solutions de (E) sont toutes de période T alors $C(t_0) = I_n$, pour tout t_0 .
- 4. Vérifier que $C(t_1) = R(t_1, t_0)C(t_0)[R(t_1, t_0)]^{-1}$ pour tout t_0 et tout t_1 . En déduire que C(t) est constant lorsque $C(t_0) = I_n$ pour un certain t_0 , et qu' alors les solutions sont toutes de périodes T.
- 5. Soit x une solution non nulle de (E). Montrer que les deux propositions sont équivalentes :
 - (a) $x(t+T) = \lambda x(t)$ pour tout $t \in \mathbb{R}$
 - (b) λ est valeur propre de $C(t_0)$ et $x(t_0)$ vecteur propre associé. En particulier, pour qu'il existe une solution (non nulle) T-périodique il faut et il suffit que $\lambda = 1$ soit valeur propre de $C(t_0)$ pour un certain t_0 .