Calcul Différentiel

Exercice 1 Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. Calculer les dérivées partielles de :

$$g(x,y) = f(x+y)$$
 $h(x,y) = f(x^2 + y^2)$ $k(x,y) = f(xy)$

Exercice 2 Soit $a \in \mathbb{R}^2$ fixé; l'application $x \to \langle x, a \rangle$ de \mathbb{R}^2 usuel dans \mathbb{R} est-elle continue, admet-elle des dérivées partielles, celles-ci sont elles continues?

Exercice 3 Montrer qu'une norme N sur \mathbb{R}^2 ne peut avoir des dérivées partielles qui existent et qui soient continues en 0.

Exercice 4 On définit la fonction

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

Montrer que $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$ existent en tout point de \mathbb{R}^2 et que f est continue mais pas différentiable en (0,0).

Exercice 5 Calculer les dérivées partielles (d'ordre un) de la fonction $f(x,y) = \sqrt{xy + \frac{x}{y}}$ en (2,1).

Exercice 6 Calculer Df(1,1), si $f(x,y) = \frac{x}{u^2}$.

Exercice 7 Calculer la dérivée de la fonction $F(x, y, z) = \ln(e^x + e^y + e^z)$ à l'origine dans une direction formant avec les axes de coordonnées x, y, z les angles α, β, γ .

Exercice 8 On munit \mathbb{R}^2 de sa norme Euclidienne que l'on note $\|\cdot\|_2$. On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour tout $(x,y) \in \mathbb{R}^2$ par $f(x,y) = x^2 + xy + y^2$.

- 1. Soient $(x,y) \in \mathbb{R}^2$ et $(h,k) \in \mathbb{R}^2$, calculez f(x+h,y+k) f(x,y).
- 2. On définit pour tout $(x,y) \in \mathbb{R}^2$, l'application (dépendant de x et y)

$$L_{x,y}: \mathbb{R}^2 \to \mathbb{R}$$

$$(h,k) \mapsto \begin{pmatrix} 2x+y \\ 2y+x \end{pmatrix} \cdot \begin{pmatrix} h \\ k \end{pmatrix} = (2x+y)h + (2y+x)k.$$

Montrez que $L_{x,y}$ est continue.

3. Montrez que $L_{x,y} = Df(x,y)$ pour tout $(x,y) \in \mathbb{R}^2$.

Exercice 9 Calculer la différentielle des fonctions suivantes

où h est une fonction différentiable de \mathbb{R}^2 dans \mathbb{R} .