UNIVERSITE PAUL SABATIER

Calcul différentiel et intégral

Examen du 31 mai 2005

Tous documents interdits. Durée 2h.

Exercice 1 (4 points)

Soient a>0 et b>0 donnés. On désigne par E^+ l'ellipse d'équation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

parcourue dans le sens positif. Calculer l'intégrale curviligne:

$$I = \int_{E^+} b^2 x^3 dy - a^2 y^3 dx$$

- 1) Directement.
- 2) En utilisant la formule de Green-Riemann. (Formulaire: $\cos^4 t + \sin^4 t = 1 \frac{1}{4}(1 \cos 4t)$.)

Exercice 2 (8 points)

t>0étant fixé, on considère l'hyperboloïde de révolution à une nappe, $({\cal H}),$ paramétré par

$$F(\theta,\varphi) = (\sqrt{3} \ ch\theta \ cos\varphi, \sqrt{3} \ ch\theta \ sin\varphi, sh\theta),$$

avec $0 \le \theta \le t$ et $0 \le \varphi \le 2\pi$.

- 1) Donner l'expression du vecteur normal à (H).
- 2) Ecrire l'équation du plan P tangent à (H) passant par le point M de coordonnées $(\sqrt{3} \, ch\theta \, cos\varphi, \sqrt{3} \, ch\theta \, sin\varphi, sh\theta)$ et vérifier qu'il ne passe jamais par l'origine.
- 3) Calculer en fonction de sht l'aire \mathcal{A} de (H).
- (Formulaire: $chu = \frac{1}{2}(e^u + e^{-u})$; $shu = \frac{1}{2}(e^u e^{-u})$; $ch^2u = 1 + sh^2u = \frac{1}{2}(ch^2u + 1)$; $sh^2u = 2chu \ shu$).
- 4) Calculer le volume du domaine compris entre (H), le plan d'équation z=0 et le plan d'équation z=sht.

Exercice 3 (10 points)

On considère l'application φ de ${I\!\!R}^3$ dans ${I\!\!R}^3$ définie pour $x\neq 0$ par

$$(u, v, w) = \varphi(x, y, z) = (x + y, \frac{y}{x}, \frac{z}{x}).$$

- 1) Soit $\mathcal{O} = \{(x, y, z) \in \mathbb{R}^3 : x > 0, x + y > 0\}$. Montrer brièvement que $\varphi \in \mathcal{C}^1(\mathcal{O})$ et calculer sa matrice Jacobienne.
- 2) $D\varphi(x,y,z)$ désignant la différentielle de φ en $(x,y,z) \in \mathcal{O}$, donner l'expression de $D\varphi(x,y,z)(h,k,l)$.

- 3) On considère l'ouvert $\Omega=\{(u,v,w)\in I\!\!R^3: u>0, 1+v>0\}$. Montrer que φ est bijective de $\mathcal O$ sur Ω en calculant son application réciproque. En déduire que φ est un difféomorphisme de $\mathcal O$ sur Ω .
- 4) On considère $D = \{(x, y, z) \in \mathbb{R}^3 : 0 < x < 1, 0 < y < min(x, 1 x), 0 < z < x\}$. Montrer que $\varphi(D) =]0,1[^3.$ (NB: On pourra le cas échéant admettre le résultat et faire la question suivante).
- 5) A l'aide du difféomorphisme précédent, calculer l'intégrale

$$\int \int \int_{D} \frac{x+y}{x(x^2+z^2)} dx dy dz.$$