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Typical engineering practice : One-At-a-Time (OAT) design
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Main remarks :

OAT brings some information, but potentially wrong

Exploration is poor: Non monotonicity ? Discontinuity ? Interaction ?

Leave large unexplored zones of the domain (curse of dimensionality)

X1
P1 P2



Model exploration goal
GOAL : explore as best as possible the behaviour of the code

Put some points in the whole input space in order to « maximize » the 
amount of information on the model output

Contrary to an uncertainty propagation step, it depends on p

Regular mesh with n levels N =n p simulations Ex: p =2, n =3
N =9

p = 10, n=3
N = 59049
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To minimize N, needs to have some techniques ensuring good 
« coverage » of the input space
Simple random sampling (Monte Carlo) does not ensure this
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N = 59049



Objectives

When the objectives is to discover what happens inside the model and when
no model computations have been realized, we want to respect the two
following constraints:

• To spread the points over the input space in order to capture non
linearities of the model output,

• To ensure that this input space coverage is robust with respect to
dimension reduction.
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Therefore, we look some design which insures the « best coverage » of the
input space

Main question:

• How to define this « best » ?



Exploration in physical experimentation
Design of experiments develops strategies to define  experiments in 
order to obtain the required information as efficie ntly as possible

Designs for numerical
experiments

Characteristics

Deterministic experiments (no error), Full factorial design 23

Designs for real experiments

Estimate parameters of linear regression
with a minimal number of points

Examples :
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Deterministic experiments (no error), 

Large number of input variables, 

Large range of input variation domain,

Multiple output variables, 

Strong interactions between inputs,

High non linearity in the model

space filling designs (uniform
coverage in the input space)

parameter 1

parameter 2

parameter 3

Full factorial design 23

Fractional factorial design 23-1



Space filling designs

Sparsity of the space of the input variables in high dimension

The learning design choice is made in order to have an optimal coverage 
of the input domain

The space filling designs are good candidates.
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Example: Sobol sequence

Two possible criteria:
1. Distance criteria between the points: minimax, maximin, …
2. Uniformity criteria of the design (discrepancy measures)
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• Minimax design DMI : Minimize the maximal distance between one point of 
the domain and one point of the design

All points in [0,1]p are not too far from a design point
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Geometrical criteria (1/2)
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=> One of the best design, but too expensive to find DMI



• p = 1 ; Xi = (2i-1)/(2N) ; φmM = 1 / 2N

• p > 1 : sphere recovering

Minimax design
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[ www.spacefillingdesigns.nl ]



Geometrical criteria (2/2)

- Mindist distance: ( L2 norm for example)

Maximin design ΞN
Mm : 

maximize minimal distance between two points of the design

),(min)( )2()1(

, )2()1(
xxd

Nxx

N

Ξ∈
=Ξφ

),(min),(minmax )2()1(

,

)2()1(

,
Mm

)2()1()2()1(
xxdxxd

NNN xxxx Ξ∈Ξ∈Ξ
=

Baranquilla course 2013 – Design of computer experiments - F. Gamboa & B. Iooss 9

- …



• p = 1 ; Xi = (i-1)/(N-1) ; φmM = 1 / (N-1)

• p > 1 : sphere packing

Maximin design

Baranquilla course 2013 – Design of computer experiments - F. Gamboa & B. Iooss 10
[ www.spacefillingdesigns.nl ] [ www.packomania.com ]



Space filling measure of a design: the discrepancy
Measure of the maximal deviation between the distribution of the sample’s 
points to an uniform distribution

⇒ Measure of deviation from the uniformity

Geometrical interpretation:
Comparison between the volume of intervals and 
the number points within these intervals
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Lower the discrepancy is, the more the points of 

the design D fill the all space
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Link with the integration problem
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General property (Koksma-Hlawka inequality):

With a low discrepancy sequence D (quasi Monte Carlo sequence) :

Well-known choice: Sobol’ sequence
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L2 discrepancy
Several definitions, depending on considered norms and intervals

Choice allowing computations : L 2222 discrepancy

L2 discrepancy at origin :

[ Hickernell 1998 ]
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Missing property: taking into account uniformity of the point projections  
On lower-dimensional subspaces of [0,1[ p

=> Modified L 2 discrepancies
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Discrepancy computation in practice

• Modified L2-discrepancy (intervals with minimal boundary 0)

• Centered L2-discrepancy (intervals with boundary one 
vertex of the unit cube)
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• Symetric L2-discrepancy (intervals with boundary one 
« even » vertex of the unit cube)
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Sobol’sequence vs. Random sample vs. regular grid

[ From: Kucherenko, 2010 ]
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Example - N = 150 - Dimension = 8 

Sobol Sobol scrambling Owen
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Example - N = 150 - Dimension = 8 

Halton
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Pathologies on 2D projections 

Halton
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Important property: robustness in terms of subproje ctions

Most of the times, the function f (X) has low effective dimensions:
- in the truncation sense (p1 = number of influent inputs) ⇒⇒⇒⇒ p1 << p
- in the superposition sense (p2 = higher order of influent interaction) ⇒⇒⇒⇒ p2 << p

Then, we need SFD which keeps their space-filling properties in low-dimensional 
subspaces (by importance: in dimensions p ’=1, then p ’=2, ...)

• p ’ = 1 ⇒ LHS ensures good 1D projection properties
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good bad

• p ’ ≥ 2 
In their definition, the modified L2-discrepancy criteria take into account 

subprojections

In contrary design points distance criteria are not robust at all



Latin Hypercube Sample (LHS)

Property: Uniform projections on margins

Principle: p variables, N points ⇒⇒⇒⇒ LHS(p,N)

Divide each dimension in N intervals
Take one point in each stratum

Exemple : p =2, N =4

Most often, only a small number of variables are influent

[ McKay et al. 1979 ]

Baranquilla course 2013 – Design of computer experiments - F. Gamboa & B. Iooss 20

Each level is taken only one time by each variable
⇒⇒⇒⇒ Each column of the design is a permutation of { 1,2,..,N }

Exemple : p =2, N =4



Algorithm of LHS( p,N) – Stein method
ran = matrix(runif(N*p),nrow=N,ncol=p) #tirage de N  x p valeurs selon loi 

U[0,1]

x = matrix(0,nrow=N,ncol=p)            # constructi on de la matrice x

for (i in 1:p) {

idx = sample(1:N) #vecteur de permutations des enti ers 
{1,2,…,N}

P = (idx-ran[,i]) / N    # vecteur de probabilités

x[,i] <- quantile_selon_la_loi (P)  }

Example : p =2, N =10, X1 ~ U[0,1], X2 ~ N(0,1)
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Example : p =2, N =10, X1 ~ U[0,1], X2 ~ N(0,1)



Simple methiod: produce a large number (for ex 1000) of different LHS. Then, 
choos the best with respect to a criterion φ (.) (« space filling »)

BUT: the number of LHS
is huge :

Methods via optimization algo (ex: minimisation of φ(.) via simulated annealing) :

Optimisation of LHS => Space-filling LHS

Example : LHS(2,16)

Maximin criterion ( )pN!

[ Park 1993; 
Morris & Mitchell 1995 ]
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1. Initialisation of a design Ξ (LHS initial) and a temperature T

2. While T > 0 : 
1. Produce a neighbor  Ξ new of Ξ (permutation of 2 components in a column)

2.replace Ξ by Ξ new with proba

3.decrease T

3. Stop criterion => Ξ is the optimal solution 
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Examples of optimized LHS
Joining the two properties (space filling and LHS) 
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Maximin LHS Low wrap-around For comparison:
discrepancy LHS Sobol sequence
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Summary on the design of numerical experiments

Goal: Sample a high dimensionam space in an « optimal » manner (obtain the 
maximum of information on the behaviour of the outputZ / X є Rp)

Problem: a pure random sample (Monte Carlo) badly fills the space

1.« Space filling » designs are good candidates:

- Based on a distance criterion between points (minimax, maximin, …)
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- Based on a citerion of uniform distribution of the points (discrepancy)

2.Property of uniform projections on margins can be obtained via the Latin 
hypercube designs (LHS)

3.It is possible to couple 1 and 2
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