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Step B:
Quantification of 

uncertainty 
sources

Modeling with 
probability 

ModelModel
(or (or measurementmeasurement

processprocess))
G(x,u)

Input variablesInput variables
Uncertain : x
Fixed : u

VVariablesariables
of of interestinterest
Z = G(x,u)

StepStep A : Problem specificationA : Problem specification

Quantity of Quantity of 
interestinterest

Ex: variance, 
probability ..

Step C : Propagation of 
uncertainty sources

Uncertainty management - The generic methodology
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Decision criterion

Ex: Probability < 10-b

Feedback 
process

probability 
distributions

Direct methods, 
statistics, expertise

Step C’ : Sensitivity analysis,  
Prioritization

ObservedObserved
vvariablesariables

Zobs

Step B’: Quantification of sources
Inverse methods, calibration, assimilation



Step A – Focus on the quantity of interest

Inputs : X

Output : Z

What is really interesting in our study?

Numerical 
model
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What is really interesting in our study?

µµµµ

σσσσ

Mean, median, variance, 
(moments) of Z

Ex: in the design stage

P
f

treshold

Quantiles (extrems), probability 
of treshold exceedence

Ex: in the certification stage

Formally, the quantity of interest is a particular feature of the pdf of Z

Min Max

Ex: in the prior stage 
of a new product design

Z



A particular quantity of interest: the “probability of failure”

• G models a system (or a part of it) in operating conditions
– Variable of interest  Z � a given state variable of the system (e.g. a temperature, a 

deformation, a water level etc.)

• Following an « operator » point of view
– The system is in safe operating condition if Z is above (or below) a given “safety” 

threshold

• System “failure” event:
– Classical formulation (no loss of generality) in which the threshold is 0 and the 

system fails when Z is negative 
– Structural Reliability Analysis (SRA) “vision”: Failure if C-L < 0 (Capacity – Load)
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– Structural Reliability Analysis (SRA) “vision”: Failure if C-L < 0 (Capacity – Load)

• Failure domain: 
• Problem: estimating the mean of the random 

variable “failure indicator”:
DfDf

Xi

Xj

Xi

Xj



Step B - Quantification of uncertainty sources
Different cases with respect to available information

1. A lot of data

– Fitting of probability distributions

– Statistical hypothesis test (often parametric tests)

2. Few data (n < 10)

– Hypothesis on parametric probability distribution 

– Non-parametric tests : less powerfull, wide bounds

– Expert judgement, then Bayesian inference
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– Expert judgement, then Bayesian inference

3. No data

– Expert judgment techniques

– Maximum entropy principle

Measure of the “vagueness” of 
the information on X  

provided by f(x)

Information Maximum Entropy pdf

Uniform

Exponential

Normal



Some comments (Step B). Dependency

• Taking into account the dependency between inputs is a 
crucial issue in uncertainty analysis

– Using copulas structure � CDF of the vector X
as a function of the marginal CDF of X1 … Xn:
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Example: All bivariate densities here 
have the same marginal pdf’s

(standard Normal) and the same 
Spearman rank coeff. (0.5)



Step C - Uncertainty propagation: main principles

Propagate uncertainties from X to Z, via the deterministic function G (•)

• Conceptually simple problem, but with sometimes a complex 
implementation

• Choice of method strongly depends on the quantity of interest

=> importance of step A

This quantity of interest is linked to decisional issues 

Two kinds of problems :
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• Central tendancy (ex. mean) or 
dispersion (variance)

– Metrology

• High quantile, « probability of 
failure »

� justification of a safety 
criterion

Analytical methods 
sometimes applicable

Numerical methods 
(optimization, Monte Carlo 
sampling)



Step C’ - Sensitivity analysis: main objectives

• Reduction of the uncertainty of the model outputs by prioritization of the 
sources

• Variables to be fixed in order to obtain the largest reduction (or a 
fixed reduction) of the output uncertainty

A purely mathematical variable ordering 

• Most influent variables in a given output domain

- if reducibles, then R&D prioritization
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- if reducibles, then R&D prioritization

- else, modification of the system

The individual cost of the reduction may change the previous variable ordering

• Simplification of a model

• determination of the non-influent variables, that can be fixed without 
consequences on the output uncertainty

• building a simplified model, a metamodel



Uncertainties management for cpu time consuming mod els

Physical phenomena Computer code

p input variables
X = (X1, …, Xp )

simulated

Metamodel

A useful solution : the metamodel (model of the numerical model)A useful solution : the metamodel (model of the numerical model)

y ((X))
Time consumingTime consuming

Ŷ ((X))
Negligible costNegligible cost
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observed
experiences

simulated
experience

s

Predicted
experiences

Identification of input Identification of input 
parameters valuesparameters values

Adequation between Adequation between 
observed and simulated observed and simulated 

experiencesexperiences

Use of the metamodel :Use of the metamodel :

C’:Sensitivity analysis

Metamodel

)( XfY SRSR =

Distribution of
the inputs

Distribution 
of the output

C:Uncertainty propagation 
(via Monte Carlo methods) B’:Calibration



V&V process:  Verification and Validation

To sum up : 

Verification : do I solve the equations right ?

Validation   : do I solve the right equations ?
(at least for the intended application)

Two levels for Verification : 

1. Code Verification : some kind of "internal" correctness of the code
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1. Code Verification : some kind of "internal" correctness of the code

may be assessed by formal methods from Software Engineering

2. Calculation Verification :  concerns the calculations themselves

Convergence, grid adaptation, solution algorithms, … 

Is the solution closed to the exact one ?

We'll talk later on subtilties between Code and Model(s)



Some mathematical 
methods for uncertainty 
propagation
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Quadratic combination method

Data : mean values of Xi :          

variance-covariance matrix of Xi : 
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Taylor expansion of G(•) around E(X) : 

En général, dans les applications le développement est d’ordre 1 



Quadratic combination method – First order
Mean of Z

Variance of Z
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Remarks : 
++ Needs only mean and covariance of X
-- Do not use if G(.) is strongly non linear
-- Provides only mean and variance of Z => no extrapolation fo the distrib. law of Z
++ if X is gaussian and G(.) is linear, then Z is gaussian



Quadratic combination method – Independent case

Quadratic summation formula

If the Xi s are independent :

Contribution  of each input variable to 
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Contribution  of each input variable to 
the uncertainty of the output variable

Sensitivity indices (normed)



Methods of Monte Carlo simulation

– General mthods to evaluate a numerical quantity, using 
some random simulations

– In uncertainty propagation : use a random sample of G(X) 
to evaluate the quantity of interest

– We suppose that we know how to simulate an i.i.d 
(independent and identically distributed) sample of X
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(independent and identically distributed) sample of Xi
following its probability distribution fi



Monte  Carlo in general (1/3)
• Computation of the integral :

h(•) : deterministic function
X : r.v. with densityf(x)
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Random sample of X

From the law of large 
numbers, the Monte Carlo 
estimator converges (a.s.) 
to the true quantity

Monte Carlo estimator



Monte Carlo (2/3)
• Variance of the Monte Carlo estimator

– Variance of h(X) is given via its estimator :

– General expression for the variance of the MC estimator

Variance of the sum
of n r.v. i.i.d.
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– General expression for the variance of the MC estimator

– We note :



Monte Carlo (3/3)
• Asymptotic law of the estimator from Central Limit Theorem:

with

Low convergence speed ( in            ) but: 

Independence with respect to the dimension of X and to the form of h(•)

Unbiased estimator
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– Confidence intervals for the Monte Carlo error:

Monte Carlo error

Confidence interval with
probability α 

Quantiles of the standard  normal law

Precision only depends on n (then on the cpu time  of h(.)) 



Monte Carlo and uncertainty propagation
• Propagation of the uncertainties of X to Z=G(X)

• Monte Carlo estimator of mean and variance of Z :

n-sample of X
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• Moments of Z are estimated by the empirical moments



Estimation of a probability of failure

• System failure : event

• Failure domain: 

• Failure probability:

Pf

seuil
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• Failure probability:

– Problem : computation of the mean of the random variable

• Failure indicator :



Monte Carlo estimation of p f (1/3)

• Naive Monte Carlo estimator :

• Variance of the estimator :

• As

 
Failure domain 

Safe domain 
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• As

• We have:

• Asymptotical convergence to a normal law and other MC estimator 
properties

Estimated by:



Monte Carlo estimation of p f (2/3)
• Decrease in square root of n : 

• Variation coefficient :

• For small values of pf : 

« Relative error », 
precision of the 

Baranquilla course  2013 – Propagation of uncertainties - F. Gamboa & B. Iooss          22

• For example, if we estimate a proba pf = 10-r with cv = 10%,

⇒prohibitive required cpu times
⇒Use of improved methods: approximate methodes (FORM/SORM), 

accelerated Monte Carlo methods, metamodel-based methods, …

precision of the 
estimate

10r+2 valuess of G(X), then 10r+2

calls to the code G !



Importance sampling (1/3)
• Idée : modifying the sampling prob. distribution of X in order to 

concentrate the samples in most interesting regions (in terms 
of contribution to computation of expectation of h(X))

• It’s the expectation of the function

1) Produce a sample (x(i)) from density 
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2) Then, compute :

• Unbiased estimator of I, in condition that the support of ϕ(x) 
contains the one of f(x)



Importance sampling (2/3)

• This method does not guarantee any variance reduction ∀ ϕ(x) 
• The choice of the « instrumental law » ϕ(x) is crucial

– theoretically: optimal density : 

– The normalization constant is as difficult to evaluate as evaluating I !
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– The normalization constant is as difficult to evaluate as evaluating I !

– However, practical result …

• Estimation of a failure probability pf by importance sampling

– Here :

– Optimal density : 



Importance sampling (3/3)

• The optimal density id the conditional law of de X knowing that X ∈ Df

• Intuitive result� the method is mostly efficient if it produces samples 
in the failure domain

Ξϕ

Dφ• Some practical algorithms:
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Ξι

– Obtain a first idea of the configuration of Df
(first Monte Carlo runs)

– Center the instrumental law on a point of Df
(for example on the design point P* obtained
with the FORM method)



FORM method (1/5)
• FORM: First Order Reliability Method

• From structural safety domain

• 3 steps :

1. Transformation of inputs X to other inputs whose probability 
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1. Transformation of inputs Xi to other inputs whose probability 
distributions have « good properties »

Isoprobabilistic transformation � standard Gaussian space

2. Search of the most probable failure conditions

3. Estimation of the failure probability



FORM (2/5) 
Isoprobabilistic transformation

Xj

Ui

Uj
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Points which mostly contribute to pf are the nearest to the origin in the 
standard space

Xi

Physical space « Standard » space
– Each component of U follows a N(0,1)
– Component of U are independent
– The iso-prob. surfaces are spheres

( ) 






−= ∑
=
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FORM : isoprobabilistic transformation

• Rosenblatt transformation

( )( )
( )( )

T    :     1 1 1

2 2 2 1

1

1

u F z

u F z z

=

=

−

−

Φ

Φ

Baranquilla course  2013 – Propagation of uncertainties - F. Gamboa & B. Iooss          28

( )( )1 2 1
1u F z z z zN N N N= −

−Φ

M
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FORM (3/5) – Isoprobabilistic transformation

Df

Xj

• New expression of the failure probability

D’fg(u)<0

Uj
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Xi

Physical space « Standard » space
– Expression of the failure

probability :

g(u)>0

Ui



FORM (4/5) – Search of the most probable 
failure conditions

• To each point of the standard space, some
operating or failure conditions are 
associated

– The most probable failure point is the 
nearest from the origin (where the 
desnity is max because the mean of of
U is the null vector)

u*

D’fg(u)<0

Uj
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– Reminder : the value of density fU(u) 
depends only on ||u|| (distance of u 
from origin)

– Call it P* : designpoint
– Call u* the vector OP*

– The search of u*, (with an uniqueness
hyp.), is an optimization problem
under constraints

u*
g(u)>0

Ui

( )
( )

( )
uuuu t

ugug 00

* minmin
==

== β



• Hypothesis :
– Replacement of the limit surface g(u)=0 

by the hyperplan intersecting P* and 
orthogonal to u*, with equation :

• Approximation based on the hyp. that points 
far away from P* have small contributions to 

FORM (5/5) – Evaluation of pf

u*

Uj

β : norme de u*
αi cos. direct de u*
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far away from P* have small contributions to 
pf � their proba is very small

u*

Ui

Distribution function
of N(0,1)

Linear combination of r.v. 
N(0,1) with normed coeff. αi 
=> N(0,1)

β : « Reliability index »
αi : « Importance factors» FORM �
sensitivity indices of variables Ui to 
pf



FORM/SORM : Pros and cons

Pros:
reduced computing times with respect to other methods
No dependancy between computing times and value of pf
Getting the importance factors and a design point
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Cons:
Approximation not always valid
No measure of the error which is made:
G has to be differentiable
Hypothesis of a unique design point



Quantile estimation (1/2)
• Probability distribution function and quantile estimator

Empirical CDF

Glivenko – Cantelli theorem: 
convergence to F(z) 

Definition
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Z
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n(
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)

Monte Carlo estimator of a p-
quantile : empirical quantile



Quantile estimation (2/2)

• In practice:
– Build an ordered sample from

– Call it: 
–

• For example, if n=100 and p=0.95, then we have to take 96th value in 
the ordered sample
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• Of course, we need

• Asymptotic law of the estimator:



Quantile estimation – Wilks formula
• We can show that:

– Then, if r is the smallest integer such that

– then, 
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– then, 

• We obtain the Wilks method
– Conservative estimator of quantiles :

• With a fixed n, find β (the confidence level of the quantile)
• With a fixed β fixé, find n (required number of code runs)



Comments: 
Robust method
No hypothesis on the distribution function

Constraint :
Can only be applied to pure random sample (i.i.d.)

Sampling via Wilks formula
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α 0.50 0.90 0.90 0.95

β 0.95 0.90 0.95 0.90

n 5 22 29 45

Example with Wilks at first order and unilateral quantile
Zmax is the maximal value of the N-sample (i.i.d) of Z

( )[ ] βαβα ≥−≥≥≤ NNZZPP 1ofsolution,max



Application example
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Example: pollution measures on a few points of a ro om wall
21 activity measures in 137Cs (Bq/cm²)

• Mean = 31.45
• Median = 15.4

• Standard-deviation =  36.11
• Min = 0.83 – Max = 156.67

• Skewness = 2.02
• Kurtosis = 4.19
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Boxplot
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Safety issue: guarantee (with a certain confidence level) that the contamination 
does not exceed a treshold over all the room wall

Examples : prediction of the amount of different category of wastes 
(proportion of activities  < 50 Bq / cm² , > 100 Bq / cm² , …)

waste quantities in different types of storage (deep geologic, 
subsurface, no storage)

different costs

0

0 50 100 150

0.
00

0



Useful probabilistic tools:  universal inequalities

For a random variable X with mean µ and variance σ² , we can use for X > µ :

• the Bienaymé-Tchebytcheff inequality:

More than 72% of the surface < 100 Bq/cm²
Pessimistic bound
µ and σ² are replaced by their empirical estimates

• the Guttman inequality:

( ) ( )1²² 2−kq

( )
²1

²

k

k
kXP

+
>+≤ σµ

0.
02

0
0.

02
5

µ µ+2σ
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More than 82% of the surface < 100 Bq/cm²
Needs the knowledge of the kurtosis

• the Meidell inequality (unimodality hypothesis):

More than 89% of the surface < 100 Bq/cm²

( ) ( )
1

1²
²  with 

²1

²

2

2

−
−=

+
>+≤

γ
σµ k

q
q

q
kXP

( ) ( )
( )2
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>+≤ σµ
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All these tools give
unsafe estimates



For an i.i.d. sample {X1,…,Xn} of a random variable X , if n is solution of 1-αn ≥ β
and Xmax = max{X1,…,Xn} we have

It gives:
1. the minimal sample size n for α and β
2. for a given sample, the α-quantile value, 

with a β confidence degree

No hypothesis on distribution function and no needs of parameter estimates

Using the Wilks formula

( )[ ] βα ≥≥≤ ),...,( 1max nXXXXPP

α 0.50 0.90 0.95 0.95

β 0.95 0.95 0.90 0.95

n 5 29 45 59
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No hypothesis on distribution function and no needs of parameter estimates

More general result linking n and order r (rank in the ordered sample {X(1),…,X(n)})

Application (measures in 137Cs) : 

• Wilks (n =21, r =2, β =0.9) -> more than 83% of the surface < 80 Bq/cm² 
(with a 90% degree of confidence)

• Meidell (unimod., σ estimate) -> more than 80% of the surface < 80 Bq/cm²



• Challenge: balance between precision of the estimate and cpu time cost 

• Use Monte Carlo if possible: independent of input dimension, unbiased 
estimation, gives a confidence interval
BUT : needs large number of model runs to obtain convergence

• If this cost is unreachable, alternative methods exist:
– Accelerated Monte Carlo method (importance sampling, etc.)
– Méthodes quasi-Monte Carlo (cf. cours 2) - But: curse of dimensionality

Conclusions on step C (uncertainty propagation)
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– Méthodes quasi-Monte Carlo (cf. cours 2) - But: curse of dimensionality
– Approximate methids : 

• Quadratique summation - But: linear hypothesis
• FORM/SORM : fast estimation of pf . Can be used to initialize another 

method (importance sampling)

– Using a surrogate model of the computer code (metamodel)
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