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Uncertainty management - The generic methodology

Step C : Propagation of
uncertainty sources
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.~ Step A — Focus on the quantity of interest
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Ex: in the prior stage Mean, median, variance, Quantiles (extrems), probability
of a new product design (moments) of Z of treshold exceedence
Ex: in the design stage Ex: in the certification stage

Formally, the quantity of interest is a particular feature of the pdf of Z
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A particular quantity of interest: the “probability of failure”

G models a system (or a part of it) in operating conditions

— Variable of interest Z - a given state variable of the system (e.g. a temperature, a
deformation, a water level etc.)

 Following an « operator » point of view

— The system is in safe operating condition if Z is above (or below) a given “safety”
threshold

e System “failure” event: 7 < 0

— Classical formulation (no loss of generality) in which the threshold is 0 and the
system fails when Z is negative

— Structural Reliability Analysis (SRA) “vision”: Failure if C-L < 0 (Capacity — Load)

e Failure domain:

* Problem: estimating the mean of the random
variable ‘P = {z € X : G(z) < 0}

Ip,(r) = LiG()<0}
Pr = fpf f(z)dz = fX ]Df (z) f(x)de =K []Df(X)}
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Step B - Quantification of uncertainty sources

Different cases with respect to available information

1. A lot of data
- Fitting of probability distributions
- Statistical hypothesis test (often parametric ‘res’rs)

2. Few data (n < 10)
- Hypothesis on parametric probability distribution
- Non-parameftric tests : less powerfull, wide bounds
- Expert judgement, then Bayesian inference

3. No data
- Expert judgment techniques
- Maximum entropy principle

Information Maximum Entropy pdf
= — z)lo dx
fX g )) X € [a,0b] Uniform X ~U(a,b)
Measure of the “vagueness” of E(X) = 1
the information on X E tial ~
provided by f(x) X €[0,00] xponential X ~ £(1/p)
E(X) =n
X ~
V(X) — g2 Normal N(% U)

Baranquilla course 2013 — Propagation of uncertainties - F. Gamboa & B. looss 5



Some comments (Step B). Dependency

e Taking into account the dependency between inputs is a

crucial issue in uncertainty analysis

— Using copulas structure - CDF of the vector X
as a function of the marginal CDF of X, ... X

F(xy, 20, ,x,) = C(F(x1), F(x2), -, F(x,))

Independent copula

Example: All bivariate densities here

(standard Normal) and the same

have the same marginal pdf's

o

Spearman rank coeff. (0.5)
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Gauss copula, rho = 0.51764 Gumbel copula, theta = 1.54107

>\\
=

Clayton copula, theta = 1.07608 Student copula, nu = 2.5, rho = 0.3694

M=)
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Step C - Uncertainty propagation: main principles

Propagate uncertainties from X to Z, via the deterministic function & (-)

- Conceptually simple problem, but with sometimes a complex
implementation

* Choice of method strongly depends on the quantity of interest
=> importance of step A
This quantity of interest is linked to decisional issues

Two kinds of problems :

- Central tendancy (ex. mean) or

dispersion (variance) ‘ Analytical methods
- Metrology sometimes applicable

» High quantile, « probability of
failure »

> justification of a safet Numerical methods
é]r'i’rer'ion Y ‘ (optimization, Monte Carlo

sampling)
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Step C’ - Sensitivity analysis: main objectives

Variables to be fixed in order to obtain the largest reduction (or a
fixed reduction) of the output uncertainty

A purely mathematical variable ordering

Most influent variables in a given output domain
- if reducibles, then R&D prioritization
- else, modification of the system

The individual cost of the reduction may change the previous variable ordering

determination of the non-influent variables, that can be fixed without
consequences on the output uncertainty

building a simplified model, a metamodel
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Uncertainties management for cpu time consuming mod els

A useful solution : the metamodel (model of the numerical model)
p input variables
X= (X ... X,)
el

Physical phenomena

etamode

y (X) Y (X)
Time consuming Negligible cost

Predicted
experiences

~ ~

observed
experiences

Use of the metamodel : ® C:Uncertainty propagation

e C':Sensitivity analysis (via Monte Carlo methods) I'd I?.;.C?hb;atlc:n
entiTicarion ot Ihpu
parameters values

Variance de ¥

g [N
R

X3F

Distribution of
the inputs

LA

Distribution

eramoce of the output

Yo = fx (X) Adequation between

observed and simulated
experiences
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V&V process: Verification and Validation

To sumup :
Verification : do I solve the equations right ?

Validation : do I solve the right equations ?
(at least for the intended application)

Two levels for Verification :
Code Verification : some kind of "/nternal' correctness of the code

may be assessed by formal methods from Software Engineering

Calculation Verification : concerns the calculations themselves
Convergence, grid adaptation, solution algorithms, ...

Is the solution closed to the exact one ?

AW@'II talk later on subtilties between Code and Model(s)
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Some mathematical
methods for uncertainty
propagation

Baranquilla course 2013 — Propagation of uncertainties - F. Gamboa & B. looss 11



Quadratic combination method

Data : mean values of X; : w; = E[X;]
variance-covariance matrix of X; :

Cov [Xz,X]] = E[(Xz — Mz) (Xj - MJ)]
pij = K [Xi —fha A Mi]

0; 0y

Taylor expansion of G(¢) around E(X) :

En général, dans les applications le développement est d’ordre 1
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Quadratic combination method - First order

Mean of Z
E[Z] = G(p)

Variance of Z

V[Z]=E[(Z-E[Z])'] =E <G(M) +§:1 g; e (Xi — 1) — G(M)) ] =
ié é g; . g)i X:ME [(Xi — ) (X — p)]

Remarks :

++ Needs only mean and covariance of X

-- Do not use if G(.) is strongly non linear

-- Provides only mean and variance of Z => no extrapolation fo the distrib. law of Z
++ if X Is gaussian and G(.) is linear, then Z is gaussian
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Quadratic combination method — Independent case

If the X; s are independent :

V[Z]=§:(§§é

1=1

2
o2 Quadratic summation formula
X 1
=p

—

Contribution of each input variable to
the uncertainty of the output variable

1

2
g2 Sensitivity indices (normed)
X=u

5 1 oG
T, =
\% [Z] 0X;
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Methods of Monte Carlo simulation

— General mthods to evaluate a numerical quantity, using
some random simulations

— In uncertainty propagation : use a random sample of G(X)
to evaluate the quantity of interest

— We suppose that we know how to simulate an i.i.d
(independent and identically distributed) sample of X;
following its probability distribution f;
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Monte Carlo in general (1/3)
« Computation of the integral :

h(e) : deterministic function

X : r.v. with densityf(x)

£C<1), C6(2)’ _ ’x(n) < Random sample of X

~ 12 . From the law of large

I = n Z h(z®) — Elh(z)] < numbers, the Monte Carlo
. =1 estimator converges (a.s.)
I =1

»
»

to the true quantity

Monte Carlo estimator

Baranquilla course 2013 — Propagation of uncertainties
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Monte Carlo (2/3)
e Variance of the Monte Carlo estimator

v [% > h(X<i>)] = LAV (X)) = 2V [h(X)]

n? n
T

Variance of the sum
of nr.v. L.i.d.

— Variance of h(X) is given via its estimator :

~

V)] ~ -3 (h®) - 1)

=1

Q

— General expression for the variance of the MC estimator

V[~ % (et -1)

— We note :
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Monte Carlo (3/3)

» Asymptotic law of the estimator from Central Limit Theorem:

NG

Oh(X)

(f— ]) ~N(0,1) with onx) = v/ V[h(X)]

Low convergence speed (in 1/4/n ) but:
Independence with respect to the dimension of X and to the form of h(e)
Unbiased estimator

Precision only depends on n (then on the cpu time of h(.))

— Confidence intervals for the Monte Carlo error:

€, = f — ] < Monte Carlo error
€n € [_C](l—a/2) 01 q(1—a/2) °Uj] < Confidence interval with
} [ probability a
: Oh(X)
Quantiles of the standard normal law Of =
Vn
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Monte Carlo and uncertainty propagation
* Propagation of the uncertainties of X to Z=G(X)

,£C< e () < n-sample of X

e Monte Carlo estimator of mean and variance of Z :

E[G(X)] ~ - Glat))

1=1
1 2

VG & - 3 |Gl - = 3 Glat)

i=1 n ;=1

« Moments of Z are estimated by the empirical moments
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Estimation of a probability of failure

e System failure : event 4 <0

seuil

» Failure domain: D; = {g; cX:Gx)=2< 0}

* Failure probability: p; = [}, f(z)dz = [, Ip,(x) f(z)dz =E [Ip,(X)]

— Problem : computation of the mean of the random variable Ip, €

e Failure indicator : Ip,(7) = L{g(x)<o0}
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Monte Carlo estimation of p ; (1/3) | Feiure domain
i7,(Z,) . \.\“ - . ’
« Naive Monte Carlo estimator : \~ .
1 " . ) R : o % :.:o: :’,,_
Pr = n > In; () L E N A
1=1 . e.. w " o ]

e VVariance of the estimator : Safe domain  » )

12 . 1 n N
Vips] =V [E ;]Df (xu))] _ EV [; Ip, () W 2

eAs Ip, (XW), Ip, (X®), ... Ip, (X™) ~ B(ps) Bernouilli i.i.d.

« We have: V[p] = — ;V [Ip, (z)] = — 1 p;(1=py)

R 1 . L, .
Vips] = 5pf(1 —pys)| Estimatedby: | V[Df] & Epf(l —Dy)

» Asymptotical convergence to a normal law and other MC estimator
properties
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Monte Carlo estimation of p ; (2/3)

- 1
e Decrease in square root of n : O, = %\/pf(l — py)
.. . Op pe(l—pg) 1 1—0p
e Variation coefficient : =L = i /) — = /
E[py] nop n py
 For small values of p;:
1— 1
pr — 0 = i — —
Prf Pf
v A 1 « Relative error »,
-~ precision of the
" Py estimate
» For example, if we estimate a proba p; = 10" with cv = 10%,
1 102 valuess of G(X), then 102
_ —1 _ r+2 )
n 10— 10 = n=10" ) calls to the code G !

—prohibitive required cpu times

—=Use of improved methods: approximate methodes (FORM/SORM),
accelerated Monte Carlo methods, metamodel-based methods, ...
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Importance sampling (1/3)

* Idée : modifying the sampling prob. distribution of X in order to
concentrate the samples in most interesting regions (in terms
of contribution to computation of expectation of h(X))

[=[,h(z)f(z)dz = [, h(aj)iiggp(az)da} = [, h(@)w(z)p(z)dz

o It's the expectation of the function A(z)w(z), X ~ p(z)dx

1) Produce a sample (x0) from density ¢ (z)dx
2) Then, compute : 7is _ L~y i)y, (200
o 3 (e u(al?)

N 1 X
V|| =2V [h(X) i )]
n p(z)
» Unbiased estimator of |, in condition that the support of ¢(x)
contains the one of f(x)
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Importance sampling (2/3)

» This method does not guarantee any variance reduction [ ¢(X)
* The choice of the « instrumental law » ¢(x) is crucial

— theoretically: optimal density : ©*(r) = f ‘| Zg;} ;Ei;dm
X

— The normalization constant is as difficult to evaluate as evaluating | !
— However, practical result ...

« Estimation of a failure probability p; by importance sampling

— Here: h(a:) _ ]Df (33) _ ﬂ{G(x)SO}

— Optimal density : L Ip)f(x) Ip,(x)f(x)
©*(x) = fX ]Df(x)f(x)dx B Dy

Baranquilla course 2013 — Propagation of uncertainties - F. Gamboa & B. looss
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Importance sampling (3/3)

* The optimal density id the conditional law of de X knowing that X [J D,

e Intuitive result-> the method is mostly efficient if it produces samples
in the failure domain

s d
Some practical algorithms: 5
— Obtain a first idea of the configuration of Dy ' L
(first Monte Carlo runs) A AT T
— Center the instrumental law on a point of D; P S S >
(for example on the design point P* obtained / // -} .~
with the FORM method)
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FORM method (1/5)
 FORM: First Order Reliability Method

* From structural safety domain

e 3 steps :

1. Transformation of inputs X; to other inputs whose probability
distributions have « good properties »

Isoprobabilistic transformation - standard Gaussian space

2. Search of the most probable failure conditions

3. Estimation of the failure probability
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FORM (2/5)
Isoprobabillistic transformation

v

Physical space

Each component of U follows a N(0,1)
Component of U are independent
The iso-prob. surfaces are spheres

@ (U) = - ex —Eiuzj

Points which mostly contribute to p; are the nearest to the origin in the
standard space

Baranquilla course 2013 — Propagation of uncertainties
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FORM : isoprobabilistic transformation

* Rosenblatt transformation

T w=0"(Fu(z))
Uz = Cb_l(Fz(Zz\ZJ))

UN = q)_l(FN(ZN\ZN—l,'", 2, 7))

Baranquilla course 2013 — Propagation of uncertainties - F. Gamboa & B. looss
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FORM (3/5) — Isoprobabillistic transformation

* New expression of the failure probability
P(G(X) <0)=P(GT'(U) <0)=P(y(U) <0)

« Standard » space
— Expression of the failure
probability :

Py = fT(X) Lg(uy<ofu(u)du

Physical space

Baranquilla course 2013 — Propagation of uncertainties - F. Gamboa & B. looss 29



FORM (4/5) — Search of the most probable
faillure conditions

» To each point of the standard space, some
operating or failure conditions are
associated

— The most probable failure point is the U,
nearest from the origin (where the
desnity is max because the mean of of
U is the null vector) g(u)<0

[
»

D1

— Reminder : the value of.densny fu(u) - R e g(u)>0
depends only on [|u]| (distance of u
from origin) ——— —— > U,

— Callit P*: designpoint R
— Call u* the vector OP* SR

— The search of u*, (with an uniqueness

hyp.), is an optimization problem U = min,B(u) = min./utu
under constraints g(u)=0 g(u)=0
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FORM (5/5) — Evaluation of p;

* Hypothesis :
— Replacement of the limit surface g(u)=0

by the hyperplan intersecting P* and

orthogonal to u*, with equation :
B : norme de u*

N
'221 au; + =0 < a; cos. direct de u*
1=

Approximation based on the hyp. that points
far away from P* have small contributions to

p; = their proba is very small

P @jl ozi:lg —5) = ®(—p)

T L

Linear combination of r.v. Distribution function
N(0,1) with normed coeff. ai of N(0,1)
=> N(0,1)

Baranquilla course 2013 — Propagation of uncertainties

N
pf%IP)(ZO%UrFﬁSO) =

B : « Reliability index »

pf

Q; : « Importance factors» FORM >
sensitivity indices of variables Ui to
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FORM/SORM : Pros and cons

® Pros:
m reduced computing times  with respect to other methods
m No dependancy between computing times and value of pf
m Getting the importance factors and a design point

Fe » Cons:
P‘ 4 m Approximation not always valid
2 m No measure of the error which is made:
‘\91\\ = G has to be differentiable
m Hypothesis of a unique design point
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Fn(z)

00 02 04 06 08 10

Quantile estimation (1/2)
 Probability distribution function and quantile estimator

A 1
Fn(z) = ﬁ ; ]]-{G(x(i))sz} <—— Definition

Fn(z) — F(z) < Glivenko — Cantelli theorem:
convergence to F(z)

Empirical CDF
Monte Carlo estimator of a p-
] guantile : empirical quantile
i Z, = inf (z : Fo(z2) > p)
i I I I I I I I
3 2 1 0 1 2 3
z
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Quantile estimation (2/2)

e In practice:
— Build an ordered sample from G (zV) ,G () ..., G (2\")

— Callit:  zW,z® .2 <2 << )
—_ 2’p — Z(l_np])

» For example, if n=100 and p=0.95, then we have to take 96" value in
the ordered sample

1 1
e Ofcourse,weneed —<p<l1——
N P N

* Asymptotic law of the estimator:

Lo m)mNOT) T
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Quantile estimation — Wilks formula

\We can show that:

P (Z(np-f-?") > Zp) — >, P (j parmi les 2V sont > zp) =1—-Cy(n,r)
j=n(1-p)—r+1

Ginn="3" (") a-pyp

7=0

— Then, if r is the smallest integer such that C (n r)

— then, P(z"*) > z) > p

* We obtain the Wilks method

— Conservative estimator of quantiles :
* With a fixed n, find 3 (the confidence level of the quantile)
» With a fixed ( fixé, find n (required number of code runs)
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Sampling via Wilks formula

Comments:
@ Robust method

Constraint :

@ No hypothesis on the distribution function

Can only be applied to pure random sample (i.i.d.)

Example with Wilks at first order and unilateral quantile

Z.. 1S the maximal value of the N-sample (i.i.d) of Z
PlP(z<z_.)=a]=B  Nsolutionof 1-a" = g
a 0.50 0.90 0.90 0.95
£ 0.95 0.90 0.95 0.90
n 5 22 29 45

Baranquilla course 2013 — Propagation of uncertainties
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Application example
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Example: pollution measures on a few points of a ro om wall

21 activity measures in 137Cs (Bq/cm?) aeti$rcs R R
* Mean = 31.45 ) °
* Median =154

0.020
|

100
!
Density
0.010 0.015
| |

- Standard-deviation = 36.11
* Min = 0.83 - Max = 156.67 _*

- Skewness = 2.02
* Kurtosis = 4.19

0.005
|

I T T 1
50 100 150

Safety issue: guarantee (with a certain confidence level) that the contamination
does not exceed a treshold over all the room wall

|
—_

0.000

o —

Examples : prediction of the amount of different category of wastes
(proportion of activities <50 Bg/cm?,>1008Bg/cm?, ..)

=) waste quantities in different types of storage (deep geologic,
subsurtace, no storage)

== different costs
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Useful probabilistic tools: universal inequalities

For a random variable X with mean ¢ and variance g , we can use for X> u:

2

1+Kk?

* the Bienaymé-Tchebytcheff inequality: P(X < U+ ka) >

More than 72% of the surface < 100 Bq/cm?
Pessimistic bound 7,

. . . / peo
W and 0® are replaced by their empirical estimates
* the Guttman inequality:
2 2 1) /\
P(X < u+ko)> 4 with g2 = (k2-1)

+0p V2~ 2
More than 82% of the surface < 100 Bg/cm? \\\
Needs the knowledge of the kurtosis et
* the Meidell inequality (ynimodality hypothesis): .

2
p(X < pr+ko)> K2
1+(3k/2)

All these tools give
More than 89% of the surface < 100 Bq/cm? unsafe estimates



Using the Wilks formula

For an i.i.d. sample {X,..,X,} of a random variable X, if nis solution of 1-a”"= 3
and X, .. = max{X,... X} we have
. X X PIP(X < Xl (Xpron X)) 2 |2 B

It gives:

1. the minimal sample size n for aand S a| 050] 0350} 095] 055

2. for a given sample, the a-quantile value, | g 095 | 095| 090 | 0.95
with a B confidence degree . 5 59 45 59

No hypothesis on distribution function and no needs of parameter estimates

More general result linking #and order r (rank in the ordered sample {X,.... X}

Application (measures in 137Cs) :

- Wilks (n=21, r=2, =0.9) -> more than 83% of the surface < 80 Bq/cm?
(with a 90% degree of confidence)

- Meidell (unimod., o estimate) -> more than 80% of the surface < 80 Bq/cm?

Baranquilla course 2013 — Propagation of uncertainties
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Conclusions on step C (uncertainty propagation)

» Challenge: balance between precision of the estimate and cpu time cost

* Use Monte Carlo if possible: independent of input dimension, unbiased
estimation, gives a confidence interval

BUT : needs large number of model runs to obtain convergence

* If this cost is unreachable, alternative methods exist:
— Accelerated Monte Carlo method (importance sampling, etc.)
— Meéthodes quasi-Monte Carlo (cf. cours 2) - But: curse of dimensionality
— Approximate methids :
* Quadratigue summation - But: linear hypothesis

« FORM/SORM : fast estimation of p; . Can be used to initialize another
method (importance sampling)

— Using a surrogate model of the computer code (metamodel)
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