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Introduction
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Starting point: uncertainties everywhere in a model Ing chain !

Main problem: credibility of predictions

Simplifications

Model uncertainties

Numerical
Physical physicist _ _ :
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Similar safety and uncertainty issues in CS&E and N ature
sciences CS4E : Computational Science & Engineering

Climate Modeling :

Prediction
V Nuclear industry :
Conception,
"""""" Maintenance, risks
Car and
plane: / Qil, gas, CO2:
Conception | % ' Production optimization

Astrophysics:
Understanding =
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Exemple 1: particle dispersion in atmosphere (1/3)

Accidental scenario of pollufan‘l' release Topogpaphy and |oca1'ion of sources

Domain of study: 10 km around an industrial
site

2 arbitrary sources (at ground level) :
* source 1: tracer (gas)
* source 2 : iodine (particles)

Projection for 4 days

Meteorological data: wind, temperature,
humidity, rain

Toroyparnie (W)

Rugosity of the ground (vegetation)

[ Source : CEA]
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Exemple 1: particle dispersion in atmosphere (2/3)

Computation of wind field (direction and amplitude)

Visualization of the wind with flux lines
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Exemple 1: particle dispersion in atmosphere (3/3)

Use of a computer code of lagrangian particle dispersion
(solving the Euler equations of fluid mechanics )

Visualisztion of gas concentrations en gaz after a 5 hours' release

- 10 KU EVTOL POV .

Plume under the particular form Concentration plume (at 10 m level)

Results are strongly sensitive to meteorological data
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Exemple 2: Models in hydrology
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Uncertainties in model parameters that govern
surface and ground water transport,
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Exemple 3: Uncertainties in oil reservoir character  ization

« Scalar uncertain parameters : —

Reservoir Geometry : limits, thickness, faults, etc... J
Petrophysical properties : porosity, permeability,... A
Fluid properties water/Oll/Gaz : contacts between fluids, viscosity,..
Rock/Fluid interactions, Well Data, etc...

» Spatial uncertain parameters :

several realizations of a unique geological structure

geostatistical parameter = represented as a "seed variable"
Exemples: A
e geostatistical seed
e Structure maps
» Stochastic fracture networks

[ Source : IFP EN]
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Effect of geostatistical uncertainties ?

Uncertainty on Production Forecasts

[0 “m’)

= —_ [oX] L2 o “h (=] =l =] w
1 1 1 1 1 1 1 1

' Simulator
'l ex : PUMA

Cumulated il produ

A00 000 1500 2000 2500 2o 2A00 00
Time [days)

=

=> How to characterize this
effect of geostatistics ?

Uncertainty on realizations
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Main stakes of uncertainty management
* Modeling phase:

- Improve the model

- Explore the best as possible different input combinations

- Identify the predominant inputs and phenomena in order fo priorize R&D
* Validation phase:

- Reduce prediction uncertainties

- Calibrate the model parameters

* Practical use of a model:
- Safety studies: assess a risk of failure (rare events)

- Conception studies: optimize system performances and robustness
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Uncertainties in simulation experiments Y =aX +3a,%

Ancient way
AY =aAXx +a,AX, Pre-modern way
X x's identified to R V.
- .. but same algebra
A 7, =&} +aa}
Ax, T %
X Still used in metrology (6UM)
Still learned in Schools

Really Modern way

p N x's fully treated as R.V.
1

can give moments, quantiles,
X, + + and even pdf of Y ...
X .If fair waiting time

T DoE + Sampling
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Which (parametric) uncertainty sources?

» Epistemic uncertainty

— ltis related to the lack of knowledge or precision about a
parameter which is deterministic in itself (or can be considered
deterministic under some accepted hypotheses). E.g. a
characteristic of a material.

» Stochastic (or aleatory) uncertainty

— ltis related to the real variability of a parameter, which cannot be
reduced (e.g. the discharge of a river in flood risk assessment of
a riverside area). The parameter is stochastic in itself.

* Reducible vs non-reducible uncertainties

— Epistemic uncertainties are (at least theoretically) reducible

— Instead, stochastic uncertainties are (in general) irreducible (the
discharge of a river will never be predicted with certainty)
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A (very) simplified example: flood water level calc  ulation

Uncertainty

g 3/5
_ PR
Le=1Zy+
K \/ / )/L-B
Strickler’'s Formula
® Z.:Flood level (variable of interest)
B Z, etZ,:level of the riverbed, upstream and downstream
(random)
® Q :river discharge (random)
B K, : Strickler’s roughness coefficient (random)
® B, L :Width and length of the river cross section (deterministic)
a | ; N
npu Model 0O
: utput
General framework :
?J/ar'?blei variables of
ncertain : G(X.d :
Fived * d (X,d) interest
/ Z=G(X, d)
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Which output variable of interest?

* Formally, we can link the output variable of interest Z to a
number of continuous or discrete uncertain inputs X through
the function G: 7= G(X.d)

— d denotes the “fixed” variables of the study, representing, for instance a given
scenario. In the following we will simply note:

7 =G(X)
» The output variable of interest can be of dimension 1 or >1

* The function G can present itself as:

— an analytical formula or a complex finite element code,
— with high / low computational costs (measured by its CPU time),

» The uncertain inputs are modeled thanks to a random vector
X, composed of p univariate random variables (X;, X,, ..., X,)
linked by a dependence structure.
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The “global methodology” of uncertainty management

Step C : Propagation
of uncertainty sources

>
Step A : Specification of the problem
€ Model R - N ( _ ~
Input Variables Quantity of
variables G(x,d) of interest N |r?ter.est
S Z = G(x,d) e.g.: variance,
Fived - d quantile ..
Modeled by probability .
distributions ? \ ) \. 7\ ’T‘ J
L A . |
! I
A ! .
I -
I |
A
| |
: : |
| € :
_____ Lo - — _—— e e e e
| t : ( S I
I_ _ Coming back |4 _________ 1 Decision criterion |< |
I (feedback) }' I e.g.: probability < 10- ;I
17
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Let us focus on “step B”

» We stay in the case where uncertainty sources are modeled by
random variable
— Probabilistic setting
— X is a multi-dimensional random variable
— Its uncertainty is described by a joint distribution
— A key gquestion: the dependence between the components of X

e Situations encountered in common industrial practice:
— No data - Expertise for assessing the distribution of X
— Data available - Fitting parametric or non-parametric distributions
— Indirectly observed data - inverse modeling

— Bayesian approach - Combining expertise and data
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No data

e In industrial practice, it may happen the only available
iInformation is an expert’s advice

e Elicitation methods
— Formal translation of the expertise into a probability distribution
— Particularly interesting problem in Bayesian statistics

» Open question, object of several research works

» A way to build probability distributions from minimalist information:
the Maximum Entropy Method
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Statistical Entropy (1/3)

* Definition given by Shannon (1948), then formalized by Jaynes (1957)

» Discrete case: X is a discrete r.v. the distribution of which is
Py ={P1, P2, ---\ Py}

k
H(X) = — Z Di log(pi) < Statistical Entropy
i=1

* Properties :

H(X)>0 < Always positive, except for a
H(X) =0« 3, ipi=1, Vi 75] p; = 0 particular case (minimum = 0)
« H(X) <log(k) -« Maximum de H
 The maximum, equal to log(k), is reached in case of uniform distribution
1 ko1 1 1 1
;= =V H(X)=— —1 — | = —= klog(=) = log(k
pi= ¥ HOO = = 3 plog (1) = = b og() = log(h
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Statistical Entropy (2/3)

e Intuitive interpretation of entropy

* Minimum in case of “perfect” information - no doubt on the value of de X between

the k possible values

 Maximum in the case when the information given by the prob. is the most “vague”
possible - each possible value of X is equiprobable

* Entropy: (inverse) measure of the information on X brought by its prob. distribution

Entropy (K=2)  154(2)=0.693

N
N\

\

\

| | | | |
0.00 0.25 0.50 0.75 1.00

pi
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Statistical Entropy (3/3)

Extension to a continuous r.v. : H(X) = — [, f(z)log (f(z))dx

Maximum Entropy Principle

— Among all possible distributions, one chooses the one that brings the
minimum information - i.e. the one maximizing the entropy

— Justification : Research of “objectivity”
* Do not add any information, except the one given by the expert

Baranquilla course 2013 — Treatment of uncertainties - F. Gamboa & B. looss
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Maximum Entropy application

e Trivial Application: an expert tells that X is a discrete r.v that
can take k values = choice of the discrete uniform distribution

: : : Di = 1/k
* More generally, let us imagine an expert gives N pieces of

iInformation concerning X under the form:
v gi(@) f(x)de = ¢;

— The maximum entropy problem consists in finding a function f(x)
maximizing H(X) et respecting the N +1 conditions:

fX f(x)de =1
[v9;(@)f(z)de =¢; j=1..N
Constrained Optimization
— Justification : Among all possible distributions, one chooses the
one that brings the minimum information compatible with
available information
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Maximum Entropy application - examples (1/2)

Given information Distribution maximizing entropy
X € |a, 0] Uniform X ~U(a,b)
B(X) = p E ial X ~E(1)

X €0, 00] Xponentia ~ E(1/p)
E(X) =

V((X)) _ Igz Normal X ~N(p, o)

* In spite of the justification, several objections can be made (e.g. on the
choice of an uniform distribution...)

* Nevertheless, these choices are common in practice
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Maximum Entropy application - examples (2/2)

Uniform

X € [-2,6]

1 1 1T 1T 1T T T 1
8 6 4 -2 0 2 4 6 8

X

Exponential

E(X)=2
X €0, 00]

. X -
Baranquilla course 2013 — Treatment of uncertainties

Normal
| rx) =2
V(X) =1
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Other common distributions — no data (1/2)

 Triangular distribution 7 (a,b,m)
— When the expert gives an interval and a mode m (most probable value)

Triangular
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Other common distributions — no data (2/2)

« Beta distribution B(«, )

— Ifthe r.v. is the probability for a single
event to occurr

— The expert gives a number of
“successes” N’ over N virtual expériments

a= N’
B=N—N

« Gamma distribution G(a, )
— Ifthe r.v. is a failure rate

— The expert gives a number of “failures” N’
observed over a “virtual’ observation
period T

a=N (=T
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Data available

* Problem:

— From an i.i.d. sample of the r.v. X:
Independent and identically

— Bulldlng .thle probablllty dIStI’Ibuj[IOn of X, for: distributed
" Predicting its moments, quantiles etc.
: 21 2 )
« Random sampling the r.v. X (e.g. Monte Carlo) ; y e

— We will focus here on uni-dimensional variables
* Non-parametric fitting

» Parametric fitting
« Verifying the quality of the fitting
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Non-parametric fitting

« Empirical cumulated distribution function
« Empirical Histogram
— “Basic” and well-known tools for the engineer

« Kernel smoothing techniques
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Empirical cumulated distribution function

e I.I.d. sample of X, of size n:

20 2@ )

« Empirical cumulated distribution function:

— Proportion of observations < a fixed
value x of lav.a. X

. 1 n
o) =5 4 Hewsa)
* “Inversion” of the empirical E.(z) = F(z) as.
cumulated distribution function

. . . Empirical CDF
— Empirical quantile:

Fn(x)

T, = inf (z:

() > p)

00 02 04 06 08 10
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Histogram approximation of the density

 Divide the domain of X in m intervals, of equal length h

» Approximate the density of X by the step function:
lz*+ jh,a*+ (j+ 1)h] j €N

Z(x) interval containing x

. 1 » |

Number of elements of the
sample which are in the same
interval as x -

« Kernel approximation of the |
density is inspired by histogran
approximation i
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Kernel approximation (1/4)

: : : A 1 N x — (@
« Estimation of the density of X:  f, ,(z) = o Z <T>

* his called “bandwidth”
— Smoothing parameter, the higher h, the “smoother” the density

« Kis a function, called “kernel”, positive and such as: fx K(x)dgj =1

 Kis, in general, a symmetric density, e.g. a normal distribution ./\/(O, 1)
In this case:

— 20 1 (2= )’
T X i
K| —— | = e 2n2
( h ) V2T

» Other kernels: triangular,
uniform, Epanechnikov ...
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Kernel approximation (2/4)

 Idea underlying this method
« Histogram estimation: for x fixed, each point x) of the sample
contributes to the value of f(x) in a “binary” way (yes/no)

» Kernel estimation: the contribution is continuous and depends on
the distance between x et x0.

» The obtained function is continuous

— The algorithm setting is made by:

* The type of kernel
* The value of h (smoothing parameter)
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Kernel approximation (3/4)

» Quality of the approximation measured by:

. [/ . 2]

— Mean squared error:  MSE[f,n(2)] =E (fn,h(:c) - f(x))
— Mean squared error inte- ) - ) )
grated over the values de X: MISE[f, ,(z)] = [, MSE[f, »(z)]dz

— Asymptotical value of MISE:
AMISE[f,, ()]

— By the expression of the limited development of the AMISE, it is
possible, in dimension 1, to obtain a value of h minimizing it:

R(K) ]1/5 where R(K) = f)( (K(-??))2 dzx
2 (K)R(f7) pa(K) = [y v°K(z)dx

hAMISE — [
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Kernel approximation (4/4)

* The most important parameter is the bandwidth h

Examples obtained with the R function
density() _

500 i.i.d. values of N (i = 500, 0 = 100) .
O Default algorithm in R (h*=24.9)

® H=h*3 = Oversmoothing (too smooth!)
©H=h/3 = Undersmoothing 0 200 400 500 800 1000

| | | | | |
0 200 400 600 800 1000
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Parametric fitting

 Fundamental hypothesis: the distribution of X belongs to a given
family of parametric distributions

X ~ fp(x) continuous case
X ~ Py(x) discrete case

f(-) € Dy We use the notation:

» The distribution is completely determined by the value of its
parameter 0 (generally of dimension 1, 2 or 3 for the usual
distributions)

« Parametric fitting consists in estimating, under the base of the
available information on X, the value of the parameter 0 of its
under-lying distribution
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Maximum Likelihood Estimation (1/4)

e Likelihood function:

3

LW, .. zM|9) =

o(x®) continuous case

—y

1

-~
3l

LD, .. 2™M9) =

7

R

»(2)  discrete case

1

e Maximum Likelihood Estimator (ML) :
Onir, = ArgMax [L(zW, ..., 2M™0)] = ArgMax [log (L(zM, ..., 2"|0))]
0 0

— Value of 0 that maximizes the likelihood (or the log-likelihood)

— Intuitively, we look for the value which maximizes the
“probability” to observe the given sample

— It is an optimization problem
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Maximum Likelihood Estimation (2/4)

o If the likelihood id differentiable (twice)

— The two conditions below ensure fy; is a local maximizing point
for the likelihood:

oL _ 0L
00 lo=brr
« Some “classical’ examples :

— <0
002 lo=0yy —

faaL =T, onw = (1/n) 32, (2 — T)?
Normal N(u,o) avec T = (1/n) 3, 2
Exponential E£(\) At = 1/T
. amMr = miﬂ(ﬂf(i))7 [;ML = max(x(i)) Case where de
Uniform Z/{(a, b> 1=1...n derivative is never null
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Maximum Likelihood Estimation (3/4)

* Properties of the ML estimator

— Convergent (consistent) :  n — oo, Onir, — 0 as.

— Asymptotically normally distributed:
n — 00, \/ﬁ (éML — 9) ~ j\/’(O’ 0') Fisher information Matrix
o (I(Q))_1< I(6)=E (%bgw(w») ]

— Asymptotically unbiased n — oo, E [éML — 6} — 0

e ... but not necessarily unbiased for finite n
 Example : estimator of the variance of a normal distribution
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Maximum Likelihood Estimation (4/4)

* Properties of the ML estimator (more)

— Asymptotically effective: among all unbiased estimators of 6, the
ML estimator has a minimal variance

— Invariant with respect to re-parameterization. Let us suppose to
differently re-parameterize the distribution of X:

. § = 9(9) éML — g(éML)

« Some good properties, but the ML estimator is not always
calculable

— Another usual estimation technique: the method of moments
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Method of moments

» Under existence condition, let us consider the first r moments
of the probability distribution of X:
m; = [, 2’ fo(x)dz, jg=1...r
— Estimated by the empirical moments : ;= (1/n) ; [x(i)}:l
* Method of moments consists in solving in 0 the system of
equations:

{mj = mj ] =1...r

— Properties : Convergence, asymptotic normality, but not
efficiency - “less precise” estimator than the ML

— Used when maximizing the likelihood is particularly tricky (e.g.
Weibull)
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Verifying the quality of the fitting

» Graphical verification

— superimposition of theoretical and empirical cumulative
distribution functions

— QQ plot

» Goodness-of-fit tests
— Kolmogorov - Smirnov
— Cramer — Von Mises
— Anderson — Darling
— ... many others

« Example: fitting a probability distribution on 149 data of
maxima annual discharges of a river

Baranquilla course 2013 — Treatment of uncertainties - F. Gamboa & B. looss
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Parametric or non-parametric?

* No “unique” answer to the question!

» Generally, if possible, parametric fitting is chosen
— Easier manipulation of the distribution

* Non-parametric fitting is interesting
— When a great number of data is available

— When the distribution is expected to be of “unusual”’ shape, e.g.
multi-modal
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Example of fitting (1/2)

Discharges Histogram Kernel fitting

f(Q)

ON@S L v ) ) (o O O [0X©) )} O
[ I I I I | [ I I I I I

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
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Example of fitting (2/2) — ML estimation

Parametric fitting (maximum of likelihood)

— Normal distribution
 (1,6) = (1335,711)

— Log-normal distribution
e (fl10g, T10g) = (7.0,0.60)

— Exponential distribution
« A =1/1335

— Gumbel distribution
+ (ji. ) = (1013,557)
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Visual verification of the quality of fitting

Visual comparison of CDF’s QQ plot

o
o _|
o
o
o
) S _|
o
#
()]
(<)
T o
= o _|
(] o
— empir o @ A
—— norm s
— lognorm L g
— exponentielle E & 7 _
gumbel g N — empir
o — norm
o — lognorm
8 - — exponentielle
— gumbel
o —]
I I I I I I I I I I I I
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Q Quantiles empiriques
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Goodness-of-fit tests (1/4)

e Goodness-of-fit test:
Hypothesis H, : the sample is an outcome of the given distribution
Hypothesis H, : H, is not true

 These tests are based on the evaluation of a function of the data
(named “test statistic”) which, under the hypothesis H,, is distributed
according to a known distribution

» Significance level a : the probability to wrongly reject the null
hypothesis H, (i.e. when H, Is true)

» For aclassical unilateral (at right) test, la decision rule is:

Accept Hy if 7(zW, ... 2™) < 7_,

T T

Value of the test statistic for the (1-a) quantile of the test statistic, under the
sample under investigation hypothesis H, = This quantity is known
(tables, statistical software)
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Goodness-of-fit tests (2/4)

Quelques tests

— Kolmogorov — Smirnov (KS)
+ Tis =supy/n|F,(z) — F(z)|

— Cramer — Von Mises (CM)

* Toum = fj;o [F(x) — F(x)f dF(z) =

— Anderson — Darling (AD)
[Fu() = F(2)]

-“D“l”fwm( o))
—n—ﬁzi log(F (z) 4 log(1 —

Baranquilla course 2013 — Treatment of uncertainties
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Goodness-of-fit tests (3/4)

 The KS test takes into account the maximum deviation
between empirical CDF and theoretical

* The CM test takes more into account the “global” fitting

* The AD test particularly consider the fitting on the tails of the
distributions, by weighting the deviations with the factor:

0.0 0.2 04 0.6 0.8 1.0
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Goodness-of-fit tests (4/4)

Normal distrib. | Log-normal distrib. | Gumbel distrib.
Kolmogorov — Smirnov | 1,5 = 0.091 Txs = 0.087 Txs = 0.043
Tgse, = 0.11 p-val = 0.17 p-val = 0.20 p-val = 0.94
Cramer — Von Mises Tey = 0.29 Tey = 0.23 Ty = 0.038
Tosy, — 0.46 p-val = 0.17 p-val = 0.21 p-val = 0.94
Anderson Darling Tpp = 2.08 Tp = 1.44 Tpp = 0.25
p-val =0 p-val = 0.02 p-val = 1

 Preference for the Gumbel distribution
 But other distribution could not be rejected. How to choose?
 Other selection tools (based on likelinoods ratio) :

AIC = 2k — 2log(L)
BIC = klog(n) — 2log(L)

Baranquilla course 2013 — Treatment of uncertainties - F. Gamboa & B. looss



Just a word on Bayesian approach (1/2)

» That topic deserves an entire training course!

e Idea : updating, by data observation, a preliminary knowledge
on the parameters of the statistical model, described by a
prior distribution

o (6’) < Prior distrib.
(0) - L2, ... 2™]0)

Bl .. ety = -
w0 = G R 2 0

Posterior distrib.

A

» Appealing approach in industrial practice, for incorporating
expertise in statistical analysis

 Allows to explicitly account for uncertainty tainting the
parameter 6, which is described here as a random variable...

Baranquilla course 2013 — Treatment of uncertainties - F. Gamboa & B. looss 51



Just a word on Bayesian approach (2/2)

* An unique probability distribution for describing the so-called “aleatory”
(per se, irreducible) and “epistemic” (lack of knowledge, reducible)
uncertainties

* A important point: the choice of the prior distribution
— Non-informative distrib. = minimizing the information brought by the prior
— Informative distrib. - properly modeling the expertise

e Bayesian computing
— No analytical solution for the integral at denominator in Bayes formula

— Use of simulation methods for getting a sample of the posterior
distribution (the expression of which is always known up to a multiplicative
constant)
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