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Introduction
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Starting point: uncertainties everywhere in a model ing chain !

Main problem: credibility of predictions
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Similar safety and uncertainty issues in CS&E and N ature 
sciences

Climate Modeling : 
Prediction

Car and
plane:

Conception

Nuclear industry :
Conception,

Maintenance, risks

Oil, gas, CO2:
Production optimization

CS&E : Computational Science & Engineering
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Conception Production optimization

Astrophysics:
Understanding



Exemple 1: particle dispersion in atmosphere (1/3)

Topography and location of sources

Domain of study: 10 km around an industrial 
site

2 arbitrary sources (at ground level) :
* source 1 : tracer (gas)
* source 2 : iodine (particles)

Accidental scenario of pollutant release

Source 1
Source 2
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* source 2 : iodine (particles)

Projection for 4 days

Meteorological data: wind, temperature, 
humidity, rain

Rugosity of the ground (vegetation)

Source 1

Τοπογραπηιε (µ)

[ Source : CEA ]



Computation of wind field (direction and amplitude)

Visualization of the wind with flux lines

Exemple 1: particle dispersion in atmosphere (2/3)
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10 κµ ενϖιρον10 κµ ενϖιρον10 κµ ενϖιρον10 κµ ενϖιρον

Use of a computer code of lagrangian particle dispersion
(solving the Euler equations of fluid mechanics )

Visualisztion of gas concentrations en gaz after a 5 hours’ release

aérosols

Exemple 1: particle dispersion in atmosphere (3/3)
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Plume under the particular form Concentration plume (at 10 m level)

gaz

Results are strongly sensitive to meteorological data



Exemple 2: Models in hydrology
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Uncertainties in model parameters that govern 
surface and ground water transport, …

Courtesy of



Exemple 3: Uncertainties in oil reservoir character ization

• Scalar uncertain parameters : 
– Reservoir Geometry : limits, thickness, faults, etc... 

– Petrophysical properties : porosity, permeability,...

– Fluid properties water/Oil/Gaz : contacts between fluids, viscosity,..

– Rock/Fluid interactions, Well Data, etc...
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9

• Spatial uncertain parameters :
– several realizations of a unique geological structure 

–– geostatistical parametergeostatistical parameter ⇒ represented as a ""seed variableseed variable""
– Exemples:

• geostatistical seed
• Structure maps
• Stochastic fracture networks

[ Source : IFP EN]
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Effect of geostatistical uncertainties ?

Uncertainty on Production Forecasts

Simulator
ex : PUMA
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Water saturation

Phi

Uncertainty on realizations

ex : PUMA

�� How to characterize this How to characterize this 
effect of geostatistics ?effect of geostatistics ?



• Modeling phase: 

– Improve the model

– Explore the best as possible different input combinations 

– Identify the predominant inputs and phenomena in order to priorize R&D

• Validation phase:

Main stakes of uncertainty management
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– Reduce prediction uncertainties 

– Calibrate the model parameters

• Practical use of a model:

– Safety studies: assess a risk of failure (rare events)

– Conception studies: optimize system performances and robustness



Uncertainties in simulation experiments 2211 xaxaY +=

2211 xaxaY ∆+∆=∆
Ancient way

X1

X2

1x∆

2x∆

Still learned in Schools

2
2

2
2

2
1

2
1 σσσ aaY +=

Pre-modern way

x's identified to R.V.
… but same algebra

Still used in metrology (GUM)
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Still learned in Schools

Really Modern way

x's fully treated as R.V.

Can give moments, quantiles,
and even pdf of Y …

…if fair waiting time

X1

X2

DoE

X2

X1

Sampling



Which (parametric) uncertainty sources?
• Epistemic uncertainty

– It is related to the lack of knowledge or precision about a 
parameter which is deterministic in itself (or can be considered 
deterministic under some accepted hypotheses). E.g. a 
characteristic of a material.

• Stochastic (or aleatory) uncertainty

– It is related to the real variability of a parameter, which cannot be 
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– It is related to the real variability of a parameter, which cannot be 
reduced (e.g. the discharge of a river in flood risk assessment of 
a riverside area). The parameter is stochastic in itself.

• Reducible vs non-reducible uncertainties

– Epistemic uncertainties are (at least theoretically) reducible
– Instead, stochastic uncertainties are (in general) irreducible (the 

discharge of a river will never be predicted with certainty)



A (very) simplified example: flood water level calc ulation

Zc : Flood level (variable of interest)

Strickler’s Formula

Uncertainty
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Zc : Flood level (variable of interest)
Zm et Zv : level of the riverbed, upstream and downstream 
(random)
Q : river discharge (random)
Ks : Strickler’s roughness coefficient (random)
B, L : Width and length of the river cross section (deterministic)

Model 

G(X,d)

Input 
Variables
Uncertain : X

Fixed : d

Output 
variables of 

interest
Z = G(X, d)

General framework



Which output variable of interest?
• Formally, we can link the output variable of interest Z to a 

number of continuous or discrete uncertain inputs X through 
the function G:

– d denotes the “fixed” variables of the study, representing, for instance a given 
scenario. In the following we will simply note:

• The output variable of interest can be of dimension 1 or >1
• The function G can present itself as:
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• The function G can present itself as:
– an analytical formula or a complex finite element code,
– with high / low computational costs (measured by its CPU time),

• The uncertain inputs are modeled thanks to a random vector
X, composed of p univariate random variables (X1, X2, …, Xp) 
linked by a dependence structure.



Methodology
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The “global methodology” of uncertainty management

Step C : Propagation 
of uncertainty sources

Model

G(x,d)
Input 

variables

Variables 
of interest

Step A : Specification of the problem

Quantity of 
interest

Step B:
Quantification 
of uncertainty 
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Coming back
(feedback)

Step C’ : Sensitivity analysis,  
Ranking

G(x,d)variables
Uncertain : x
Fixed : d

of interest
Z = G(x,d)

Decision criterion
e.g.: probability < 10-b

e.g.: variance, 
quantile ..

of uncertainty 
sources

Modeled by probability 
distributions



Let us focus on “step B”

• We stay in the case where uncertainty sources are modeled by 
random variable

– Probabilistic setting
– X is a multi-dimensional random variable
– Its uncertainty is described by a joint distribution
– A key question: the dependence between the components of X
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• Situations encountered in common industrial practice: 
– No data � Expertise for assessing the distribution of X
– Data available � Fitting parametric or non-parametric distributions
– Indirectly observed data � inverse modeling

– Bayesian approach � Combining expertise and data



No data
• In industrial practice, it may happen the only available 

information is an expert’s advice

• Elicitation methods 
– Formal translation of the expertise into a probability distribution 
– Particularly interesting problem in Bayesian statistics

• Open question, object of several research works

Baranquilla course  2013 – Treatment of uncertainties - F. Gamboa & B. Iooss          19

• A way to build probability distributions from minimalist information: 
the Maximum Entropy Method



Statistical Entropy (1/3)

• Definition given by Shannon (1948), then formalized by Jaynes (1957)

• Discrete case: X is a discrete r.v. the distribution of which is 
PX = {p1, p2, …, pk}

Statistical Entropy
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• Properties :
•

•
• The maximum, equal to log(k), is reached in case of uniform distribution

Always positive, except for a 
particular case (minimum = 0)

Maximum de H



Statistical Entropy (2/3)

• Intuitive interpretation of entropy
• Minimum in case of “perfect” information � no doubt on the value of de X between 

the k possible values
• Maximum in the case when the information given by the prob. is the most “vague” 

possible � each possible value of X is equiprobable
• Entropy: (inverse) measure of the information on X brought by its prob. distribution

log(2)=0.693 log(3)=1.099Entropy (k=2) Entropy (k=3)
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Statistical Entropy (3/3)

• Extension to a continuous r.v. : 

• Maximum Entropy Principle
– Among all possible distributions, one chooses the one that brings the 

minimum information � i.e. the one maximizing the entropy
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minimum information � i.e. the one maximizing the entropy
– Justification : Research of “objectivity”

• Do not add any information, except the one given by the expert



Maximum Entropy application
• Trivial Application: an expert tells that X is a discrete r.v that 

can take k values � choice of the discrete uniform distribution 
:

• More generally, let us imagine an expert gives N pieces of 
information concerning X under the form:

– The maximum entropy problem consists in finding a function f(x) 
maximizing H(X) et respecting the N +1 conditions:
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maximizing H(X) et respecting the N +1 conditions:

– Justification : Among all possible distributions, one chooses the 
one that brings the minimum information compatible with 
available information

Constrained Optimization



Maximum Entropy application - examples (1/2)

Given information Distribution maximizing entropy

Uniform

Exponential
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• In spite of the justification, several objections can be made (e.g. on the 
choice of an uniform distribution…)

• Nevertheless, these choices are common in practice

Normal



Maximum Entropy application - examples (2/2)

-8 -6 -4 -2 0 2 4 6 8

Uniform

Normal
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Other common distributions – no data (1/2)

• Triangular distribution 
– When the expert gives an interval and a mode m (most probable value)

Triangular
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x
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Other common distributions – no data (2/2)

• Beta distribution
– If the r.v. is the probability for a single 

event to occurr
– The expert gives a number of 

“successes” N’ over N virtual expériments

0.00 0.25 0.50 0.75 1.00

Beta
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• Gamma distribution
– If the r.v. is a failure rate
– The expert gives a number of “failures” N’ 

observed over a “virtual” observation 
period T

x

0.00 0.25 0.50 0.75 1.00

x

0.00 0.05 0.10 0.15 0.20

Gamma



Data available
• Problem:

– From an i.i.d. sample of the r.v. X: 
– Building the probability distribution of X, for:

• Predicting its moments, quantiles etc.
• Random sampling the r.v. X (e.g. Monte Carlo)
• …

– We will focus here on uni-dimensional variables

Independent and identically 
distributed
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• Non-parametric fitting
• Parametric fitting
• Verifying the quality of the fitting



Non-parametric fitting

• Empirical cumulated distribution function
• Empirical Histogram

– “Basic” and well-known tools for the engineer

• Kernel smoothing techniques

Baranquilla course  2013 – Treatment of uncertainties - F. Gamboa & B. Iooss          29



Empirical cumulated distribution function 
• i.i.d. sample of X, of size n:

• Empirical cumulated distribution function:
– Proportion of observations < a fixed 

value x of la v.a. X

• “Inversion” of the empirical 
cumulated distribution function 
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Histogram approximation of the density
• Divide the domain of X in m intervals, of equal length h

• Approximate the density of X by the step function:
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• Kernel approximation of the
density is inspired by histogram
approximation

x

-4 -2 0 2 4

Number of elements of the 
sample which are in the same 

interval as x



Kernel approximation (1/4)

• Estimation of the density of X:

• h is called “bandwidth”
– Smoothing parameter, the higher h, the “smoother” the density

• K is a function, called “kernel”, positive and such as:
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• K is, in general, a symmetric density, e.g. a normal distribution 
In this case:

• Other kernels: triangular,
uniform, Epanechnikov …

-4 -2 0 2 4



Kernel approximation (2/4)
• Idea underlying this method

• Histogram estimation: for x fixed, each point x(i) of the sample 
contributes to the value of f(x) in a “binary” way (yes/no)

• Kernel estimation: the contribution is continuous and depends on 
the distance between x et x(i).

• The obtained function is continuous
– The algorithm setting is made by:
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– The algorithm setting is made by:
• The type of kernel
• The value of h (smoothing parameter)



Kernel approximation (3/4)
• Quality of the approximation measured by:

– Mean squared error :
– Mean squared error inte-

grated over the values de X:
– Asymptotical value of MISE:

– By the expression of the limited development of the AMISE, it is 
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– By the expression of the limited development of the AMISE, it is 
possible, in dimension 1, to obtain a value of h minimizing it: 

where



Kernel approximation (4/4)

• The most important parameter is the bandwidth h

• Examples obtained with the R function 
density()

• 500 i.i.d. values of
• � Default algorithm in R (h*=24.9)

• � H=h*3 � Oversmoothing (too smooth!)

�
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• � H=h*3 � Oversmoothing (too smooth!)

• �H=h/3 � Undersmoothing

� �



Parametric fitting
• Fundamental hypothesis: the distribution of X belongs to a given 

family of parametric distributions 

We use the notation:

• The distribution is completely determined by the value of its 
parameter θ (generally of dimension 1, 2 or 3 for the usual 
distributions)
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• Parametric fitting consists in estimating, under the base of the 
available information on X, the value of the parameter θ of its 
under-lying distribution



Maximum Likelihood Estimation (1/4)
• Likelihood function:

• Maximum Likelihood Estimator (ML) :
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– Value of θ that maximizes the likelihood (or the log-likelihood)
– Intuitively, we look for the value which maximizes the 

“probability” to observe the given sample
– It is an optimization problem 



Maximum Likelihood Estimation (2/4)
• If the likelihood id differentiable (twice)

– The two conditions below ensure        is a local maximizing point 
for the likelihood:

• Some “classical” examples :
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Normal

Exponential

Uniform Case where de 
derivative is never null



Maximum Likelihood Estimation (3/4)
• Properties of the ML estimator

– Convergent (consistent) :

– Asymptotically normally distributed:

a.s.

Fisher  information Matrix
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– Asymptotically unbiased

• … but not necessarily unbiased for finite n
• Example : estimator of the variance of a normal distribution



Maximum Likelihood Estimation (4/4)
• Properties of the ML estimator (more)

– Asymptotically effective: among all unbiased estimators of θ, the 
ML estimator has a minimal variance

– Invariant with respect to re-parameterization. Let us suppose to 
differently re-parameterize the distribution of X:

•

Baranquilla course  2013 – Treatment of uncertainties - F. Gamboa & B. Iooss          40

• Some good properties, but the ML estimator is not always 
calculable

– Another usual estimation technique: the method of moments



Method of moments
• Under existence condition, let us consider the first r moments 

of the probability distribution of X:

– Estimated by the empirical moments : 

• Method of moments consists in solving in θ the system of 
equations:
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– Properties : Convergence, asymptotic normality, but not 
efficiency � “less precise” estimator than the ML

– Used when maximizing the likelihood is particularly tricky (e.g. 
Weibull)



Verifying the quality of the fitting
• Graphical verification

– superimposition of theoretical and empirical cumulative 
distribution functions

– QQ plot

• Goodness-of-fit tests
– Kolmogorov - Smirnov
– Cramer – Von Mises
– Anderson – Darling
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– Anderson – Darling
– … many others

• Example: fitting a probability distribution on 149 data of 
maxima annual discharges of a river



Parametric or non-parametric?
• No “unique” answer to the question!

• Generally, if possible, parametric fitting is chosen
– Easier manipulation of the distribution

• Non-parametric fitting is interesting
– When a great number of data is available
– When the distribution is expected to be of “unusual” shape, e.g. 

multi-modal
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multi-modal



Example of fitting (1/2)

Discharges Histogram Kernel fitting
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Example of fitting (2/2) – ML estimation

• Parametric fitting (maximum of likelihood)

– Normal distribution
•

– Log-normal distribution
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•

– Exponential distribution
•

– Gumbel distribution
•



Visual verification of the quality of fitting
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Goodness-of-fit tests (1/4)

• Goodness-of-fit test:
Hypothesis H0 : the sample is an outcome of the given distribution
Hypothesis H1 : H0 is not true

• These tests are based on the evaluation of a function of the data 
(named “test statistic”) which, under the hypothesis H0, is distributed 
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(named “test statistic”) which, under the hypothesis H0, is distributed 
according to a known distribution

• Significance level α : the probability to wrongly reject the null 
hypothesis H0 (i.e. when H0 is true)

• For a classical unilateral (at right) test, la decision rule is:

Value of the test statistic for the 
sample under investigation

(1-α) quantile of the test statistic, under the 
hypothesis H0 � This quantity is known 
(tables, statistical software)



Goodness-of-fit tests (2/4)

• Quelques tests

– Kolmogorov – Smirnov (KS)
•

– Cramer – Von Mises (CM)
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•

– Anderson – Darling (AD)

•

After an ordering of the sample



Goodness-of-fit tests (3/4)
• The KS test takes into account the maximum deviation 

between empirical CDF and theoretical
• The CM test takes more into account the “global” fitting
• The AD test particularly consider the fitting on the tails of the 

distributions, by weighting the deviations with the factor:

10
0
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Goodness-of-fit tests (4/4)

Normal distrib. Log-normal distrib. Gumbel distrib.

Kolmogorov – Smirnov
τ95% = 0.11

τKS = 0.091
p-val = 0.17

τKS = 0.087
p-val = 0.20

τKS = 0.043
p-val = 0.94

Cramer – Von Mises
τ95% = 0.46

τCM = 0.29 
p-val = 0.17

τCM = 0.23
p-val = 0.21

τCM = 0.038
p-val = 0.94

Anderson Darling τAD = 2.08
p-val = 0

τAD = 1.44
p-val = 0.02

τAD = 0.25
p-val = 1
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• Preference for the Gumbel distribution
• But other distribution could not be rejected. How to choose?
• Other selection tools (based on likelihoods ratio) :

p-val = 0 p-val = 0.02 p-val = 1



Just a word on Bayesian approach (1/2)
• That topic deserves an entire training course!

• Idea : updating, by data observation, a preliminary knowledge 
on the parameters of the statistical model, described by a 
prior distribution

Prior distrib.
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• Appealing approach in industrial practice, for incorporating 
expertise in statistical analysis 

• Allows to explicitly account for uncertainty tainting the 
parameter θ, which is described here as a random variable…

Posterior distrib.



Just a word on Bayesian approach (2/2)

• An unique probability distribution for describing the so-called “aleatory” 
(per se, irreducible) and “epistemic”  (lack of knowledge, reducible) 
uncertainties

• A  important point: the choice of the prior distribution
– Non-informative distrib. � minimizing the information brought by the prior

Baranquilla course  2013 – Treatment of uncertainties - F. Gamboa & B. Iooss          52

– Non-informative distrib. � minimizing the information brought by the prior
– Informative distrib. � properly modeling the expertise

• Bayesian computing
– No analytical solution for the integral at denominator in Bayes formula
– Use of simulation methods for getting a sample of the posterior 

distribution (the expression of which is always known up to a multiplicative 
constant)


