Basic probability and statistics

Fabrice Gamboa \& Bertrand looss

Course written by Alberto Pasanisi

Probability / Statistics

- Probability Theory:
- Allows modeling random phenomena, ruled by hazard
- It is an axiomatic mathematical theory (out of touch with any phisical reality)
- It is mathematical tool for representing uncertainty
- It is the basic mathematical tool for statistical analysis
- Statistical analysis:
- Observation and analysis of real data/phenomena
- Establishing general conclusions under the basis of limited-size samples, i.e. a given number of observations of a real phenomenon
- Other representation of uncertainties (\neq probability) exist ...

Random experiments and events

- Random experiments: hazard acts and makes the result unforeseeable (e.g. dice rolling)
- NB It is often a "modeling choice", when underlying physics is too complex
- Let us consider the set of all possible results:
"Sample Space" : $\Omega=\{1,2,3,4,5,6\}$
- "Event": assertion related to the result of an experiment
- The event is associated to a subset A of possible values
- Ex 1: get an even number $\rightarrow A=\{2,4,6\}$
- Ex. 2: get a number $\leq 2 \rightarrow A=\{1,2\}$
- The event occurs (or not) with a given "probability"
- Thus, the probability is associated to each of the subsets A
- ... which are expected to obey some properties

Probability

- We are interested in subsets of Ω which belong to a class Ψ such as:
$\Omega \in \Psi$
$A \in \Psi \Rightarrow \bar{A} \in \Psi \quad \longrightarrow$ The complement of A is in à Ψ
$A_{1}, A_{2} \ldots A_{n} \in \Psi \Rightarrow \bigcup_{i=1}^{i=n} A_{i} \in \Psi \longrightarrow$ The union of elements of Ψ is in ψ
- The sample space Ω, with the set Ψ of all possible events is "probabilisable" \rightarrow We may associate a probability to each events
- The "probability measure" (or simply "probability") is a mapping from A to $[0,1]$ obeying the three axioms :

1) $\forall A \in \Psi: \mathbb{P}(A) \in[0,1]$
2) $\mathbb{P}(\Omega)=1$
3) $A_{i} \ldots A_{n} \in \Psi ; \forall(i, j) A_{i} \cap A_{j}=\varnothing \Rightarrow$ $\mathbb{P}\left(\bigcup_{i=1}^{i=n} A_{i}\right)=\sum_{i=1}^{i=n} \mathbb{P}\left(A_{i}\right)$

Probability... beyond mathematical formalism

- Our starting point was a random experience:
- We have defined some events (which occur or not)
- And we associated to each of the events a probability measure contained between 0 (impossible event) et 1 (certain event)
- We also had to impose some mathematical constraints to events ...
- The probability is just a mathematical object. What interpretation?
- Classical "frequentist" interpretation of probability:
- Probability is seen as the limit frequency of a set of results over an infinite number of trials
- This interpretation is suited to events which are (at least in principle) repeatable
- NB Founders of probability calculation were historically interested in hazard games (e.g. Fermat and Bernoulli 1654 / Law of large numbers, Bernoulli, Poisson)
- But what about non-repeatable events?

Probability... beyond mathematical formalism

- "Subjective" interpretation of probability
- Probability is seen as a numerical quantification of a state of knowledge. This "translation" is not arbitrary but obeys some rationality principles.
- Subjective probability is associated to the idea of odd. The probability of an event depends on the amount that a rational individual is ready to bet on it.

Let us suppose that an individual is obliged to evaluate the rate p at which he would be ready to exchange the possession of an arbitrary sum S (positive or negative) dependent
on the occurrence of a given event E, for the possession of the sum $p S$; we will say by definition that this number p is the measure of the degree of probability attributed by the individual considered to the event E, or, more simply, that p is the probability of E

Bruno de Finetti, 1937,
"La Prévision: Ses Lois Logiques, Ses Sources Subjectives", Annales de I'Institut Henri Poincaré, 7: 1-68; translated as "Foresight. Its Logical Laws, Its Subjective Sources", in Studies in Subjective Probability, H. E. Kyburg, Jr. and H. E. Smokler (eds.), Krieger Publishing, 1980.
Cf. http://plato.stanford.edu/entries/probability-interpret/

Different interpretations but only one mathematical object, defined hereinbefore

Probability: some properties

- Basic properties

$$
\begin{aligned}
& \mathbb{P}(\varnothing)=0 \longrightarrow \text { Probability of the "null" event } \\
& \mathbb{P}(\bar{A})=1-\mathbb{P}(A) \longrightarrow \text { Probability of the complementary event } \\
& A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B) \longrightarrow \text { Prob. of an event included into another } \\
& \mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B) \longrightarrow \text { Probability of the union of events }
\end{aligned}
$$

Conditional probability and independence (1/2)

- Definition (1) : conditional probability of A, given $B,($ with $P(B) \neq 0)$
$\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Definition (2) : independent events

A et B indep. : $\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B)$

- The actual question: Knowing that B occurred, has (or not) an impact on the probability of A ?
- No $\rightarrow A$ et B are independent
- Yes $\rightarrow A$ et B are dependent

Conditional probability and independence (2/2)

- If A et B are independent:
$\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \cdot \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A)$
The fact that B has occurred does not change the probability that A will occur

Attention: Dependence \neq Causality !

- Some examples
- Dependence between the number of ice-creams sold and the number of deaths by drowning
- Dependence between shoe-size of children and their language skill
- In both cases, a third underlying variable explains these probabilistic dependences

Bayes formula

- Inverse conditioning relationship: from $A \mid B$ to $B \mid A$
- Starting point: definition of conditional probability

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \quad \begin{aligned}
& \mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \cdot \mathbb{P}(B) \\
& \mathbb{P}(B \cap A)=\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)
\end{aligned}
$$

- If we replace at numerator $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ with the expression of $\mathrm{P}(\mathrm{B} \cap \mathrm{A})$:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}
$$

- We also have: $\mathbb{P}(B \mid A)=\frac{\mathbb{P}(A \mid B) \cdot \mathbb{P}(B)}{\mathbb{P}(A)}$

Law of total probability

- Let $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{n}}$ be a partition of $\Omega: \cup\left(B_{1}, B_{2} \ldots B_{n}\right)=\Omega$
- Then: $\mathbb{P}(A)=\mathbb{P}\left(A \cap B_{1}\right)+\mathbb{P}\left(A \cap B_{2}\right)+\ldots \mathbb{P}\left(A \cap B_{n}\right)=$

$$
\mathbb{P}\left(A \mid B_{1}\right) \cdot P\left(B_{1}\right)+\mathbb{P}\left(A \mid B_{2}\right) \cdot P\left(B_{2}\right)+\ldots \mathbb{P}\left(A \mid B_{n}\right) \cdot P\left(B_{n}\right)
$$

- New expression of the Bayes formula:

$$
\mathbb{P}\left(B_{j} \mid A\right)=\frac{\mathbb{P}\left(A \mid B_{j}\right) \cdot \mathbb{P}\left(B_{j}\right)}{\sum_{i=1}^{n} \mathbb{P}\left(A \mid B_{i}\right) \cdot \mathbb{P}\left(B_{i}\right)}
$$

Random variable

- Last mathematical item for completing this reminder on probability
- The problem: we defined the probabilities of events, but it is easier to cope with numbers!
- We simply let a real number x corresponds to each of the events

Discrete Random variables

- Variables taking a discrete number of values
- Example. Coin tossing
- $X=1$ if the outcome is "head"
- $X=0$ if the outcome is "tail"
- Distribution of probability of a discrete r.v.
- Function associating to each of the possible outcomes of $\mathrm{X},\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)$ its probability

1974 World
Cup FInal

$$
x_{i} \mapsto \mathbb{P}\left(x_{(i)}\right)
$$

$$
\sum_{i=1}^{n} \mathbb{P}\left(x_{(i)}\right)=1
$$

- For instance, for coin tossing:

$$
\begin{aligned}
& \mathbb{P}(0)=0.5 \\
& \mathbb{P}(1)=0.5
\end{aligned}
$$

Continuous random variables

- Variables taking values in an uncountable set (in practice, intervals)
- Example: the Seine water level in Chatou

- Distribution of probability of a continuous random variable
- Associates to each interval (a, b), the probability for the r.v. to be between a and b
- NB In the case of discrete r.v., a probability is associated to each value of X. In the case of continuous r.v., a probability is associated to each interval of values of X.

Some probability distributions usually employed in common practice - discrete

Binomial

Some probability distributions usually employed in common practice - continuous (1/2)

Some probability distributions usually employed in common practice - continuous (2/2)

Gumbel

Weibull

Cumulative distribution function (CDF)

- Cumulative distribution function F
- Associates to each real number x, the prob. for the r.v. X be $\leq \mathrm{x}$

$$
\begin{aligned}
& F(x)=\mathbb{P}(X \leq x) \\
& \mathbb{P}(a \leq X \leq b)=F(b)-F(a)
\end{aligned}
$$

Monotonous increasing function, with values in

Discrete case (Step function)

Continuous case

Probability density function (continuous r.v.)

- Defined by the relation:

$$
F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f(t) \cdot d t
$$

- So then: $\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(t) \cdot d t$
- Formally, it is the derivative of the cumulated distr. function
- Properties: $f(x) \geq 0 \quad \forall x$

$$
\int_{-\infty} f(t) \cdot d t=1
$$

- Intuitive Interpretation (limit probability): $\mathbb{P}(t \leq X \leq t+d t)=f(t) \cdot d t$

Expected value

- Expected value (or mean): "Central tendency" value of a r.v., defined by the expressions:

$$
\begin{array}{lc}
\mathbb{E}(x)=\int_{-\infty}^{+\infty} x \cdot f(x) d x & \mathbb{E}(x)=\sum_{i=1}^{n} x_{i} \cdot \mathbb{P}\left(x_{i}\right) \\
\text { Discrete case } & \text { Continuous case }
\end{array}
$$

- Properties:

$$
\begin{aligned}
& \mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y) \\
& \mathbb{E}(a X)=a \cdot \mathbb{E}(X) \\
& \mathbb{E}(a)=a
\end{aligned}
$$

Median and quantiles

- Quantile of probability α : value of X, having a probability α for not being exceeded, i.e. such that:
$\mathbb{P}\left(X \leq q_{\alpha}\right)=\alpha$
- If $\alpha=1 / 2$, this quantile is called the median value of X

Variance and standard deviation

- Variance: Expected value of the random variable: $(X-\mathbb{E}(x))^{2}$

$$
\mathbb{V}(X)=\mathbb{E}\left((X-\mathbb{E}(x))^{2}\right)
$$

Squared deviation from the expected value

- Properties : $\mathbb{V}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

$$
\mathbb{V}(a \cdot X+b)=a^{2} \cdot \mathbb{V}(X)
$$

- If X et Y are independent: $\mathbb{V}(X+Y)=\mathbb{V}(X)+\mathbb{V}(Y)$

Covariance and linear correlation coefficient

- Quantity involving two random variables X and Y
- Definition :

$$
\operatorname{cov}(X, Y)=\mathbb{E}((X-\mathbb{E}(X)) \cdot(Y-\mathbb{E}(Y))) \longrightarrow \operatorname{cov}(X, X)=\mathbb{V}(X)
$$

- Intuitively, the covariance is a measure of the simultaneous variation of two r.v. A high (absolute value) covariance means that X et Y vary "in the same way" (positive relation, direct, increasing) or in the opposite way (negative relation, inverse, decreasing).
- Properties: $-\infty \leq \operatorname{cov}(X, Y) \leq+\infty$

$$
\begin{aligned}
& \operatorname{cov}(X, Y)=\mathbb{E}(X \cdot Y)-=\mathbb{E}(X) \cdot \mathbb{E}(Y) \\
& \mathrm{X} \text { et } \mathrm{Y} \text { indep. } \Rightarrow \operatorname{cov}(X, Y)=0 \xrightarrow{\text { the reverse is not true }} \\
& \mathbb{V}(X+Y)=\mathbb{V}(X)+\mathbb{V}(Y)+2 \operatorname{cov}(X, Y) \longrightarrow \quad \begin{array}{l}
\text { Variance of the } \\
\text { sum of two r.v. }
\end{array}
\end{aligned}
$$

- Linear correlation coefficient: $\varrho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\mathbb{V}(X) \cdot \mathbb{V}(Y)}} \in[-1,1]$

Expected value and variance of some usual laws

Name of the law (parameters)	Possible values	Analytical expression of the distribution	Expected value	Variance
$\begin{gathered} \text { Binomial(n,p), } n \geq 0 \text { et } 0 \\ \leq p \leq 1 \\ \hline \end{gathered}$	\{0; 1; .. ; n	$\operatorname{Prob}(X=k)=C_{n}^{k} p^{k}(1-p)^{n-k}$	np	$n p(1-p)$
Poisson(λ), $\lambda \geq 0$	0;1;2;...	$\operatorname{Prob}(X=k)=\exp (-\lambda) \frac{\lambda^{k}}{k!}$	λ	λ
$\operatorname{Normal}(\mu, \sigma), \sigma>0$	$]-\infty ;+\infty[$	$f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]$	μ	σ^{2}
$\chi^{2}(\mathrm{n}), \mathrm{n}$ entier	$[0 ;+\infty$ [$f(x ; n)=\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2}-1} \exp \left(-\frac{x}{2}\right)$	n	2 n
$\log -\operatorname{Normal}(\mu, \sigma), \sigma>0$	$[0 ;+\infty$ [$f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi x}} \exp \left[-\frac{1}{2}\left(\frac{\ln (\mathrm{x})-\mu}{\sigma}\right)^{2}\right]$	$\exp \left(\mu+\frac{\sigma^{2}}{2}\right)$	$\left.\exp \left(2 \mu+\sigma^{2}\right) \exp \left(\sigma^{2}\right)-1\right]$
Uniform(a,b)	[a; b]	$f(x ; a, b)=\frac{1}{t}$	$a+b$	$\frac{(b-a)^{2}}{12}$
Exponential $(\mu, \lambda), \lambda>0$	$[\mu ;+\infty$ [$f(x ; \mu, \lambda)=\lambda \exp [-\lambda(x-\mu)]$	$\mu+\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$
Weibull $(\mu, \eta, \beta), \eta$ et $\beta>0$	$[\mu ;+\infty$ [$f(x ; \mu, \eta, \beta)=\frac{\beta}{\eta}\left(\frac{t-\mu}{\eta}\right)^{\beta-1} \exp \left[-\left(\frac{t-\mu}{\eta}\right)^{\beta}\right]$	$\mu+\eta \Gamma\left(1+\frac{1}{\beta}\right)$	$n^{2}\left[\Gamma\left(1+\frac{2}{\beta}\right)-\left\{\Gamma\left(1+\frac{1}{\beta}\right)\right\}^{2}\right.$
$\operatorname{Gamma}(\alpha, \beta), \alpha$ et $\beta>0$	[0; $+\infty$ [$f(x ; \alpha ; \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp (-\beta x)$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^{2}}$
Gumbel(m,s), s > 0	$]-\infty ;+\infty[$	$f(x ; m, s)=\frac{1}{s} \exp \left[-\left(\frac{x-m}{s}\right)\right] \exp \left[-\exp \left\{-\left(\frac{x-m}{s}\right)\right\}\right]$	$\begin{aligned} & m+y s \\ & y=0,577222 \end{aligned}$	$\frac{1}{6} \pi^{2} s^{2}$

Multi-dimensional random variable

- Random vector: generalization of the notion of real r.v.

Multi-dimensional random variable

- Let us stay in the case $m=2$. Let X et Y be the two components
- Multi-dimensional cumulated distrib. function: $F(x, y)=\mathbb{P}(X \leq x, Y \leq y)$
- Density : $f(x, y)=\frac{\partial^{2} F(x, y)}{\partial X \partial Y}$
- Variance-covariance matrix: $\quad\left[\begin{array}{cc}\mathbb{V}(X) & \operatorname{cov}(X, Y) \\ \operatorname{cov}(Y, X) & \mathbb{V}(Y)\end{array}\right]$

Marginal and conditional distributions

- Marginal distribution: distribution of a component regardless of the other:
$f_{X}(x)=\int f(x, y) \cdot d y \quad f_{Y}(y)=\int f(x, y) \cdot d x$
- Univariate distributions of the components, taken "one at a time"
- Conditional distribution: "generalization" of the notion of conditional probability

$$
f(x \mid y)=\frac{f(x, y)}{f_{Y}(y)} \longrightarrow \text { Joint distribution of }(\mathrm{x}, \mathrm{y})
$$

- Independence: $f(x, y)=f_{X}(x) \cdot f_{Y}(y)$

$$
\mathrm{X} \text { et } \mathrm{Y} \text { indep. : } f(x \mid y)=f_{X}(x)
$$

How modeling, in practice, a multi-dimensional random variable?

- Using "standard" distribution
- Conditioning
- Copulas

"Usual" multi-dimensional distribution

- There are not a lot of distributions! Moreover, uneasy manipulation!
- Example: Multivariate Normal distribution \rightarrow generalization of the normal distribution in R^{n} :
- Density : $f(x \mid \mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(\frac{1}{2}(x-\mu)^{T} \cdot \Sigma^{-1} \cdot(x-\mu)\right)$

Plenty of good properties ...

Baranquilla course 2013 - Basics of probability and Statistics

- F. Gamboa \& B. looss

Conditioning

- Reminder: definition of conditional distribution: $f(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$
- The joint distribution can be written as the product of two distributions:

$$
f(x, y)=f(x \mid y) \cdot f_{Y}(y)
$$

- This modeling approach is often linked to a given "expert" knowledge allowing a kind of "hierarchy" between the variables

Example: relation between the river bottom levels in two different points (upstream and downstream)

Copulas-based modeling

- Somehow, a "descriptive" approach
- Idea: using two different mathematical objects for describing:
- The uncertainty tainting the two components of the vector taken "one at a time"

$$
\begin{array}{ll}
f_{X}(x), & f_{Y}(y) \quad \longrightarrow \text { Marginal densities of }(\mathrm{x}, \mathrm{y}) \\
F_{X}(x), & F_{Y}(y) \quad \text { Marginal CDF of } \mathrm{X} \text { and } \mathrm{Y}
\end{array}
$$

- The dependence structure :
- Function C (copula), such as: $F(x, y)=\mathcal{C}\left(F_{X}(x), F_{Y}(y)\right)$
- C is a cumulated distribution functions: $[0,1]^{m} \mapsto[0,1]$
- A theoretical result (Sklar theorem, 1959) states that any joint distribution can be written using its marginal and a copula. Under mild conditions, the copula is unique.

Copulas-based modeling (more)

- Pragmatic choice (en practice we prefer working with 1D distribution)
- Several copulas available \rightarrow very varied modeling of the dependence
- That is the choice made by Open TURNS developers

Example : All bivariate distribution here have the same marginal distributions (standard normal). Only the copula changes.

Beware of implicit choices made
by popular software tools

Student copula, $\mathrm{nu}=2.5$, $\mathrm{rho}=0.369$ d

Principal component analysis

