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Probability / Statistics

* Probability Theory:

— Allows modeling random phenomena, ruled by hazard

— It is an axiomatic mathematical theory (out of touch with any phisical
reality)

— It is mathematical tool for representing uncertainty
— It is the basic mathematical tool for statistical analysis

« Statistical analysis:

— Observation and analysis of real data/phenomena

— Establishing general conclusions under the basis of limited-size samples,
l.e. a given number of observations of a real phenomenon

« Other representation of uncertainties (# probability) exist ...
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Random experiments and events

« Random experiments: hazard acts and makes the result
unforeseeable (e.g. dice rolling)
— NB It is often a “modeling choice”, when underlying physics is too complex

» Let us consider the set of all possible results:
“Sample Space”: Q =11, 2, 3, 4, 5, 6}

« “Event’: assertion related to the result of an experiment Can we really
establish a

) i _ physical model for
« The eventis associated to a subset A of possible values | diceroling?

— Ex 1: get an even number > A ={2, 4, 6}
— Ex. 2:getanumber<2 > A={1, 2}
— The event occurs (or not) with a given “probability”

— Thus, the probability is associated to each of the subsets A
* ... which are expected to obey some properties
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Probability

 We are interested in subsets of QQ which belong to a class W such as:

Qevw
AcU=AcV » The complement of A isina ¥

A Ay A, EV = U " A, € U — The union of elements of W is in W

— The sample space Q, with the set W of all possible events is
“probabilisable” > We may associate a probability to each events

— The “probability measure” (or simply “probability”) |s a mapplng from A to
[0,1] obeying the three axioms : n

1) VA€ W:P(A) € 0,1]
2) P(Q) =1
3) Ay A, € V(6L NANA =0 =

(UZ “A) ST P(A)

S Andrey

Nikolayevich
Kolmogorov
3 (1903-1987)

Baranquilla course 2013 — Basics of probability and Statistics



Probability... beyond mathematical formalism

« Our starting point was a random experience:
— We have defined some events (which occur or not)

— And we associated to each of the events a probability measure contained
between O (impossible event) et 1 (certain event)

— We also had to impose some mathematical constraints to events ...
 The probability is just a mathematical object. \What interpretation?

» Classical “frequentist” interpretation of probability:

— Probability is seen as the limit frequency of a set of results over an infinite
number of trials

— This interpretation is suited to events which are (at least in principle)
repeatable

 NB Founders of probability calculation were historically interested in hazard
games (e.g. Fermat and Bernoulli 1654 / Law of large numbers, Bernoulli,
Poisson)

 But what about non-repeatable events?
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Probability... beyond mathematical formalism

* “Subjective” interpretation of probability

— Probability is seen as a numerical quantification of a state of knowledge.
This “translation” is not arbitrary but obeys some rationality principles.

— Subjective probability is associated to the idea of odd. The probability of
an event depends on the amount that a rational individual is ready to bet

on it.

Let us suppose that an individual is obliged to evaluate the rate p at which he would be\
ready to exchange the possession of an arbitrary sum S (positive or negative) dependent
on the occurrence of a given event E, for the possession of the sum pS; we will say by
definition that this number p is the measure of the degree of probability attributed by the
individual considered to the event E, or, more simply, that p is the probability of E

-

Bruno de Finetti, 1937,

“La Prévision: Ses Lois Logiques, Ses Sources Subjectives”, Annales de I'Institut Henri Poincaré, 7: 1-68; translated as

“Foresight. Its Logical Laws, Its Subjective Sources”, in Studies in Subjective Probability, H. E. Kyburg, Jr. and H. E.
Smokler (eds.), Krieger Publishing, 1980.

\\(Blrg 8 2-3882)” et Cf. http:llplato.stanford.edulentrieslprobability-interpretl/

Different interpretations but only one mathematical
object, defined hereinbefore
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Probability: some properties

Basic properties
P(o@) =0

v

Probability of the “null” event

P(A) =1 — P(A)

v

Probability of the complementary event

v

AC B=P(A) <P(B) Prob. of an event included into another

P(AUB) =P(A)+ P(B) — P(AN B) —> Probability of the union of events
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Conditional probability and independence (1/2)

« Definition (1) : conditional probability of A, given B, (with P(B) # 0)
P(AN B)

P(B)
» Definition (2) : independent events

P(A|B) =

A et Bindep. : P(AN B) = P(A) - P(B)

* The actual question: Knowing that B occurred, has (or not) an impact
on the probability of A?

— No -2 A et B are independent
— Yes 2> A et B are dependent
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Conditional probability and independence (2/2)

 |If A etB are independent:

. The fact that B has occurred does
P(A|B) = AN B) = P(A)-P(B) = [P(A) notchange the probability that A
”D<B) IP(B> will occur

Attention: Dependence # Causality !

« Some examples

— Dependence between the number of ice-creams sold and the number of
deaths by drowning

— Dependence between shoe-size of children and their language skill

— In both cases, a third underlying variable explains these probabilistic
dependences
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Bayes formula

* Inverse conditioning relationship: from A|B to B|A
— Starting point: definition of conditional probability

P(A|B) = ”D([f(;)B) —>

P(AN B) = P(A|B) - P(B)

P(BN A) = P(B|A) - P(A)

— If we replace at numerator P(A n B) with the expression of P(B n A) :

P(B|A) - P(A)
P(B)

P(A|B) =

— We also have: |P(B|A) — [P(A|B) ’ [P(B)

P(A)
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N

~

(1702 -1761)

/
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Law of total probability

Let B;, B,, ... B, be a partition of Q :

— Then: P(A) =P(ANB;)+P(ANBy) +

U(Bl,BQBn) — Q

P(ANB,) =

P(A[By) - P(By) + P(A|Bs) - P(Ba) +...P(A|B,) -

New expression of the Bayes formula:
> P(A|B;) - P(By)

1=1
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Random variable

« Last mathematical item for completing this reminder on probability

 The problem: we defined the probabilities of events, but it is easier to
cope with numbers!

— We simply let a real number x corresponds to each of the events

X(l) ) X(Z) T -a.re -
outcomes (i.e. possible
values for the random
variable X)

From now on, we will
always work with

X@) ;
random variables
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Discrete Random variables

» Variables taking a discrete number of values

— Example. Coin tossing
e X=1 if the outcome is “head”
e X=0 if the outcome is “tail”

» Distribution of probability of a discrete r.v.

— Function associating to each of the possible outcomes 1974 World
. - Cup Flnal
of X, (X, X5, ... X)) its probability

XT; UD(LIJ(Z')>
; Plem) =1
— For instance, for coin tossing:

P(0) = 0.5
P(1) = 0.5
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Continuous random variables

T - CHATOR - La Sglaw oi e Pomi. » G |

« Variables taking values in an uncountable set
(in practice, intervals)

— Example: the Seine water level in Chatou

» Distribution of probability of a continuous random variable

— Associates to each interval (a, b), the probability for the r.v. to be between
aandb

— NB In the case of discrete r.v., a probability is associated to each value of

X. In the case of continuous r.v., a probability is associated to each
interval of values of X.
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Some probabillity distributions usually employed
INn common practice — discrete

Binomial Poisson
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(x)

Some probabillity distributions usually employed
INn common practice — continuous (1/2)

Beta Log-Normal

Normal

(x)
|

-5 0 5 10
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(x)

Some probabillity distributions usually employed
INn common practice — continuous (2/2)

Exponential
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Cumulative distribution function (CDF)

e Cumulative distribution function F
» Associates to each real number X, the prob. for the r.v. X be < x

F(z)=P(X < x) Monotonous increasing
function, with values in
P(a < X <b) = F(b) - Fla) 01)
Discrete case (Step function) Continuous case
Lf-remmmemreemn s — i e
> / >
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Probability density function (continuous r.v.)

Fir) = PIX < 1) [Jf.;rlh.rr

» Defined by the relation:
F(z) =P(X < x) f f(t)

— Sothen: P(a < X <b)= [ f(t)-dt

— Formally, it is the derivative
of the cumulated distr. function

 Properties: f(z) >0 Vz

+foo f(t)-dt =

» Intuitive Interpretation (limit probability):
Pt <X <t+dt)=f(t)-dt

http://fr.wikipedia.org
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Expected value

* Expected value (or mean): “Central tendency” value of a r.v., defined

by the expressions:

+ oo

E(x) :_L z - f(x)de
Discrete case

* Properties:
E(X+Y)=EX)+EY)
E(aX) =a-E(X)

F(a)=a
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Continuous case

Linear Operator
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Median and quantiles

* Quantile of probability a: value of X, having a probability a for not
being exceeded, i.e. such that:

HD(XSQQ) —

* |If a =14, this quantile is called the median value of X

_—

v

Uq
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Variance and standard deviation

« Variance: Expected value of the random variable: (X — [E(a:))2
V(X)=E((X - [E(a:))z) Squared

deviation from
the expected

 Standard deviation: ox = /V(X) value

» Properties: V(X)=[F(X?) - E(X)?

V(a- X 4+b) =a”-V(X)

« IfXetY areindependent:V(X +Y) = V(X) + V(Y)

Baranquilla course 2013 — Basics of probability and Statistics - F. Gamboa & B. looss 22



Covariance and linear correlation coefficient

* Quantity involving two random variables X and Y
o Definition :
cov(X,Y)=E(X —EX))- (Y —E(Y))) cov(X, X) = V(X)
— Intuitively, the covariance is a measure of the simultaneous variation of
two r.v. A high (absolute value) covariance means that X et Y vary “in the
same way” (positive relation, direct, increasing) or in the opposite way

(negative relation, inverse, decreasing).

* Properties: —co < cov(X,Y) < 400
cov(X,)Y)=FEX -Y)— =EX) - -E>Y)
X et Y indep. = cov(X,Y) =0

the reverse is not true

Variance of the
V(X +Y)=V(X)+ V(YY) +2cov(X,Y) > sum of two r.v.

cov(X,Y
« Linear correlation coefficient: o(X,Y) = \/V()E) W>Y> € [—1,1]
- F. Gamboa & B. looss 23
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Expected value and variance of some usual laws

Name of the law
(parameters)

Binomial(n,p), n=0et0

Possible
VEEIS

Analytical expression of the
distribution

Expected

Variance
value
<p<1 ©Oidi.iny Prob(X = k) = Ckp¥ (L—p)"™ np np(1-p)
k
Poisson(\), A =0 0;1;2; Prob(X = k) = exp(- )\))I‘(_' A A
Normal(pu,0), 0 >0 J-oo ; + oof f(xop,0) = 1 exp{_g[x —pT] U 02
o g/ 21 L 2\ 0O |
X3(n), n entier [0; + oof f(n) = — 1 X%‘lexp _X n 2n
22r(N) ( Zj
(2) ,
Log-Normal(p,0), >0 [0+ oof H(x;p,0) = 1 o {_%['”(X)‘“j l exp(p +°7) eXp(Zu +021exp(02)—1j
O 271X g
Uniform(a,b) [a;b] f(xca.b) = 1 a+b (b-a)?
' b=a > 42
Exponential(k,A), A >0 [ + oo f(x:u,A) = Aexp[— A(x =)l M +T1 2
\ J 1= AL A X 2
i B(t-p)"" t-p) 2
weinuninet=0) ivol | dbonnd)= 2[5 e[S ] | o] olfue2) e
B 1 B
a a a
Gamma(a,B), o et >0 [0; + oof e %axq_lexp(— Bx) 5 52
. i ) m+ys 1 5.
Gumbel(m.s), s >0 Feoiteol tfim,s) = %eXp[_ [X smHeXp{' exp{_(x stH y =0,577222 6" °
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Multi-dimensional random variable

« Random vector: generalization of the notion of real r.v.

X1 Xy, ..ty X, - component of the random vector X (real random variables)
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Multi-dimensional random variable

« Letusstayinthe case m=2.Let XetY be the two components
— Multi-dimensional cumulated distrib. function: F'(z,y) = P(X < z,Y <y)

_ O*F(x,v)
— Density : = ’
ensity : f(z,y) = —55v
Vari | Y V(X) - cov(X, Y)
— Variance-covariance matrix: cov(Y, X) V(Y)
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Marginal and conditional distributions

« Marginal distribution: distribution of a component regardless of the other:

fx(@)= [ f(z.y) - dy fry) = [ flz,y) - do

— Univariate distributions of the components, taken “one at a time”

« Conditional distribution: “generalization” of the notion of conditional
probability
f(z,y) > Joint distribution of (x,y)
f(zly) = ‘ o
fy(y) » Marginal distribution of y

 Independence: f(z,y) = fx(z)- fy(y)

X et Yindep. : f(z|y) = fx(x)
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How modeling, In practice, a multi-dimensional
random variable?

» Using “standard” distribution
e Conditioning

e Copulas
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“Usual” multi-dimensional distribution

There are not a lot of distributions! Moreover, uneasy manipulation!

Example: Multivariate Normal distribution = generalization of the
normal distribution in R" : |

— Density : f(z|p,X) = COREPIEE exp (L(z — )T - X7 (2 — 1)

/

mean Var-covar. mat. n x n x and p are vectors of R"

Plenty of good properties ...

http://blogperso.univ-rennesl.fr/arthur.charpentier/
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Conditioning

f(z,y)

« Reminder: definition of conditional distribution:  f(z|y) = ==~

fY(y)

— The joint distribution can be written as the product of two distributions:

flx,y) = f(zly) - fr(y)

— This modeling approach is often linked to a given “expert” knowledge
allowing a kind of “hierarchy” between the variables

Example: relation between the river bottom levels in two different points (upstream and downstream)

% ] o
Zc I I yAY
Probabilistic I~ Z/l(]mina [max>
Zy=Upm—(L-1)+e¢ “expert” vision —— modeling
_— | | N vision Zo\ Zms L ~ N(Zyy — L+ 1,0)
Downstr.  Upstream Length and  Disturbing term depending
level level average slope on local variation
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Copulas-based modeling

Somehow, a “descriptive” approach

— ldea: using two different mathematical objects for describing:

* The uncertainty tainting the two components of the vector taken “one at a time”

[x (), fy(y)
FX(x)7 FY(y)

v

Marginal densities of (x,y)
Marginal CDF of X and Y

v

 The dependence structure :

— Function ¢ (copula), such as: F(:L’, y) = C(FX (35‘)7 Fy <CU)>

— ¢ is a cumulated distribution functions: [0, 1] +— [0, 1]

» A theoretical result (Sklar theorem, 1959) states that any joint distribution can be

written using its marginal and a copula. Under mild conditions, the copula is
unigue.
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Copulas-based modeling (more)

Pragmatic choice (en practice we prefer working with 1D distribution)

— Several copulas available - very varied modeling of the dependence
* That is the choice made by Open TURNS developers

Independent copula Gauss copula, rho = 0.51764

Gumbel copula, theta = 1.54107

[N

s

v
<

Example : All bivariate distribution
here have the same marginal
distributions (standard normal). Only

the copula changes.

Frank copula, theta = 3.44599 Clayton copula, theta = 1.07609 Student copula, nu = 2.5, rho = 0.3694

o

-

Beware of implicit choices made
by popular software tools

v
2

| I
XY —-
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Principal component analysis
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