Basic probability and statistics

Fabrice Gamboa & Bertrand looss

Course written by Alberto Pasanisi

Probability / Statistics

- Probability Theory:
 - Allows modeling random phenomena, ruled by hazard
 - It is an axiomatic mathematical theory (out of touch with any phisical reality)
 - It is mathematical tool for representing uncertainty
 - It is the basic mathematical tool for statistical analysis
- Statistical analysis:
 - Observation and analysis of real data/phenomena
 - Establishing general conclusions under the basis of limited-size samples,
 i.e. a given number of observations of a real phenomenon
- Other representation of uncertainties (≠ probability) exist ...

Random experiments and events

- Random experiments: hazard acts and makes the result unforeseeable (e.g. dice rolling)
 - NB It is often a "modeling choice", when underlying physics is too complex
- Let us consider the set of all possible results: "Sample Space" : Ω = {1, 2, 3, 4, 5, 6}
- "Event": assertion related to the result of an experiment
- The event is associated to a subset A of possible values
 - Ex 1: get an even number \rightarrow A = {2, 4, 6}
 - Ex. 2: get a number $\leq 2 \rightarrow A = \{1, 2\}$
 - The event occurs (or not) with a given "probability"
 - Thus, the probability is associated to each of the subsets A
 - ... which are expected to obey some properties

Probability

• We are interested in subsets of Ω which belong to a class Ψ such as:

 $\begin{array}{l} \Omega \in \Psi \\ A \in \Psi \Rightarrow \bar{A} \in \Psi \\ A_1, A_2 \dots A_n \in \Psi \Rightarrow \bigcup_{i=1}^{i=n} A_i \in \Psi \end{array} \xrightarrow{} \text{ The complement of A is in à } \Psi \\ \end{array}$

- The sample space Ω , with the set Ψ of all possible events is "probabilisable" \rightarrow We may associate a probability to each events
- The "probability measure" (or simply "probability") is a mapping from A to
 [0,1] obeying the three axioms :

1)
$$\forall A \in \Psi : \mathbb{P}(A) \in [0, 1]$$

2) $\mathbb{P}(\Omega) = 1$
3) $A_i \dots A_n \in \Psi; \forall (i, j) A_i \cap A_j = \emptyset \Rightarrow$
 $\mathbb{P}\left(\bigcup_{i=1}^{i=n} A_i\right) = \sum_{i=1}^{i=n} \mathbb{P}(A_i)$

Andrey Nikolayevich Kolmogorov (1903-1987)

Probability... beyond mathematical formalism

- Our starting point was a random experience:
 - We have defined some events (which occur or not)
 - And we associated to each of the events a probability measure contained between 0 (impossible event) et 1 (certain event)
 - We also had to impose some mathematical constraints to events ...
- The probability is just a mathematical object. What interpretation?
- Classical "frequentist" interpretation of probability:
 - Probability is seen as the limit frequency of a set of results over an infinite number of trials
 - This interpretation is suited to events which are (at least in principle) repeatable
 - NB Founders of probability calculation were historically interested in hazard games (e.g. Fermat and Bernoulli 1654 / Law of large numbers, Bernoulli, Poisson)
 - But what about non-repeatable events?

Probability... beyond mathematical formalism

- "Subjective" interpretation of probability
 - Probability is seen as a numerical quantification of a state of knowledge.
 This "translation" is not arbitrary but obeys some rationality principles.
 - Subjective probability is associated to the idea of odd. The probability of an event depends on the amount that a rational individual is ready to bet on it.

Bruno de Finetti (1906-1985)

Let us suppose that an individual is obliged to evaluate the rate p at which he would be ready to exchange the possession of an arbitrary sum S (positive or negative) dependent on the occurrence of a given event E, for the possession of the sum pS; we will say by definition that this number p is the measure of the degree of probability attributed by the individual considered to the event E, or, more simply, that p is the probability of E

Bruno de Finetti, 1937,

"La Prévision: Ses Lois Logiques, Ses Sources Subjectives", Annales de l'Institut Henri Poincaré, 7: 1–68; translated as "Foresight. Its Logical Laws, Its Subjective Sources", in Studies in Subjective Probability, H. E. Kyburg, Jr. and H. E. Smokler (eds.), Krieger Publishing, 1980. Cf. http://plato.stanford.edu/entries/probability-interpret/

Different interpretations but only one mathematical object, defined hereinbefore

Baranquilla course 2013 - Basics of probability and Statistics

- F. Gamboa & B. looss

Probability: some properties

Basic properties •

 $\mathbb{P}(\emptyset) = 0$ \longrightarrow Probability of the "null" event

 $\mathbb{P}(\bar{A}) = 1 - \mathbb{P}(A)$ \rightarrow Probability of the complementary event

 $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ \longrightarrow Prob. of an event included into another

- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B) \longrightarrow$ Probability of the union of events

Conditional probability and independence (1/2)

• Definition (1) : conditional probability of A, given B, (with $P(B) \neq 0$)

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

• Definition (2) : independent events

A et B indep. : $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

- The actual question: Knowing that B occurred, has (or not) an impact on the probability of A?
 - No \rightarrow A et B are independent
 - Yes \rightarrow A et B are dependent

Conditional probability and independence (2/2)

• If A et B are independent:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \cdot \mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

The fact that B has occurred does not change the probability that A will occur

Attention: Dependence *≠* Causality !

- Some examples
 - Dependence between the number of ice-creams sold and the number of deaths by drowning
 - Dependence between shoe-size of children and their language skill
 - In both cases, a third underlying variable explains these probabilistic dependences

Bayes formula

- Inverse conditioning relationship: from A|B to B|A
 - Starting point: definition of conditional probability

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \quad \square \qquad \mathbb{P}(A \cap B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B)$$
$$\mathbb{P}(B \cap A) = \mathbb{P}(B|A) \cdot \mathbb{P}(A)$$

– If we replace at numerator $\mathsf{P}(\mathsf{A} \cap \mathsf{B})$ with the expression of $\mathsf{P}(\mathsf{B} \cap \mathsf{A})$:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}$$
- We also have: $\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B) \cdot \mathbb{P}(B)}{\mathbb{P}(A)}$

Law of total probability

• Let $B_1, B_2, \dots B_n$ be a partition of Ω : $\cup (B_1, B_2 \dots B_n) = \Omega$

- Then:
$$\mathbb{P}(A) = \mathbb{P}(A \cap B_1) + \mathbb{P}(A \cap B_2) + \dots \mathbb{P}(A \cap B_n) =$$

 $\mathbb{P}(A|B_1) \cdot P(B_1) + \mathbb{P}(A|B_2) \cdot P(B_2) + \dots \mathbb{P}(A|B_n) \cdot P(B_n)$

• New expression of the Bayes formula:

$$\mathbb{P}(B_j|A) = \frac{\mathbb{P}(A|B_j) \cdot \mathbb{P}(B_j)}{\sum_{i=1}^n \mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}$$

Random variable

- Last mathematical item for completing this reminder on probability
- The problem: we defined the probabilities of events, but it is easier to cope with numbers!
 - We simply let a real number x corresponds to each of the events

Discrete Random variables

- Variables taking a discrete number of values
 - Example. Coin tossing
 - X=1 if the outcome is "head"
 - X=0 if the outcome is "tail"
- Distribution of probability of a discrete r.v.
 - Function associating to each of the possible outcomes of X, (x₁, x₂, ... x_n) its probability $x_i \mapsto \mathbb{P}(x_{(i)})$ $\sum_{i=1}^{n} \mathbb{P}(x_{(i)}) = 1$
 - For instance, for coin tossing:
 - $$\begin{split} \mathbb{P}(0) &= 0.5\\ \mathbb{P}(1) &= 0.5 \end{split}$$

Continuous random variables

- Variables taking values in an uncountable set (in practice, intervals)
 - Example: the Seine water level in Chatou

- Distribution of probability of a continuous random variable
 - Associates to each interval (a, b), the probability for the r.v. to be between a and b
 - NB In the case of discrete r.v., a probability is associated to each value of X. In the case of continuous r.v., a probability is associated to each interval of values of X.

Some probability distributions usually employed in common practice – discrete

Binomial

Some probability distributions usually employed in common practice – continuous (1/2)

Log-Normal

- F. Gamboa & B. looss

Some probability distributions usually employed in common practice – continuous (2/2)

f(x)

Cumulative distribution function (CDF)

- Cumulative distribution function F
- Associates to each real number x, the prob. for the r.v. X be $\leq x$

 $F(x) = \mathbb{P}(X \le x)$ $\mathbb{P}(a \le X \le b) = F(b) - F(a)$

Monotonous increasing function, with values in [0,1)

Probability density function (continuous r.v.)

• Defined by the relation:

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) \cdot dt$$

- So then:
$$\mathbb{P}(a \le X \le b) = \int_{a}^{b} f(t) \cdot dt$$

- Formally, it is the derivative of the cumulated distr. function
- Properties: $f(x) \ge 0 \quad \forall x$ $\int_{-\infty}^{+\infty} f(t) \cdot dt = 1$
- Intuitive Interpretation (limit probability): $\mathbb{P}(t \le X \le t + dt) = f(t) \cdot dt$

Expected value

• Expected value (or mean): "Central tendency" value of a r.v., defined by the expressions:

$$\mathbb{E}(x) = \int_{-\infty}^{+\infty} x \cdot f(x) dx \qquad \qquad \mathbb{E}(x) = \sum_{i=1}^{n} x_i \cdot \mathbb{P}(x_i)$$

Discrete case Continuous case

• Properties:

 $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$ $\mathbb{E}(aX) = a \cdot \mathbb{E}(X)$ $\mathbb{E}(a) = a$

Median and quantiles

- Quantile of probability α: value of X, having a probability α for not being exceeded, i.e. such that:
 P(X ≤ q_α) = α
- If $\alpha = \frac{1}{2}$, this quantile is called the median value of X

Variance and standard deviation

- Variance: Expected value of the random variable: $(X \mathbb{E}(x))^2$ $\mathbb{V}(X) = \mathbb{E}((X - \mathbb{E}(x))^2)$ Squared
- Standard deviation: $\sigma_X = \sqrt{\mathbb{V}(X)}$
- Properties : $\mathbb{V}(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$

$$\mathbb{V}(a \cdot X + b) = a^2 \cdot \mathbb{V}(X)$$

• If X et Y are independent: $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y)$

deviation from

the expected

value

Covariance and linear correlation coefficient

- Quantity involving two random variables X and Y
- Definition :

 $\operatorname{cov}(X,Y) = \mathbb{E}\left((X - \mathbb{E}(X)) \cdot (Y - \mathbb{E}(Y))\right) \longrightarrow \operatorname{cov}(X,X) = \mathbb{V}(X)$

- Intuitively, the covariance is a measure of the simultaneous variation of two r.v. A high (absolute value) covariance means that X et Y vary "in the same way" (positive relation, direct, increasing) or in the opposite way (negative relation, inverse, decreasing).
- Properties: $-\infty \le \operatorname{cov}(X, Y) \le +\infty$ $\operatorname{cov}(X, Y) = \mathbb{E}(X \cdot Y) - = \mathbb{E}(X) \cdot \mathbb{E}(Y)$ X et Y indep. $\Rightarrow \operatorname{cov}(X, Y) = 0 \longrightarrow$ the reverse is not true

 $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\mathrm{cov}(X,Y) \longrightarrow$ Variance of the sum of two r.v.

• Linear correlation coefficient:

$$\varrho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\mathbb{V}(X) \cdot \mathbb{V}(Y)}} \in [-1,1]$$

Expected value and variance of some usual laws

Name of the law (parameters)	Possible values	Analytical expression of the distribution	Expected value	Variance
$\begin{array}{l} \text{Binomial(n,p), } n \geq 0 \text{ et } 0 \\ \leq p \leq 1 \end{array}$	{0 ; 1 ; ; n}	$Prob(X = k) = C_n^k p^k (1-p)^{n-k}$	np	np(1-p)
Poisson(λ), $\lambda \ge 0$	0;1;2;	$Prob(X = k) = exp(-\lambda) \frac{\lambda^{k}}{k!}$	λ	λ
Normal(μ,σ), $\sigma > 0$]-∞ ; + ∞[$f(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	μ	σ²
χ²(n), n entier	[0 ; + ∞ [$f(x;n) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} \exp\left(-\frac{x}{2}\right)$	n	2n
Log-Normal(μ,σ), $\sigma > 0$	[0 ; + ∞ [$f(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}x} \exp\left[-\frac{1}{2}\left(\frac{\ln(x)-\mu}{\sigma}\right)^2\right]$	$\exp\left(\mu + \frac{\sigma^2}{2}\right)$	$\exp(2\mu + \sigma^2)\exp(\sigma^2) - 1$
Uniform(a,b)	[a ; b]	$f(x;a,b) = \frac{1}{b-a}$	<u>a+b</u>	$\frac{(b-a)^2}{12}$
Exponential(μ , λ), $\lambda > 0$	[µ ; + ∞[$f(x;\mu,\lambda) = \lambda exp[-\lambda(x-\mu)]$	$\frac{2}{\mu + \frac{1}{\lambda}}$	$\frac{12}{\frac{1}{2}}$
Weibull(μ , η , β), η et $\beta > 0$	[µ ; + ∞[$f(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\eta},\boldsymbol{\beta}) = \frac{\boldsymbol{\beta}}{\boldsymbol{\eta}} \left(\frac{\mathbf{t}-\boldsymbol{\mu}}{\boldsymbol{\eta}}\right)^{\boldsymbol{\beta}-1} \exp\left[-\left(\frac{\mathbf{t}-\boldsymbol{\mu}}{\boldsymbol{\eta}}\right)^{\boldsymbol{\beta}}\right]$	$\mu + \eta \Gamma \left(1 + \frac{1}{\beta}\right)$	$\eta^{2} \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \left\{ \Gamma \left(1 + \frac{1}{\beta} \right) \right\}^{2} \right]$
Gamma(α,β), α et $\beta > 0$	[0 ; + ∞ [$f(x; \alpha; \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} exp(-\beta x)$	<u>α</u> β	$\frac{\alpha}{\beta^2}$
Gumbel(m,s), s > 0]-∞ ; + ∞[$f(x;m,s) = \frac{1}{s} \exp\left[-\left(\frac{x-m}{s}\right)\right] \exp\left[-\exp\left\{-\left(\frac{x-m}{s}\right)\right\}\right]$	$m + \gamma s$ $\gamma = 0,577222$	$\frac{1}{6}\pi^2 s^2$

Multi-dimensional random variable

• Random vector: generalization of the notion of real r.v.

Multi-dimensional random variable

- Let us stay in the case m = 2. Let X et Y be the two components
 - Multi-dimensional cumulated distrib. function: $F(x, y) = \mathbb{P}(X \le x, Y \le y)$

- Density :
$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial X \partial Y}$$

$$\left[\begin{array}{cc} \mathbb{V}(X) & \operatorname{cov}(X,Y) \\ \operatorname{cov}(Y,X) & \mathbb{V}(Y) \end{array}\right]$$

Marginal and conditional distributions

• Marginal distribution: distribution of a component regardless of the other:

$$f_X(x) = \int f(x,y) \cdot dy$$
 $f_Y(y) = \int f(x,y) \cdot dx$

- Univariate distributions of the components, taken "one at a time"

Conditional distribution: "generalization" of the notion of conditional probability

$$f(x|y) = \frac{f(x,y)}{f_Y(y)} \xrightarrow{\qquad \qquad } \text{Joint distribution of (x,y)} \\ \xrightarrow{\qquad \qquad } \text{Marginal distribution of y}$$

• Independence : $f(x,y) = f_X(x) \cdot f_Y(y)$

X et Y indep. : $f(x|y) = f_X(x)$

How modeling, in practice, a multi-dimensional random variable?

- Using "standard" distribution
- Conditioning
- Copulas

"Usual" multi-dimensional distribution

- There are not a lot of distributions! Moreover, uneasy manipulation!
- Example: Multivariate Normal distribution → generalization of the normal distribution in Rⁿ :

- Density:
$$f(x|\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(\frac{1}{2}(x-\mu)^T \cdot \Sigma^{-1} \cdot (x-\mu)\right)$$

Baranquilla course 2013 - Basics of probability and Statistics

Conditioning

• Reminder: definition of conditional distribution: f(x|y)

$$f(x|y) = \frac{f(x,y)}{f_Y(y)}$$

- The joint distribution can be written as the product of two distributions: $f(x, y) = f(x|y) \cdot f_Y(y)$
- This modeling approach is often linked to a given "expert" knowledge allowing a kind of "hierarchy" between the variables

Example: relation between the river bottom levels in two different points (upstream and downstream)

Baranquilla course 2013 – Basics of probability and Statistics

Copulas-based modeling

- Somehow, a "descriptive" approach
 - Idea: using two different mathematical objects for describing:
 - The uncertainty tainting the two components of the vector taken "one at a time"

 $f_X(x), \quad f_Y(y) \longrightarrow \text{Marginal densities of } (x,y)$ $F_X(x), \quad F_Y(y) \longrightarrow \text{Marginal CDF of X and Y}$

- The dependence structure :
 - Function *C* (copula), such as: $F(x,y) = C(F_X(x), F_Y(y))$
 - *C* is a cumulated distribution functions: $[0,1]^m \mapsto [0,1]$
- A theoretical result (Sklar theorem, 1959) states that any joint distribution can be written using its marginal and a copula. Under mild conditions, the copula is unique.

Copulas-based modeling (more)

- Pragmatic choice (en practice we prefer working with 1D distribution)
 - Several copulas available \rightarrow very varied modeling of the dependence
 - That is the choice made by Open TURNS developers

Principal component analysis