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Scientific context

The small story

Early 2000, IMT Toulouse begin to work with many Labs :

I CEA Cadarache. N. Devictor, B. Iooss. Nuclear safety (Ph

D A. Marrel-currently CEA-)

I ONERA-DOTA Palaiseau. G. Durand, A. Roblin. infrared

profile of a plane (Ph D S. Varet )

I IFP Lyon. P. Duchène, F. Wahl-Univ Grenoble. A

Antoniadis. Chemical cinetic problems ( Ph D S. Da

Veiga-Currently IFP-)

⇒ Scientific meetings in Toulouse- Février 2006 and in Lyon
en 2007 GDR CNRS borned
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Scientific context

What are we dealing with?

What are we dealing with?

Big computer codes= F black box

Y = F (X )

I Code inputs: X high dimension object (vectors or curves).

I Code outputs Y (scalar or vectorial).

X complex structure and/or uncertain

⇒ seen as random

STOCHASTIC APPROACH
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Some questions on the general model

Some questions on the general model

I Sensitivity and uncertainty analysis= take informations
on the joint distribution (X ,Y )

I F too complicated. Design a reduced model= Estimate
a response surface

I Optimise the run number= make an experimental design
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Some questions on the general model

People working around this topic

I GDR MASCOT NUM Annual meeting march 2012 :
CEA Bruyères le Chatel http://www.gdr-mascotnum.fr/

I ANR project : OPUS EADS, CEA, EDF, ... (CEA)
http://www.opus-project.fr/

I ANR project : COSTA BRAVA CEA, IFP, Univ Toulouse,
Univ Grenoble http://www.math.univ-toulouse.fr/COSTA BRAVA/doku.php?id=index

I SIAM conference : Uncertainty quantification 2th-5Th
April 2012 http://www.siam.org/meetings/uq12
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Introduction

Motivation-Examples

I Main object : complicated computer simulation code

I Examples: Meteo, Oceanography, Complex physical or
chemical process, Economics evolutions ....

I Complexity:
I Big Code: many different numerical methods elaborated during

a large time.
I Many input: vectorial, functional, uncertain.
I Many output: vectorial, functional.
I Expensive: from some minutes up to several days
I Example functional code CERES from CEA CERES

I Need methods to enlight.
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Introduction

Frame: Black box

Frame: Black box

Today conference: vectorial input et scalar output
Y =output is a number and X =input is a vector of numbers

Black box model

Sortie  Y le 
cour du yen

Entrée X: les prix du 
café et de la main 
d'oeuvre, La météo

Non linear regression model

Y = f (X ).

The code is modeled as an abstract complicated function f
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Introduction

Gains of stochastic methods

Gains of stochastic methods

I Take into account random characteristic of some components
of X

I Physical measures with error: Pressure, temperature...
I unknown physical constants: wave in random media.
I Allow to model multimodal distributions: double mode...
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I Method to choose good points: optimal design theory

I Parametric and non parametric estimation methods
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Introduction

Presented techniques

Presented techniques

I Sobol sensitivity analysis
I Within the (random) components of the input (vector) X what

are those having most influence on the output?
I ”influence” is quantified in terms of ”variability” induced by

this component.
I Global analysis taking into account the whole distribution of

the input.

I Response surface methods (Reduced model)
I Replace the complicated code by a simple one easy to build

from a short sample y cheap in CPU.
I Goal: optimization, computation of a critical threshold,

sensitivity analysis...
I Discussed method: come from geostatistics (KRIGING).
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Introduction

Some links

Some links I

I Research/Developpement
I GDR CNRS MASCOT NUM

http://www.gdr-mascotnum.fr/ ,
I OPUS- ANR project big open source plateform including tools

for codes.
I COSTA BRAVA- ANR project functional input or output

coupling random and deterministic methods.

I Softwares
I R package DICE (IRSN, EDF, Renault, ...).

http://crocus.emse.fr/dice
I MATLAB Kriging package: DACE

http://www2.imm.dtu.dk/ hbn/dace/
I Free software of O’ Oakley and O’ Hagan computation of

sensitivity indices: GEM
http://www.tonyohagan.co.uk/academic/GEM/index.html
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Introduction

Some links

Some links II

I Some references to begin with
I Linear and non linear regression: Azais, Antoniadis et al
I Computer code experiments : Santner et al
I Sensitivity analysis: Tarantolla et al, pioneering papers of

Sobol, Antoniadis
I Kriging: Stein, Cressie
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Introduction

A toy model

A toy model
Rastrigin function

f (x) = f (x1, x2) = 8‖x‖2 − 10(cos(4πx1) + cos(8πx2))

See http://www.gdr-mascotnum.fr/doku.php?id=benchmarks
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Sensivity analysis

Recall the goal

Model
Y = f (X ).

Sortie  Y le 
cour du yen

Entrée X: les prix du 
café et de la main 
d'oeuvre, La météo

I X = (Xi )i=1...k input vector

I Y output (real number).

Goal: Which of the components of X are more influent on Y ?
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Sensivity analysis

Deterministic methods

Deterministic methods

Roughltly speaking are based on derivative of f :

I x being a point where the code is usually used

I the influence of Xj is quantified using ( ∂f∂Xj
)(x).

Effective computation of the derivative

I Finite differences

(
∂f

∂Xj
)(x) ≈ h−1

[
f (x j ,h+)− f (x j ,h−)

]
I Adjoint methods: the derivative is directly computed by the

code (PDE models).
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Sensivity analysis

Deterministic methods

Deterministic methods-toy model

Rastrigin function

f (x) = f (x1, x2) = 8‖x‖2 − 10(cos(4πx1) + cos(8πx2))

The derivative method is quite unstable.
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Sensivity analysis

A first insight in probability theory

A first insight in probability theory: Random variables
I Probability distribution

I Z random variable on R: most often with density. Repartition
of Z is described by a function, (”mass function ”).

I Random vector on R2

I Generalization: random vector on Rk . Example multivariate
(centered) Gaussian distribution with density

1

(2π)
k
2

√
det Γ

exp[
1

2
zTΓ−1z ].

I Independence of random variables (Z1,Z2): observing Z1 give
no information on the distribution of Z2.
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Sensivity analysis

A first insight in probability theory

A first insight in probability theory: Expectation, Variance
Z a random variable having distribution F .

I Expectation of a random variable: E(Z )
I Gravity center
I Constant that explains the best the random variable.
I Projection on constant random variables

I Variance of a random variable: Var(Z )
I Inertia moment
I Magnitud of the fluctuactions around the mean
I Squared norm of the random variable after having taken off

the mean effect

Pythagora’s Theorem

E(Z 2) = ‖Z‖2 = ‖E(Z )‖2 + ‖Z − E(Z )‖2 = E(Z )2 + Var(Z )

Var(Z ) = E(Z 2)− E(Z )2.
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Sensivity analysis

A first insight in probability theory

Distribution examples : Expectation, Variance

I The most popular: Gaussian distribution (m, σ2)
I density on R

g(z) =
1√
2πσ

exp

[
− (z −m)2

2σ2

]
.

I Expectation

E(Z ) =

∫ +∞

−∞
zg(z)dz =

∫ +∞

−∞

z√
2πσ

exp

[
− (z −m)2

2σ2

]
dz = m.

I Variance

Var(Z ) = E[(Z − E(Z )2)2] = E(Z 2)− [E(Z )]2 = σ2.
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Sensivity analysis

A first insight in probability theory

I The most random: Uniform on [zmin, zmax]
I density on R

g(z) =
1[zmin,zmax](z)

zmax − zmin
.

I Expectation

E(Z ) =

∫ zmax

zmin

zg(z)dx =

∫ zmax

zmin

zdz =
zmin + zmax

2

I Variance

Var(Z ) = E[(Z−E(Z )2)2] = E(Z 2)−[E(Z )]2 =
(zmax − zmin)2

12
.
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Sensivity analysis

A first insight in probability theory

A first insight in probability theory: Conditional
expectation

(Z1,Z2) a random vector
I Conditional expectation of Z2 knowing Z1): E(Z2|Z1)

I Z1 = z1 has been observed how one can predict the best Z2?
I What is the best function of Z1 to explain Z2?
I Projection of Z2 on functions of Z1.

Examples
I E(Z2|Z1) = E(Z2) when (Z1,Z2) are independent random

variables
I E(Z2|Z1) = ρZ1 for a centered Gaussian vector
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Sensivity analysis

A first insight in probability theory

I Some interesting facts for E(Z2|Z1)
I E[E(Z2|Z1)] = E[Z2]
I E[ψ(Z1)Z2|Z1] = ψ(Z1)E(Z2|Z1)
I Pythagora’s Theorem

E[Z 2
2 ] = E[E(Z2|Z1)2] + E[(Z2 − E(Z2|Z1))2]

taking off [E(Z2)]2

Var(Z2) = Var[E(Z2|Z1)] + E[(Z2 − E(Z2|Z1))2].

Of course, it is possible to generalize the notion of conditional
expectation for a vector (Z1 is a random vector).
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Sensivity analysis

A first insight in probability theory

Example toy model

I Rastrigin function

Y = f (X ) = f (X1,X2) = 8‖X‖2−10(cos(4πX1) + cos(8πX2))
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Sensivity analysis

A first insight in probability theory

Example toy model
Assume that X1 ∼ U([0, 1]) et X2 ∼ U([0, 2])

E(Y |X1) = 8X 2
1 − 10 cos(4πX1) +

32

3

E(Y |X2) = 8X 2
2 − 10 cos(8πX2) +

8

3
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A first insight in probability theory

An important example of vectorial conditioning
Centered Gaussian model

ZT = (Z1,Z2)T = (Z 1
1 , . . .Z

l
1,Z2)

Gaussian vector with density

1

(2π)
k
2

√
det Γ

exp[
1

2
zTΓ−1z ].

Γ is the covariance matrix of the random vector Z (assumed to be
invertible):

Γ =

(
ΓZ1 cT

Z1,Z2

cZ1,Z2 σ2
Z2

)
I ΓZ1 is the covariance matrix of the random vector Z1,
I cZ1,Z2 is the covariance vector between Z1 and Z2 (row

vector),
I σ2

Z2
is the variance of Z2.



Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Sensivity analysis

A first insight in probability theory

Centered Gaussian model

Theorem

E(Z2|Z1) = cZ1,Z2Γ−1
Z1

Z1,

E[Z2 − E(Z2|Z1)]2 = σ2
Z2
− cZ1,Z2Γ−1

Z1
cT
Z1,Z2

.

I Linear prediction,

I 1-d example E(Z2|Z1) = ρZ1,

I Kalman filter=recursive formulation of the previous theorem
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Sobol method
Model

Y = f (X ).

We will quantify the stochastic influence of each input variables
using previous projections:

Definition
Sobol indices for the output Y

I First order indice for the input Xi

Si =
Var(E[Y |Xi ])

Var(Y )

I 2nd order indice for the inputs Xi ,Xj)

Si ,j =
Var(E[Y |Xi ,Xj ])

Var(Y )
− Si − Sj

Si ,j Influence of the joint inputs Xi et Xj (marginal effects erased).
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Sensivity analysis

Sobol method

Sobol-Antoniadis (Hoeffding) Decomposition

Generalization: third order for the input Xi ,Xj ,Xl

Si ,j ,l =
Var(E[Y |Xi ,Xj ,Xl ])

Var(Y )
−

∑
i1<i2∈{i ,j ,l}

Si1,i2 + Si + Sj + Sl

Si ,j ,l joint influence of Xi , Xj et Xk (marginal effects erased).

Theorem (Sobol-Antoniadis-Hoefding)

Assume that. X1,X2, . . . ,Xk are independent. then

1 =
∑

Sijl ...
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Sobol indices estimation

Sobol indices estimation

I Monte Carlo methods,

I Quasi Monte Carlo methods: FAST,

I Gaussian methods metamoddeling: Kriging O Oakley et al,

I Mathematical Statistics ANR COSTA BRAVA,
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Gaussian emulator

Recall the goal
Model

Y = f (X ).

Sortie  Y le 
cour du yen

Entrée X: les prix du 
café et de la main 
d'oeuvre, La météo

I X = (Xi )i=1...k is the input vector

I Y is the output (real number).

Goal: Build a function f̃ (cheap in terms of CPU) to emulate
(approximate, estimate) f .
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Gaussian emulator

Several approaches
Model

Y = f (X ).

Sortie  Y le 
cour du yen

Entrée X: les prix du 
café et de la main 
d'oeuvre, La météo

Goal: Build a function f̃ (cheap in terms of CPU) to emulate
(approximate, estimate) f .

I Approximation of f by a linear combination of given functions
(e.g. Fourier, chaos or orthogonal polynomials,...),

I The same but non linear approximation (neural networks, non
parametric statistics...),

I Discussed method: Bayesian approach using Gaussian
processes (fields).
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Gaussian emulator

A short journey towards Gaussian fields

A short journey towards Gaussian fields

Gaussian vector Z = (Zi )i=1...k : finite number of components
Random Gaussian field Z = (Zt)t∈T : many components as the
elements of T (T = Z,R,C,Rk).
Gaussian vector: the probability density is

1

(2π)
k
2

√
det Γ

exp[
1

2
(z −m)TΓ−1(z −m)].

The important parameters are:

I The mean (expectation) m vector of Rk ,

I The covariance matrix Γ (γi ,j = cov(Zi ,Zj))
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Gaussian emulator

A short journey towards Gaussian fields

Random Gaussian field

Random Gaussian field: for any sample points t1, t2, . . . tp ∈ T , the
vector

Z := (Zti )i=1...p

is a Gaussian vector. The important parameters are:

I The mean function m(t) = E(Zt), t ∈ T ,

I The covariance function γ(t, t ′) = cov(Zt ,Zt′), t, t
′ ∈ T
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Gaussian emulator

A short journey towards Gaussian fields

STATIONARY Gaussian field

STATIONARY Gaussian field: modeling an unmoving dynamic (in
space or time) phenomena Translation on the parameters:

I The mean function is constant m(t) = m, t ∈ T ,

I The covariance function only depends on t − t ′

γ(t, t ′) = cov(Zt ,Zt′) = r(t − t ′) .

Classical frame

I Vanishing mean function m(t) = 0, t ∈ T ,

I The covariance function r(u) depends on some parameter θ.
For example, assuming isotropy r(u) = exp(h‖u‖α) u ∈ T .
Here, the parameter is θ = (h, α) (h > 0, α ≥ 2).



Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Gaussian emulator

A short journey towards Gaussian fields

Example modeling the sea
STATIONARY Gaussian process on R2 with an ad hoc covariance
function (See the excellent book of Azais-Wchebor)



Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Gaussian emulator

Kriging

Kriging 0

Bayesian model in geostatistics

f (x) = αθ(x) + Zx(ν)(x ∈ T )

I θ and ν are unknown vectorial parameters

I αθ a simple mean function (trend): 〈θ, x〉
I (Zx)x∈T centered stationary Gaussian field rν(x), x ∈ T
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Kriging 0

Bayesian model in geostatistics
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Gaussian emulator

Kriging

Kriging I
Main idea=THE COMPUTER CODE IS THE REALIZATION OF
A GAUSSIAN FIELD TRAJECTORY

The model has been played randomly

Y (x) = f (x)(x deterministic ∈ T )

Sortie  Y le 
cour du yen

Entrée X: les prix du 
café et de la main 
d'oeuvre, La météo
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Kriging I
Main idea=THE COMPUTER CODE IS THE REALIZATION OF
A GAUSSIAN FIELD TRAJECTORY
The model has been played randomly

Y (x) = f (x)(x deterministic ∈ T )
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café et de la main 
d'oeuvre, La météo



Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box

The model is running on a design x1, . . . xN we have at hand
f (x1), . . . , f (xN). Model

Y (x) = αθ(x) + Zx(ν)(x ∈ T )

I One uses f (x1), . . . , f (xN) to estimate the parameters θ et ν

I Maximum likelihood method

I Roughtly speaking : least square fit of the parameters with
weight functions depending on the parameters



Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box
The model is running on a design x1, . . . xN we have at hand
f (x1), . . . , f (xN).

Model

Y (x) = αθ(x) + Zx(ν)(x ∈ T )

I One uses f (x1), . . . , f (xN) to estimate the parameters θ et ν

I Maximum likelihood method

I Roughtly speaking : least square fit of the parameters with
weight functions depending on the parameters



Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box
The model is running on a design x1, . . . xN we have at hand
f (x1), . . . , f (xN). Model

Y (x) = αθ(x) + Zx(ν)(x ∈ T )

I One uses f (x1), . . . , f (xN) to estimate the parameters θ et ν

I Maximum likelihood method

I Roughtly speaking : least square fit of the parameters with
weight functions depending on the parameters



Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box
The model is running on a design x1, . . . xN we have at hand
f (x1), . . . , f (xN). Model

Y (x) = αθ(x) + Zx(ν)(x ∈ T )

I One uses f (x1), . . . , f (xN) to estimate the parameters θ et ν

I Maximum likelihood method

I Roughtly speaking : least square fit of the parameters with
weight functions depending on the parameters



Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box
The model is running on a design x1, . . . xN we have at hand
f (x1), . . . , f (xN). Model

Y (x) = αθ(x) + Zx(ν)(x ∈ T )

I One uses f (x1), . . . , f (xN) to estimate the parameters θ et ν

I Maximum likelihood method

I Roughtly speaking : least square fit of the parameters with
weight functions depending on the parameters



Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box
The model is running on a design x1, . . . xN we have at hand
f (x1), . . . , f (xN). Model

Y (x) = αθ(x) + Zx(ν)(x ∈ T )

I One uses f (x1), . . . , f (xN) to estimate the parameters θ et ν

I Maximum likelihood method

I Roughtly speaking : least square fit of the parameters with
weight functions depending on the parameters



Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Gaussian emulator
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Kriging III
Bayesian approach

I One have at hand f (x1), . . . , f (xN). Valeurs modeled by par
Y (x1), . . .Y (xN).

I Parameters θ and ν has been previously identified

Gaussian emulator

f̂ (x) = Ŷ (x) = E[Y (x)|Y (x1), . . .Y (xN)]

I Very simple formula

Ŷ (x) = αθ(x) + E[Zx |Zx1 , . . .ZxN ]

= αθ(x) + cT
x Γ−1

N ZN

I cx covariance vector of Zx and Zx1 , . . . ,ZxN ,

I ΓN covariance matrix between ZN := (Zx1 , . . . ,ZxN )T .
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f̂ (x) = Ŷ (x) = E[Y (x)|Y (x1), . . .Y (xN)]

I Very simple formula
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Kriging IV

Bayesian method in a functional space

I Emulation method by linear regression

Ŷ (x) = αθ(x) + cT
x Γ−1

N ZN

I Prediction error of Gaussian du model (if the parameter of the
model are known)

E[(Y (x)− Ŷ (x))2] = rν(0)− cT
x Γ−1

N cx
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One example
from :http://www2.imm.dtu.dk/ hbn/dace/

Introduction

Given f : IRn 7→ IR. May be a black-box (and

“expensive”) function.

Know values yi = f(si) at design sites

S = {s1, . . . , sm}. How does the function

behave in between?
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End

Gracias por su atencion
Thanks for your attention
Merci
Obrigado
Danke
Grazie
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