

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Sensitivity and Uncertainty Analysis for computer code experiments a first tour

Fabrice Gamboa-Bertrand looss

Institut de Mathématiques de Toulouse

18th-23th of March 2013

Agenda Scientific context What are we dealing with? Some questions on the general model Introduction Frame: Black box Gains of stochastic methods Presented techniques Some links A toy model Sensivity analysis Deterministic methods A first insight in probability theory Sobol method Sobol indices estimation Gaussian emulator A short journey towards Gaussian fields Kriging

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The small story

Early 2000, IMT Toulouse begin to work with many Labs :

- CEA Cadarache. N. Devictor, B. looss. Nuclear safety (Ph D A. Marrel-currently CEA-)
- ONERA-DOTA Palaiseau. G. Durand, A. Roblin. infrared profile of a plane (Ph D S. Varet)
- IFP Lyon. P. Duchène, F. Wahl-Univ Grenoble. A Antoniadis. Chemical cinetic problems (Ph D S. Da Veiga-Currently IFP-)
- \Rightarrow Scientific meetings in Toulouse- Février 2006 and in Lyon en 2007 GDR CNRS borned

Scientific context

What are we dealing with?

What are we dealing with?

Big computer codes= F black box

Y = F(X)

- Code inputs: X high dimension object (vectors or curves).
- Code outputs Y (scalar or vectorial).
- X complex structure and/or uncertain

 \Rightarrow seen as random

STOCHASTIC APPROACH

Sensitivity and Uncertainty Analysis for computer code experiments a first tour -Some questions on the general model

Some questions on the general model

- Sensitivity and uncertainty analysis= take informations on the joint distribution (X, Y)
- F too complicated. Design a reduced model= Estimate a response surface
- Optimise the run number = make an experimental design

Sensitivity and Uncertainty Analysis for computer code experiments a first tour \square Some questions on the general model

People working around this topic

- GDR MASCOT NUM Annual meeting march 2012 : CEA Bruyères le Chatel http://www.gdr-mascotnum.fr/
- ► ANR project : OPUS EADS, CEA, EDF, ... (CEA)

http://www.opus-project.fr/

- ANR project : COSTA BRAVA CEA, IFP, Univ Toulouse, Univ Grenoble http://www.math.univ-toulouse.fr/COSTA_BRAVA/doku.php?id=index
- SIAM conference : Uncertainty quantification 2th-5Th April 2012 http://www.siam.org/meetings/uq12

Sensitivity and Uncertainty Analysis for computer code experiments a first tour $\hfill \mathsf{L}\mathsf{Introduction}$

Motivation-Examples

Sensitivity and Uncertainty Analysis for computer code experiments a first tour $\hfill \hfill \hfi$

Motivation-Examples

Main object : complicated computer simulation code

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Sensitivity and Uncertainty Analysis for computer code experiments a first tour $\hfill \hfill \hfi$

Motivation-Examples

- Main object : complicated computer simulation code
- ► Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions

Sensitivity and Uncertainty Analysis for computer code experiments a first tour $\hfill \hfill \hfi$

Motivation-Examples

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions

• Complexity:

Sensitivity and Uncertainty Analysis for computer code experiments a first tour $\[l]$ Introduction

Motivation-Examples

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.

Sensitivity and Uncertainty Analysis for computer code experiments a first tour $\hfill Introduction$

Motivation-Examples

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.

Many input: vectorial, functional, uncertain.

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.

- Many input: vectorial, functional, uncertain.
- Many output: vectorial, functional.

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.

- Many input: vectorial, functional, uncertain.
- Many output: vectorial, functional.
- Expensive: from some minutes up to several days

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.

- Many input: vectorial, functional, uncertain.
- Many output: vectorial, functional.
- Expensive: from some minutes up to several days
- Example functional code CERES from CEA CERES

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.

- Many input: vectorial, functional, uncertain.
- Many output: vectorial, functional.
- Expensive: from some minutes up to several days
- Example functional code CERES from CEA CERES
- Need methods to enlight.

<□> <□> <□> <□> <=> <=> <=> <=> <=> <=> <=> <<</p>

Introduction

Frame: Black box

Frame: Black box

-Introduction

Frame: Black box

Frame: Black box

Today conference: vectorial input et scalar output Y =output is a number and X =input is a vector of numbers

-Introduction

Frame: Black box

Frame: Black box

Today conference: vectorial input et scalar output Y = output is a number and X = input is a vector of numbers

Black box model

- Introduction

Frame: Black box

Frame: Black box

Today conference: vectorial input et scalar output Y = output is a number and X = input is a vector of numbers

Black box model

Introduction

Frame: Black box

Frame: Black box

Today conference: vectorial input et scalar output Y = output is a number and X = input is a vector of numbers

Black box model

Non linear regression model

Y=f(X).

The code is modeled as an abstract complicated function f

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Introduction

Gains of stochastic methods

Gains of stochastic methods

-Introduction

Gains of stochastic methods

Gains of stochastic methods

Take into account random characteristic of some components of X

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

- Introduction

Gains of stochastic methods

Gains of stochastic methods

Take into account random characteristic of some components of X

- Physical measures with error: Pressure, temperature...
- unknown physical constants: wave in random media.

Introduction

Gains of stochastic methods

Gains of stochastic methods

- Take into account random characteristic of some components of X
 - Physical measures with error: Pressure, temperature...
 - unknown physical constants: wave in random media.
 - Allow to model multimodal distributions: double mode...

- Introduction

Gains of stochastic methods

Gains of stochastic methods

- Take into account random characteristic of some components of X
 - Physical measures with error: Pressure, temperature...
 - unknown physical constants: wave in random media.
 - Allow to model multimodal distributions: double mode...

Parametric and non parametric estimation methods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

Introduction

Presented techniques

Presented techniques

Introduction

Presented techniques

Presented techniques

Sobol sensitivity analysis

- Introduction

Presented techniques

Presented techniques

- Sobol sensitivity analysis
 - Within the (random) components of the input (vector) X what are those having most influence on the output?
 - "influence" is quantified in terms of "variability" induced by this component.
 - Global analysis taking into account the whole distribution of the input.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Response surface methods (<u>Reduced model</u>)

- Introduction

Presented techniques

Presented techniques

- Sobol sensitivity analysis
 - Within the (random) components of the input (vector) X what are those having most influence on the output?
 - "influence" is quantified in terms of "variability" induced by this component.
 - Global analysis taking into account the whole distribution of the input.
- Response surface methods (<u>Reduced model</u>)
 - Replace the complicated code by a simple one easy to build from a short sample y cheap in CPU.
 - Goal: optimization, computation of a critical threshold, sensitivity analysis...
 - Discussed method: come from geostatistics (KRIGING).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

Introduction

└─ Some links

Some links I

-Introduction

Some links

Some links I

Research/Developpement

- Introduction

Some links

Some links I

- Research/Developpement
 - GDR CNRS MASCOT NUM http://www.gdr-mascotnum.fr/ ,
 - OPUS- ANR project big open source plateform including tools for codes.

 COSTA BRAVA- ANR project functional input or output coupling random and deterministic methods.

Softwares

Introduction

Some links

Some links I

- Research/Developpement
 - GDR CNRS MASCOT NUM http://www.gdr-mascotnum.fr/ ,
 - OPUS- ANR project big open source plateform including tools for codes.
 - COSTA BRAVA- ANR project functional input or output coupling random and deterministic methods.
- Softwares
 - R package DICE (IRSN, EDF, Renault, ...). http://crocus.emse.fr/dice
 - MATLAB Kriging package: DACE http://www2.imm.dtu.dk/ hbn/dace/
 - Free software of O' Oakley and O' Hagan computation of sensitivity indices: GEM http://www.tonyohagan.co.uk/academic/GEM/index.html

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

Introduction

└─ Some links

Some links II

-Introduction

└─ Some links

Some links II

Some references to begin with
- Introduction

Some links

Some links II

Some references to begin with

- Linear and non linear regression: Azais, Antoniadis et al
- Computer code experiments : Santner et al
- Sensitivity analysis: Tarantolla et al, pioneering papers of Sobol, Antoniadis

Kriging: Stein, Cressie

- Introduction

A toy model

A toy model

Rastrigin function

$$f(x) = f(x_1, x_2) = 8||x||^2 - 10(\cos(4\pi x_1) + \cos(8\pi x_2))$$

See http://www.gdr-mascotnum.fr/doku.php?id=benchmarks

Sensitivity and Uncertainty Analysis for computer code experiments a first tour ${\bigsqcup}$ Sensivity analysis

Recall the goal

Model

Y = f(X).

•
$$X = (X_i)_{i=1...k}$$
 input vector

Y output (real number).

Goal: Which of the components of X are more influent on Y?

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Sensivity analysis

L_Deterministic methods

Deterministic methods

Roughltly speaking are based on derivative of f:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

-Sensivity analysis

L_Deterministic methods

Deterministic methods

Roughltly speaking are based on derivative of f:

 $\blacktriangleright \overline{x}$ being a point where the code is usually used

- Sensivity analysis

-Deterministic methods

Deterministic methods

Roughltly speaking are based on derivative of *f*:

- \overline{x} being a point where the code is usually used
- the influence of X_j is quantified using $\left(\frac{\partial f}{\partial X_i}\right)(\overline{x})$.

Effective computation of the derivative

- Sensivity analysis

-Deterministic methods

Deterministic methods

Roughltly speaking are based on derivative of *f*:

- \overline{x} being a point where the code is usually used
- the influence of X_j is quantified using $\left(\frac{\partial f}{\partial X_i}\right)(\overline{x})$.

Effective computation of the derivative

Finite differences

$$(rac{\partial f}{\partial X_j})(\overline{x}) pprox h^{-1} \left[f(\overline{x}_{j,h^+}) - f(\overline{x}_{j,h^-})
ight]$$

-Sensivity analysis

Deterministic methods

Deterministic methods

Roughltly speaking are based on derivative of *f*:

- \overline{x} being a point where the code is usually used
- the influence of X_j is quantified using $\left(\frac{\partial f}{\partial X_i}\right)(\overline{x})$.

Effective computation of the derivative

Finite differences

$$(\frac{\partial f}{\partial X_j})(\overline{x}) \approx h^{-1} \left[f(\overline{x}_{j,h^+}) - f(\overline{x}_{j,h^-}) \right]$$

 Adjoint methods: the derivative is directly computed by the code (PDE models).

-Sensivity analysis

L_Deterministic methods

Deterministic methods-toy model

Rastrigin function

$$f(x) = f(x_1, x_2) = 8||x||^2 - 10(\cos(4\pi x_1) + \cos(8\pi x_2))$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

-Sensivity analysis

Deterministic methods

Deterministic methods-toy model

Rastrigin function

$$f(x) = f(x_1, x_2) = 8||x||^2 - 10(\cos(4\pi x_1) + \cos(8\pi x_2))$$

The derivative method is quite unstable.

- Sensivity analysis

A first insight in probability theory

A first insight in probability theory: Random variables

- Probability distribution
 - ► Z random variable on R: most often with *density*. Repartition of Z is described by a function, ("mass function ").

▶ Generalization: random vector on ℝ^k. Example multivariate (centered) Gaussian distribution with density

$$\frac{1}{(2\pi)^{\frac{k}{2}}\sqrt{\det\Gamma}}\exp[\frac{1}{2}z^{T}\Gamma^{-1}z].$$

Independence of random variables (Z₁, Z₂): observing Z₁ give no information on the distribution of Z₂.

-Sensivity analysis

A first insight in probability theory

A first insight in probability theory: Expectation, Variance

- Z a random variable having distribution F.
 - Expectation of a random variable: $\mathbb{E}(Z)$
 - Gravity center
 - Constant that explains the best the random variable.
 - Projection on constant random variables
 - ▶ Variance of a random variable: Var(Z)
 - Inertia moment
 - Magnitud of the fluctuactions around the mean
 - Squared norm of the random variable after having taken off the mean effect

Pythagora's Theorem

$$\mathbb{E}(Z^2) = ||Z||^2 = ||\mathbb{E}(Z)||^2 + ||Z - \mathbb{E}(Z)||^2 = \mathbb{E}(Z)^2 + Var(Z)$$

$$\operatorname{Var}(Z) = \mathbb{E}(Z^2) - \mathbb{E}(Z)^2.$$

-Sensivity analysis

A first insight in probability theory

Distribution examples : Expectation, Variance

- The most popular: Gaussian distribution (m, σ^2)
 - density on \mathbb{R}

$$g(z) = rac{1}{\sqrt{2\pi\sigma}} \exp\left[-rac{(z-m)^2}{2\sigma^2}
ight].$$

Expectation

$$\mathbb{E}(Z) = \int_{-\infty}^{+\infty} zg(z)dz = \int_{-\infty}^{+\infty} \frac{z}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(z-m)^2}{2\sigma^2}\right]dz = m.$$

Variance

$$\operatorname{Var}(Z) = \mathbb{E}[(Z - \mathbb{E}(Z)^2)^2] = \mathbb{E}(Z^2) - [\mathbb{E}(Z)]^2 = \sigma^2.$$

Sensitivity and Uncertainty Analysis for computer code experiments a first tour \Box Sensivity analysis

A first insight in probability theory

The most random: Uniform on [z_{min}, z_{max}]

▶ density on \mathbb{R}

$$g(z) = \frac{\mathbf{1}_{[z_{\min}, z_{\max}]}(z)}{z_{\max} - z_{\min}}$$

Expectation

$$\mathbb{E}(Z) = \int_{z_{\min}}^{z_{\max}} zg(z)dx = \int_{z_{\min}}^{z_{\max}} zdz = \frac{z_{\min} + z_{\max}}{2}$$

Variance

$$Var(Z) = \mathbb{E}[(Z - \mathbb{E}(Z)^2)^2] = \mathbb{E}(Z^2) - [\mathbb{E}(Z)]^2 = \frac{(z_{max} - z_{min})^2}{12}$$

-Sensivity analysis

A first insight in probability theory

A first insight in probability theory: Conditional expectation

 (Z_1, Z_2) a random vector

- Conditional expectation of Z_2 knowing Z_1): $\mathbb{E}(Z_2|Z_1)$
 - $Z_1 = z_1$ has been observed how one can predict the best Z_2 ?
 - ▶ What is the best function of *Z*₁ to explain *Z*₂?
 - Projection of Z_2 on functions of Z_1 .

Examples

• $\mathbb{E}(Z_2|Z_1) = \mathbb{E}(Z_2)$ when (Z_1, Z_2) are independent random variables

• $\mathbb{E}(Z_2|Z_1) = \rho Z_1$ for a centered Gaussian vector

-Sensivity analysis

A first insight in probability theory

Some interesting facts for $\mathbb{E}(Z_2|Z_1)$

$$\mathbb{E}[\mathbb{E}(Z_2|Z_1)] = \mathbb{E}[Z_2]$$

$$\mathbb{E}[\psi(Z_1)Z_2|Z_1] = \psi(Z_1)\mathbb{E}(Z_2|Z_1)$$

Pythagora's Theorem

$$\mathbb{E}[Z_2^2] = \mathbb{E}[\mathbb{E}(Z_2|Z_1)^2] + \mathbb{E}[(Z_2 - \mathbb{E}(Z_2|Z_1))^2]$$

taking off $[\mathbb{E}(Z_2)]^2$

$$\mathsf{Var}(Z_2) = \mathsf{Var}[\mathbb{E}(Z_2|Z_1)] + \mathbb{E}[(Z_2 - \mathbb{E}(Z_2|Z_1))^2].$$

Of course, it is possible to generalize the notion of conditional expectation for a vector (Z_1 is a random vector).

-Sensivity analysis

A first insight in probability theory

Example toy model

Rastrigin function

 $Y = f(X) = f(X_1, X_2) = 8||X||^2 - 10(\cos(4\pi X_1) + \cos(8\pi X_2))$

-Sensivity analysis

A first insight in probability theory

Example toy model

Assume that $X_1 \sim \mathcal{U}([0,1])$ et $X_2 \sim \mathcal{U}([0,2])$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

-Sensivity analysis

A first insight in probability theory

An important example of vectorial conditioning

Centered Gaussian model

$$Z^{T} = (Z_1, Z_2)^{T} = (Z_1^1, \dots Z_1^l, Z_2)$$

Gaussian vector with density

$$\frac{1}{(2\pi)^{\frac{k}{2}}\sqrt{\det\Gamma}}\exp[\frac{1}{2}z^{T}\Gamma^{-1}z].$$

 Γ is the covariance matrix of the random vector Z (assumed to be invertible):

$$\Gamma = \begin{pmatrix} \Gamma_{Z_1} & c_{Z_1,Z_2}^T \\ c_{Z_1,Z_2} & \sigma_{Z_2}^2 \end{pmatrix}$$

- ロト - (目) - (目) - (目) - (0) - (0)

- Γ_{Z_1} is the covariance matrix of the random vector Z_1 ,
- ► c_{Z1,Z2} is the covariance vector between Z₁ and Z₂ (row vector),

•
$$\sigma_{Z_2}^2$$
 is the variance of Z_2 .

Sensivity analysis

A first insight in probability theory

Centered Gaussian model

Theorem

$$\mathbb{E}(Z_2|Z_1) = c_{Z_1,Z_2} \Gamma_{Z_1}^{-1} Z_1,$$

 $\mathbb{E}[Z_2 - \mathbb{E}(Z_2|Z_1)]^2 = \sigma_{Z_2}^2 - c_{Z_1,Z_2} \Gamma_{Z_1}^{-1} c_{Z_1,Z_2}^T.$

Linear prediction,

- 1-d example $\mathbb{E}(Z_2|Z_1) = \rho Z_1$,
- Kalman filter=recursive formulation of the previous theorem

-Sensivity analysis

Sobol method

Sobol method

Model

$$Y=f(X).$$

We will quantify the *stochastic* influence of each input variables using previous projections:

Definition

Sobol indices for the output Y

First order indice for the input X_i

$$S_i = \frac{Var(\mathbb{E}[Y|X_i])}{Var(Y)}$$

• 2nd order indice for the inputs X_i, X_{j}

$$S_{i,j} = \frac{Var(\mathbb{E}[Y|X_i, X_j])}{Var(Y)} - S_i - S_j$$

A = A = A = OQO
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sensitivity and Uncertainty Analysis for computer code experiments a first tour Sensivity analysis

Sobol method

Sobol-Antoniadis (Hoeffding) Decomposition

Generalization: third order for the input X_i, X_j, X_l

$$S_{i,j,l} = \frac{\mathsf{Var}(\mathbb{E}[Y|X_i, X_j, X_l])}{\mathsf{Var}(Y)} - \sum_{i_1 < i_2 \in \{i, j, l\}} S_{i_1, i_2} + S_i + S_j + S_l$$

 $S_{i,j,l}$ joint influence of X_i , X_j et X_k (marginal effects erased). Theorem (Sobol-Antoniadis-Hoefding) Assume that. X_1, X_2, \ldots, X_k are independent. then

$$1=\sum S_{ijl\dots}$$

-Sensivity analysis

Sobol indices estimation

Sobol indices estimation

- Monte Carlo methods,
- Quasi Monte Carlo methods: FAST,
- Gaussian methods metamoddeling: Kriging O Oakley et al,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Mathematical Statistics ANR COSTA BRAVA,

Sensitivity and Uncertainty Analysis for computer code experiments a first tour ${\bigsqcup_{\mathsf{Gaussian}}}$ emulator

Recall the goal

Model

•
$$X = (X_i)_{i=1...k}$$
 is the input vector

Y is the output (real number).

Goal: Build a function \tilde{f} (cheap in terms of CPU) to emulate (approximate, estimate) f.

Sensitivity and Uncertainty Analysis for computer code experiments a first tour ${\bigsqcup}$ Gaussian emulator

Several approaches Model

Goal: Build a function \tilde{f} (cheap in terms of CPU) to emulate (approximate, estimate) f.

- Approximation of f by a linear combination of given functions (e.g. Fourier, chaos or orthogonal polynomials,...),
- The same but non linear approximation (neural networks, non parametric statistics...),
- Discussed method: Bayesian approach using Gaussian processes (fields).

— Gaussian emulator

A short journey towards Gaussian fields

A short journey towards Gaussian fields

Gaussian vector $Z = (Z_i)_{i=1...k}$: finite number of components Random Gaussian field $Z = (Z_t)_{t \in T}$: many components as the elements of T ($T = \mathbb{Z}, \mathbb{R}, \mathbb{C}, \mathbb{R}^k$). Gaussian vector: the probability density is

$$\frac{1}{(2\pi)^{\frac{k}{2}}\sqrt{\det \Gamma}}\exp[\frac{1}{2}(z-m)^{T}\Gamma^{-1}(z-m)].$$

The important parameters are:

- The mean (expectation) m vector of \mathbb{R}^k ,
- The covariance matrix Γ ($\gamma_{i,j} = \text{cov}(Z_i, Z_j)$)

- Gaussian emulator
 - A short journey towards Gaussian fields

Random Gaussian field

Random Gaussian field: for any sample points $t_1, t_2, \ldots t_p \in T$, the vector

$$Z := (Z_{t_i})_{i=1\dots p}$$

is a Gaussian vector. The important parameters are:

- The mean function $m(t) = \mathbb{E}(Z_t), \ t \in T$,
- ▶ The covariance function $\gamma(t, t') = \text{cov}(Z_t, Z_{t'}), t, t' \in T$

— Gaussian emulator

A short journey towards Gaussian fields

STATIONARY Gaussian field

STATIONARY Gaussian field: modeling an *unmoving dynamic* (in space or time) phenomena Translation on the parameters:

- The mean function is constant $m(t)=m, \ t\in T$,
- ► The covariance function only depends on t t' $\gamma(t, t') = \operatorname{cov}(Z_t, Z_{t'}) = r(t - t')$.

Classical frame

- Vanishing mean function $m(t) = 0, t \in T$,
- The covariance function r(u) depends on some parameter θ. For example, assuming isotropy r(u) = exp(h||u||^α) u ∈ T. Here, the parameter is θ = (h, α) (h > 0, α ≥ 2).

-Gaussian emulator

A short journey towards Gaussian fields

Example modeling the sea

STATIONARY Gaussian process on \mathbb{R}^2 with an *ad hoc* covariance function (See the excellent book of Azais-Wchebor)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Gaussian emulator

Kriging

Kriging 0

Bayesian model in geostatistics

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � Q @

Gaussian emulator

Kriging

Kriging 0

Bayesian model in geostatistics

$$f(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Gaussian emulator

Kriging

Kriging 0

Bayesian model in geostatistics

$$f(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

• θ and ν are unknown vectorial parameters

Gaussian emulator

Kriging

Kriging 0

Bayesian model in geostatistics

$$f(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

- θ and ν are unknown vectorial parameters
- α_{θ} a simple mean function (*trend*): $\langle \theta, x \rangle$

Gaussian emulator

Kriging

Kriging 0

Bayesian model in geostatistics

$$f(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

- θ and ν are unknown vectorial parameters
- α_{θ} a simple mean function (*trend*): $\langle \theta, x \rangle$
- $(Z_x)_{x \in T}$ centered stationary Gaussian field $r_{\nu}(x), x \in T$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Gaussian emulator

Kriging

Kriging I

Main idea=THE COMPUTER CODE IS THE REALIZATION OF A GAUSSIAN FIELD TRAJECTORY

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Gaussian emulator

Kriging

Kriging I

Main idea=THE COMPUTER CODE IS THE REALIZATION OF A GAUSSIAN FIELD TRAJECTORY

The model has been played randomly

$$Y(x) = f(x)(x ext{ deterministic} \in T)$$

イロト (目) イヨト (ヨ) の()
— Gaussian emulator

Kriging

Kriging I

Main idea=THE COMPUTER CODE IS THE REALIZATION OF A GAUSSIAN FIELD TRAJECTORY

The model has been played randomly

$$Y(x) = f(x)(x ext{ deterministic} \in T)$$

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box

The model is running on a design $x_1, \ldots x_N$ we have at hand $f(x_1), \ldots, f(x_N)$.

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box

The model is running on a design $x_1, \ldots x_N$ we have at hand $f(x_1), \ldots, f(x_N)$. Model

$$Y(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box

The model is running on a design $x_1, \ldots x_N$ we have at hand $f(x_1), \ldots, f(x_N)$. Model

$$Y(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

• One uses $f(x_1), \ldots, f(x_N)$ to estimate the parameters θ et ν

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Gaussian emulator

Kriging

Kriging II

Bayesian model for the black box

The model is running on a design $x_1, \ldots x_N$ we have at hand $f(x_1), \ldots, f(x_N)$. Model

$$Y(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

• One uses $f(x_1), \ldots, f(x_N)$ to estimate the parameters θ et ν

Maximum likelihood method

Gaussian emulator

└─ Kriging

Kriging II

Bayesian model for the black box

The model is running on a design $x_1, \ldots x_N$ we have at hand $f(x_1), \ldots, f(x_N)$. Model

$$Y(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

- One uses $f(x_1), \ldots, f(x_N)$ to estimate the parameters θ et ν
- Maximum likelihood method
- Roughtly speaking : least square fit of the parameters with weight functions depending on the parameters

Gaussian emulator

Kriging

Kriging III Bayesian approach

Gaussian emulator

Kriging

Kriging III Bayesian approach

• One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.

Gaussian emulator

Kriging

Kriging III Bayesian approach

- One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.
- \blacktriangleright Parameters θ and ν has been previously identified

Gaussian emulator

$$\widehat{f}(x) = \widehat{Y}(x) = \mathbb{E}[Y(x)|Y(x_1), \dots Y(x_N)]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Gaussian emulator

Kriging

Kriging III Bayesian approach

- One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.
- Parameters θ and ν has been previously *identified*

Gaussian emulator

$$\widehat{f}(x) = \widehat{Y}(x) = \mathbb{E}[Y(x)|Y(x_1), \dots Y(x_N)]$$

Very simple formula

$$\widehat{Y}(x) = \alpha_{\theta}(x) + \mathbb{E}[Z_x|Z_{x_1}, \dots, Z_{x_N}]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Gaussian emulator

Kriging

Kriging III Bayesian approach

- One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.
- Parameters θ and ν has been previously *identified*

Gaussian emulator

$$\widehat{f}(x) = \widehat{Y}(x) = \mathbb{E}[Y(x)|Y(x_1), \dots Y(x_N)]$$

Very simple formula

$$\widehat{Y}(x) = \alpha_{\theta}(x) + \mathbb{E}[Z_x | Z_{x_1}, \dots Z_{x_N}] \\ = \alpha_{\theta}(x) + c_x^T \Gamma_N^{-1} Z^N$$

Gaussian emulator

Kriging

Kriging III Bayesian approach

- One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.
- Parameters θ and ν has been previously *identified*

Gaussian emulator

$$\widehat{f}(x) = \widehat{Y}(x) = \mathbb{E}[Y(x)|Y(x_1), \dots Y(x_N)]$$

Very simple formula

$$\widehat{Y}(x) = \alpha_{\theta}(x) + \mathbb{E}[Z_{x}|Z_{x_{1}}, \dots Z_{x_{N}}] \\ = \alpha_{\theta}(x) + c_{x}^{T} \Gamma_{N}^{-1} Z^{N}$$

• c_x covariance vector of Z_x and Z_{x_1}, \ldots, Z_{x_N} ,

— Gaussian emulator

Kriging

Kriging III Bayesian approach

- One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.
- Parameters θ and ν has been previously *identified*

Gaussian emulator

$$\widehat{f}(x) = \widehat{Y}(x) = \mathbb{E}[Y(x)|Y(x_1), \dots Y(x_N)]$$

Very simple formula

$$\widehat{Y}(x) = \alpha_{\theta}(x) + \mathbb{E}[Z_x | Z_{x_1}, \dots Z_{x_N}]$$

$$= \alpha_{\theta}(x) + c_x^T \Gamma_N^{-1} Z^N$$

- c_x covariance vector of Z_x and Z_{x_1}, \ldots, Z_{x_N} ,
- Γ_N covariance matrix between $Z^N := (Z_{x_1}, \ldots, Z_{x_N})^T$.

Gaussian emulator

Kriging

Kriging IV

Bayesian method in a functional space

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Gaussian emulator

Kriging

Kriging IV

Bayesian method in a functional space

Emulation method by linear regression

Gaussian emulator

Kriging

Kriging IV

Bayesian method in a functional space

Emulation method by linear regression

$$\widehat{Y}(x) = \alpha_{\theta}(x) + c_x^T \Gamma_N^{-1} Z^N$$

— Gaussian emulator

Kriging

Kriging IV

Bayesian method in a functional space

Emulation method by linear regression

$$\widehat{Y}(x) = \alpha_{\theta}(x) + c_x^T \Gamma_N^{-1} Z^N$$

 Prediction error of Gaussian du model (if the parameter of the model are known)

$$\mathbb{E}[(Y(x) - \widehat{Y}(x))^2] = r_{\nu}(0) - c_x^T \Gamma_N^{-1} c_x$$

Gaussian emulator

Kriging

One example from :http://www2.imm.dtu.dk/ hbn/dace/

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

-Gaussian emulator

└─ Kriging

ISMP 2003

3

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

-Gaussian emulator

└─ Kriging

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - のへで

Gaussian emulator

Kriging

End

Gracias por su atencion Thanks for your attention Merci Obrigado Danke Grazie

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

-Gaussian emulator

Kriging

Le code CERES

Evolution dans le temps de l'activité volumique instantanée du ¹³⁷Cs dans l'air

 $t = t_4$

Gaussian emulator

Kriging

Le code CERES(bis)

Evolution dans le temps de l'activité volumique instantanée du ¹³⁷Cs en 1 point donné

