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1 Summary

The problem under investigation is the assessment of the water level in
the terminal section of a watercourse in case of flood. The water level
is evaluated as a function of the discharge and other physical parameters
(measured) which will be detailed hereinafter.
Even if the questions underlying this study are similar to ones engineers cope
with in practice, the case presented hereby is a simplification of the actual
technical problem. Nevertheless, it is of great value as it can be used to
illustrate several possible answers which can be given by Uncertainty Quan-
tification (UQ) methods [Pasanisi and Dutfoy, 2012]. Indeed, this case study
is intensively used in professional training courses on uncertainty analysis
and computer experiments, hosted by the French National Laboratory of
Metrology and Testing (LNE) and Électricité de France (EDF). It has also
been widely used (as is or under slight variants) in a number of recent papers
for illustrating different methods and problems in UQ. Cf. [Limbourg and
De Rocquigny, 2010, Baraldi et al., 2011, Barbillon et al., 2011, Iooss, 2011,
Pasanisi et al., 2012, Fu et al., 2012, Bousquet, 2012, Chastaing et al., 2012,
Lemâıtre et al., 2013] as non-exhaustive list of examples.
We will start by assessing the probability distribution of the inputs of the
physical model, based on the available data. A particulate care will be
taken in modelling the dependence between variables. Actually, in principle,
neglecting the dependence (i.e. considering only the marginal distributions
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variables taken one-by-one) can introduce an uncontrolled and potentially
high error in the results of a study.
Then, three different kinds of evaluations are undertaken on this case study.

• First, a ”central tendency” study (using the Monte Carlo sampling
algorithm and the Taylor decomposition based perturbation method)
will be performed to assess the mean and standard deviation of the
output.

• Then, the probability for the output to exceed a given threshold will be
evaluated, using different sampling algorithms as well as the popular
FORM (First Order Reliability Method) approach.

• Finally, a sensitivity analysis will also be undertaken to find out the
variables the output is most sensible to.

The calculations shown hereby have been realised by means of the Open
TURNS software [Dutfoy et al., 2009], jointly developed by the three com-
panies EDF, EADS and Phiméca. Specifically intended for uncertainty
quantification in numerical simulation, Open TURNS is an open source
C++ library, available as a Python module. Open TURNS includes sev-
eral specific methods for uncertainty propagation, sensitivity analysis and
structural reliability and has been designed to be easily coupled to an ex-
ternal numerical code, seen as a black box trough which uncertainties are
propagated (non-intrusive approach). The software and its documentation
can be downloaded from the URL: http://www.openturns.org.

2 Introduction

Let us consider a portion of watercourse of length L. The variable of interest
of this study is the water level in the terminal section of the portion. The
phenomenon this study is concerned with (cf. Figure 1) is governed by the
de St. Venant shallow water equations (1871), relying the water level H
(measured w.r.t. the riverbed) at the abscissa x and time t to the discharge
Q, the water section S, the lateral inflows qL, the slope I and the head losses
J due to the friction between the water body and the riverbed:

∂S

∂t
+ ∂Q

∂x
= qL,

∂Q

∂t
+ ∂(Q2/S)

∂x
+ gS

∂H

∂x
= gS(I − J).
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Figure 1: Schematic view of the physical problem and of the quantities
involved in the study.

In the case of steady flow, with no inflows, and large rectangular section (i.e.
width B � H), assuming that the classical Manning-Strickler formulation
is used for the head losses, the equation above has the closed-form solution:

H =
(

Q

Ks ·B ·
√

(Zm − Zv)/L

)3/5

, (1)

where Ks is the Strickler’s friction coefficient, Zm and Zv the riverbed levels
(w.r.t. a fixed reference, e.g. the mean sea level) upstream and downstream
the part of the watercourse under consideration (whose length is L) and B
the width of the water section. The variable of interest, noted Y in the
following, is the water level in the terminal section of the river portion,
measured with respect to a fixed level (e.g. the sea mean level):

Y = Zv +
(

Q

Ks ·B ·
√

(Zm − Zv)/L

)3/5

. (2)

3 Model

A preliminary and fundamental step in any UQ study is the probabilistic
modelling of the input variables. Actually, the uncertainty tainting the
inputs is transferred to the output Y trough the equation 2, that we will
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rewrite:

Y = G(X, d). (3)

In this expression we explicitly consider two kinds of input variables. The
uncertain ones are gathered into a random vector X, while the deterministic
ones constitutes the constant vector d.
The width of the cross section B and the length L of the portion of the
watercourse are here considered as constant and they are given the values
of 300 m and 5000 m respectively. The components of the random vector X
are then (Q,Ks, Zm, Zv).
The probability distribution of Q, Zm and Zv are fitted on available data
(cf. next section).
In particular, we will consider a Gumbel distribution as the probabilistic
model for the discharges Q and triangular distributions for both Zm and
Zv. Moreover, we will explicitly take into account the dependence between
Zm and Zv, which sounds logical by an engineering viewpoint. Actually, the
phenomena that makes the riverbed level be uncertain (erosion, accumula-
tion of sediments, presence of vegetation etc.) act in the same way in the
section located upstream and downstream the part of river considered here,
as the distance between these two section is relatively small with respect to
the scale of these phenomena.
From a mathematical viewpoint, the dependence between Zm and Zv will
be modelled by means of a copula [Nelsen, 2006], fitted on the pairwise
data (Zm, Zv) available, i.e. the joint cumulative distribution function (cdf)
F (Zm, Zm) is written:

F (zm, zv) = C (F (zm), F (zv)) , (4)

F (Zm) and F (Zv), being the marginal univariate cdf’s of Zm and Zv and
C(·, ·) being the copula of the joint distribution, assumed as Gaussian:

CΞ(w1, w2) = ΦΞ
(
Φ−1(w1),Φ−1(w2)

)
, (5)

where Φ−1(·) is the inverse cdf of the standard Gaussian distribution and
ΦΞ the density of a bivariate Gaussian distribution with null mean and
correlation matrix Ξ.
Concerning the Strickler’s coefficient Ks, no measures are available. Ac-
tually, even if this parameter has a certain physical sense, i.e. an inverse
quantification of the roughness of the riverbed (the smaller Ks, the higher
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the friction between the water-body and the riverbed), in practice it is to
be rather regarded as a parameter of the hydraulic model, than an actual
physical quantity. The distribution of Ks can be, in practice, inversely in-
ferred from a set of pairwise data (discharge vs. water level), as in Barbillon
et al. [2011] or Fu et al. [2012], but often it is reasonable to expect that some
expertise is available. Indeed, according to his/her prior knowledge of the
watercourse an expert can often provide an interval containing likely values
of Ks or his/her best guess with some error bounds.
In the case under investigation, the available expertise states that the Strick-
ler’s coefficient should have a value ”around” 30±5 m1/3s−1. Based on this
information, it seems reasonable to chose a Gaussian distribution with mean
and standard deviation equal to 30 and 7.5 as appropriate for modeling the
uncertainty tainting Ks: the reference value corresponds to the mean of
the distribution and the probability for the Ks to be in interval 30 ± 15 is
approximately 95%.

4 Data

For this problem, the analyst has at his/her disposal several data, shown in
Table 1. First, a dataset of 149 historical records of annual maximum water
discharges (in m s−3) is available. The history of the maxima is plotted
in Figure 2 (left). It is worth noting that a look at the graph shows that
the data distribution is not symmetric and, namely, positive-skewed. Very
much higher values than the mean are found in the sample, as it is typical
for extreme values problems.
The second piece of information is a set of 29 couples of records of the
riverbed levels. Data are all measured with respect to a given fixed level,
and are here expressed in m ASL (above sea level). Not surprisingly the
data plot (in Figure 2, right) clearly shows a dependence between upstream
and downstream levels. That is logical, as in practice the variation of these
levels depends on local phenomena like erosion, sediment accumulation, veg-
etation grow which can be imagined to act in the same way upstream and
downstream the portion of river under investigation (if the length L of it is
reasonably small).
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Figure 2: Plot of the input data: annual maximum discharges (left) and
pairwise riverbed levels (right).

Discharge data (m3/s) 
 

3854 1256 1649 1605 341 1149 868 1148 1227 1991 1255 1366 1100 1837 351 
 

1084 1924 843 2647 1248 2417 1125 903 1462 378 1230 1149 1400 2078 1433 
 

917 1530 2442 2151 1909 630 2435 1920 1512 1377 3330 1858 1359 714 1528 
 

1035 1026 1127 1839 771 1730 1889 3320 352 885 759 731 1711 1906 1543 
 

1307 1275 2706 582 1260 1331 1283 1348 1048 1348 383 1526 789 811 1073 
 

965 619 3361 523 493 424 2017 1958 3192 1556 1169 1511 1515 2491 881 
 

846 856 1036 1830 1391 1334 1512 1792 136 891 635 733 758 1368 935 
 

1173 547 669 331 227 2037 3224 1525 766 1575 1695 1235 1454 2595 706 
 

1837 1629 1421 2204 956 971 1383 541 703 2090 800 651 1153 704 1771 
 

1433 238 122 1306 733 793 856 1903 1594 740 3044 1128 522 642   
                
                

Riverbed level data (m ASL) 

Zm 55.1 55 54.9 54.3 54.7 55.5 55.4 55.4 54.8 55.2 54.9 54.4 55.3 55.3 54.3 

Zv 50.4 50.3 50.2 49.9 50.5 50.4 50.2 50.2 49.8 50.2 50.7 50.1 50 50.6 49.5 

                
Zm 55.6 54.3 55.5 54.5 55.1 55.2 54.4 55.9 55.6 54.9 55.6 55 55.4 54.6  
Zv 50.8 50 50.3 50.1 50.1 50.5 49.2 50.6 50.7 50 50.7 50.3 50.1 49.5  

 

Table 1: Values of annual maximum discharges (up) and riverbed levels
(down), available for the study.

5 Methods and results

5.1 Assessing the probability distribution of the input

First, let us focus on the discharge data (Q variable). A number of con-
tinuous probability distribution functions (pdf’s) is automatically tested by
Open TURNS and compared using the Kolmogorov Smirnov statistic and
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the Bayesian Information Criterion (BIC). Finally a Gumbel distribution is
retained:

Gu(α, β) = α exp [−α (q − β)− exp (−α (q − β))] , (6)

with α = 1.797 · 10−3 and β = 1014.14. The QQ-plot in Figure 3 shows a
fairly good adjustment between the data and the fitted distribution.
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Debit.csv qqplot

Figure 3: QQ plot of discharge data vs. fitted Gumbel distribution.

Concerning the joint pdf of the riverbed levels vector (Zm, Zv), first two
triangular distributions T (a,m, b) (with a and b being the lower and upper
bounds and m the mode of the distribution) are independently fitted on the
available samples of Zm and Zv respectively. That leads to take as marginal
distributions T (52.53, 54.89, 57.67) and T (47.62, 50.55, 52.41) for Zm and Zv

respectively.
Then, a Gaussian copula is fitted on the pairwise ranked sample. The cor-
relation matrix of the fitted copula is:

Ξ =
[

1 0.677
0.677 1

]
.

The good fitting between pairwise data and the estimated copula is graph-
ically tested by means of the Kendall plot [Genest and Boies, 2003], which
can be interpreted as a multivariate version of the QQ-plot: the more the

Pasanisi, Popelin, Keller, Iooss page 7 of 24



Flood water level assessment with Open TURNS

points of the plot are close to the identity line, the more the data are ad-
justed on the proposed distribution. The Figure 4 shows the good quality
of the proposed adjustment.
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Figure 4: Kendall plot showing the fair adjustment of the vector (Zm, Zv)
to a Gaussian copula.

5.2 Central tendency evaluation

A central tendency evaluation aims at evaluating a reference value for the
variable of interest, here the water level Y given by the expression 2, and an
indicator of the dispersion of the variable around the reference. To address
this problem, mean µY = E(Y ), and the standard deviation σY =

√
V(Y )

of Y have been evaluated using two different methods.
First, following a popular method within the Measurement Science com-
munity [Joint Committee for Guides in Metrology, 2008], µY and σY have
been computed under a Taylor first order approximation of the function
Y = G(X) (notice that the explicit dependence on the deterministic vari-
able d is here omitted for simplifying notations):

µY ≈ G (E(X)) (7)

σY ≈
4∑

i=1

4∑
j=1

∂G

∂Xi

∣∣∣
E(X)

∂G

∂Xj

∣∣∣
E(X)

ρijσiσj , (8)
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σi and σj being the standard deviation of the ith and jth component (Xi

and Xj) of the vector X and ρij their correlation coefficient. Thanks to the
formulas above, the mean and the standard deviation of Y are evaluated as
52.75 m and 1.15 m respectively.
Then, the same quantities have been evaluated by a Monte Carlo evalua-
tion [Robert and Casella, 2004]: a set of 10000 samples of the vector X
is generated and the function G(X) is evaluated, getting thus a sample of
Y . The empirical mean and standard deviation of this sample are 52.75 m
and 1.42 m respectively. The figure 5 shows the empirical histogram of the
generated sample of Y .
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Figure 5: Empirical histogram of 10000 samples of Y .

5.3 Excess probability evaluation

We now turn to the estimation of the probability for the output Y to exceed
a certain threshold s, which we note Pf in the following. If s is the alti-
tude of a flood protection dyke, then the above excess probability, Pf can
be interpreted as the probability of an overflow of the dyke, i.e. a failure
probability.
Note that an equivalent way of formulating this reliability problem would be
to estimate the (1−p)-th quantile of the output’s distribution. This quantile
can be interpreted as the flood height qp which is attained with probability
p each year. T = 1/p is then seen to be a return period, i.e. a flood as high
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than q1/T occurs on average every T years.
Hence, the probability of overflowing a dyke with height s is less than p
(where p, for instance, could be set according to safety regulations) if and
only if s ≥ qp, i.e. if the dyke’s altitude is higher than the flood with return
period equal to T = 1/p.

5.3.1 FORM

A popular way of evaluating such failure probabilities is through the so-
called First Order Reliability Method (FORM) [Ditlevsen and Madsen, 1996,
Lemaire, 2010]. This approach starts by a applying a transformation H to
the input vector X such that the result U = H(X) has a spherical distri-
bution (i.e. the density only depend on the norm of U). We consider here
the Rosenblatt transformation, such that the transformed vector U is dis-
tributed according to the standard normal distribution, with zero-mean and
identity covariance matrix [Rosenblatt, 1952, Lebrun and Dutfoy, 2009].
Next, the failure domain Df , defined as the set of input values such that
the output Y exceeds s, is considered. It is bounded by the limit-state
surface, which is the set of input values such that Y = s. Using the FORM
method, the limit-state-surface is assumed approximately linear after having
applied the transformation H. The algorithm then aims at finding the so-
called ”design point” u∗, which is the point on the limit-state surface whose
distance βHL to the origin is minimal (assuming this point is unique). Such a
point can be found for instance through a gradient-descent algorithm which
searches for zeros of the function Y − s = G ◦ H−1(U) − s using the origin
U = 0 as a starting point.
The distance βHL of u∗ to the origin of the standard space, termed the
Hasofer-Lind reliability index, then provides the following convenient ap-
proximation to the failure probability:

P̂f,F ORM =
{

Φ(−βHL) If the origin lies in the failure domain
Φ(βHL) otherwise,

where Φ is the cdf of the standard normal distribution.
We evaluated the probability that the yearly maximal water height Y ex-
ceeds s=58 m using FORM. The Hasofer-Lind Reliability index was found
to be equal to: βHL = 3.04, yielding a final estimate of:

P̂f,F ORM = 1.19× 10−3.
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5.3.2 Monte Carlo

Because the FORM approximation relies on many assumptions, it is usually
recommended to complement it by a Monte Carlo estimate, which is always
valid but in general much more computationally intensive. It consists in
sampling many input values (X(i))1≤i≤N from the input vector joint distri-
bution, then computing the corresponding output values Y (i) = G(X(i)).
The excess probability Pf is then estimated by the proportion of sampled
values Y (i) that exceed t :

P̂f,MC = 1
N

N∑
i=1

1{Y (i)>s}. (9)

The sample average of the estimation error P̂f,MC −Pf decreases as 1/
√
N,

and can be precisely quantified by the following confidence interval:

IPf,MC
=

[
P̂f,MC − 1.96 σ̂1{Y >s}/

√
N, P̂f,MC + 1.96 σ̂1{Y >s}/

√
N
]
,

where σ̂1{Y >s} = P̂f,MC × (1 − P̂f,MC) is the estimation of the variance of
the Bernoulli distributed variable 1{Y (i)>s}, which contains the true value
approximately 95 times out of 100. In the present case we found:

P̂f,MC = 1.50× 10−3,

with the following 95% confidence interval:

IPf ,MC =
[
1.20× 10−3, 1.79× 10−3

]
.

These results are coherent with those of the FORM approximation, confirm-
ing that the assumptions underlying the latter are correct.
An even more precise estimate can be obtained through importance sampling
[Robert and Casella, 2004], using the Gaussian distribution with identity
covariance matrix and mean equal to the design point u∗ as the proposal
distribution. Thus many values (U (i))1≤i≤N are sampled from this proposal.
Then, we use the following identity:

P̂f =
∫

1{G◦T−1(u)>s}φ4(u)du

=
∫

1{G◦T−1(u)>s}
φ4(u)

φn(u− u∗)φn(u− u∗)du,

where φ4 is the density of the standard normal distribution on R4, i.e. the
distribution of the transformed input vector U . Because φn(u − u∗) is the
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proposal density from which the U (i) have been sampled, the failure proba-
bility can estimated without bias by:

P̂f,IS = 1
N

N∑
i=1

1{G◦T−1U(i)>s}
φn(U (i))

φn(U (i) − u∗)
(10)

The rationale of this approach is that by sampling in the vicinity of the
failure domain boundary, a larger proportion of values fall within the failure
domain than by sampling around the origin, leading to a better evaluation
of the failure probability, and a reduction in the estimation variance. Using
this approach, we found:

P̂f,IS = 1.40× 10−3

As in the simple Monte-Carlo approach, a 95%-level confidence interval can
be derived from the output of the Importance Sampling algorithm. In the
present case, this is equal to:

IPf ,IS =
[
1.26× 10−3, 1.53× 10−3

]
,

and indeed provides tighter confidence bounds for Pf .

5.4 Global sensitivity analysis

The sensitivity analysis aims to investigate how a given computational model
responds to variations in its inputs. Such knowledge is useful for determin-
ing the degree of resemblance of a model and a real system, distinguishing
the factors that mostly influence the output variability and those that are in-
significant, revealing interactions among input parameters and correlations
among output variables, etc. A detailed description of sensitivity analysis
methods can be found in [Saltelli et al., 2000, Iooss, 2011]. In the global
sensitivity analysis strategy, the emphasis is put on apportioning the output
uncertainty to the uncertainty in the input factors, given by their uncer-
tainty ranges and probability distributions. Most of the used methods are
based on a model output variance analysis.
If the behaviour of Y compared to each parameter is overall linear, it is
possible to obtain quantitative measurements of their influence from the
regression coefficients αi of the linear regression connecting Y to the X =
(X1, . . . , Xp):

Ŷ = α0 +
p∑

i=1
αiXi (11)
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where Ŷ represents the estimation of Y by the regression model.
The Standard Regression Coefficients (SRC), defined by:

SRCi = αi
σi

σY
(for i = 1 . . . p), (12)

measure the variation of the response for a given variation of the parameter
Xi. In practice, we start by making the multiple linear regression between Y
and all the parameters Xi (Equation 11). We then determine if their relation
is approximately linear by making classical statistical tests on residuals and
by calculating the coefficient of determination R2:

R2 = 1−
∑N

i=1(Y (i) − Ŷ (i))2∑N
i=1(Y − Y (i))2

, (13)

where {Y (i)}i=1...N is aN -size sample of the output variable, Y is the average
of Y . The coefficient R2 represents the variance percentage of the output
variable Y explained by the regression model Ŷ . Therefore, if R2 is close to
one, the relation connecting Y to all the parameters Xi is almost linear and
we can use the SRC as sensitivity indices.
In our case study, we obtain from a Monte Carlo sample of size N = 1000
a linear regression model with R2 = 0.96, which allows to consider that the
linear relation hypothesis is valid. The regression coefficients and sensitivity
indices (SRC) are given in Table 2.

Q Ks Zv Zm α0
αi 0.00114413 -0.0599834 1.17645 -0.185676 4.21087

SRCi 0.347504 0.108773 0.662248 0.020291

Table 2: Regression coefficients and SRC of the flood model inputs.

If the relation between two variables X and Y is not linear, the correlation
coefficients of the ranks (or Spearman coefficients) can be used. By replacing
the values X(1), . . . , X(N) and Y (1), . . . , Y (N) by their rank, the assumption
of linearity is replaced by the assumption of a monotonic relation. In the
same way that previously, one can also compute the standard rank regression
coefficients (SRRC) by carrying out the linear regressions on the ranks.
The SRC and SRRC are related respectively to linear and monotonic as-
sumptions. More general variance-based sensitivity indices, called Sobol’
indices [Sobol, 1993], have been defined for the first order and second order
as:

Si = V(E(Y |Xi))
V(Y ) Sij = V(E(Y |Xi, Xj))

V(Y ) − Si − Sj (14)
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and so on until the pth order. A first order Sobol’ index is related to the
sole contribution of an input, while a second order Sobol’ index gives the
contribution of the interaction between two inputs. A Sobol’ index can be di-
rectly interpreted as the contribution percentage of an input in the variance
of the model output. In practice, there are many methods to compute Sobol
indices: Monte-Carlo method (quite expensive), non parametric functional
estimation (for low-order indices), repose surface techniques, etc. [Sobol,
1993, Saltelli et al., 2000, Iooss, 2011].
In sensitivity analysis, graphical techniques can also be useful. For example,
with all the scatterplots between each input variable and the model output,
one can detect some trends in their functional relation. However scatterplots
do not capture some interaction effects between the inputs. Cobweb plots
[Kurowicka and Cooke, 2006], also called parallel coordinate plots, can then
be used to visualize the simulations as a set of trajectories. In Figure 6, the
simulations leading to the largest values of the model output H have been
colored in red. This allows to immediately understand that these simulations
correspond to large values of the flowrate Q and small values of the Strickler
coefficient Ks.

Q
K
Zv
Zm
H

Figure 6: Cobweb plot of 10000 simulations of the flood model.

Finally, if the quantity of interest related to the model output is not the
variance but a probability of rare events (as a probability of treshold ex-
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ceedance), different sensitivity indices have to be considered. For example,
we can compute some importance factors obtained with FORM (see section
5.3.1): these are the coordinates of the design point. The Figure 7 gives the
importance factors of the inputs of the flood model resulting from FORM.
Other sensitivity analysis methods related to rare events of a model output
are described in [Lemâıtre et al., 2013]

FORM Importance Factors − Event Zc > 58.0

Q : 32.4%

Ks : 56.8%

Zv : 9.5%

Zm : 1.2%

Figure 7: Importance factors obtained with FORM.

6 Conclusion

This educational example has shown a number of questions and problems
that can be addressed by UQ methods: central tendency evaluation, excess
probability assessment and sensitivity analysis.
Different numerical methods have been used for solving these three classes of
problems, leading substantially to the same (or very similar) results. In in-
dustrial practice of UQ, the main issue (which actually motivates the choice
of one mathematical method instead of another) is the computational bud-
get, which is actually given by the number of allowed runs of the determinis-
tic model G(·). When the computer code implementing G(·) is computation-
ally expensive, one needs specifically designed mathematical and software
tools.
Open TURNS is specially intended to cope with this problem : (i) it includes
a set of efficient mathematical methods for UQ and (ii) it can be easily
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connected to any external black box model G(·) under very mild condition
on the computer code. In practice, once the model has been specified as
a specific Open TURNS object, the NumericalMathFunction (cf. listing 3
below), it is seen by Open TURNS as a simple function, relying inputs and
output, whatever its complexity.

7 Open TURNS code

The following listings show the implementation of the exercise presented
hereinbefore in the Python environment by means of Open TURNS:

• listing 1 implements the statistical analysis of discharge data,

• listing 2 implements the statistical analysis of riverded level data, lead-
ing to the fit of two triangular marginal pdf’s for Zm and Zv and a
Gaussian copula,

• listing 3 shows the way the connection between the deterministic and
the probabilistic models (i.e. the function G(X, d) and the pdf of
X respectively) is made within the Open TURNS framework: the
main object to be defined is the NumericalMathFunction and its ar-
guments are the random inputs, the output variable of interest and
a formula relying them (notice that the NumericalMathFunction can
also be defined from an external code and a wrapper, acting as an in-
terface between Open TURNS and the external code [Open TURNS
Consortium, 2012]),

• listing 4 implements the central tendency analysis (Taylor’s approxi-
mation and Monte Carlo methods),

• listing 5 implements the calculation of excess probability (FORM,
Monte Carlo, Importance Sampling): notice the particular syntax for
specifying the ”Event” one wants to evaluate the probability of,

• listing 6 implements the sensitivity analysis, using SRC’s and FORM
index, as well as the graphical method of the cobweb plot.
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Listing 1: Flood water level: Fitting the pdf of the discharge Q
from openturns import *
from openturns.viewer import ViewImage
# Read the sample of data from a csv file
qSample =

NumericalSample.ImportFromCSVFile("Debit.csv")
# Create a collection of " factories " of pdf ’s
CollContFactory = DistributionFactoryCollection(

(NormalFactory (), WeibullFactory (),
LogNormalFactory (), GumbelFactory () ) )

# Rank the pdf ’s w.r.t. the Kolmogorov p- values
bestDistributionKolmogorov =

FittingTest.BestModelKolmogorov(qSample ,
CollContFactory)

# Get all information on that distribution
print bestDistributionKolmogorov

# Get the test result associated to the best
distribution

print FittingTest.GetLastResult ()
# Rank the continuous models w.r.t.the BIC values
bestDistributionBIC =

FittingTest.BestModelBIC(qSample ,
CollContFactory)

# Get all information on that distribution
print bestDistributionBIC
# Validate by a graphical test (QQ -plot)
sampleQQPlot =

VisualTest.DrawQQplot(qSample ,bestDistributionBIC ,100)
sampleQQPlot.draw("SampleQQPlot")
ViewImage(sampleQQPlot.getBitmap ())
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Listing 2: Flood water level: Fitting the pdf of the waterbed levels (Zm, Zv).
# Read the 2- dimension sample from a csv file
initSample =

NumericalSample.ImportFromCSVFile("ZmZv.csv")
# Create two 1- dimension samples
ZmValues = [[ initSample[k][0]] for k in

range(initSample.getSize ())]
ZvValues = [[ initSample[k][1]] for k in

range(initSample.getSize ())]
ZmSample = NumericalSample(ZmValues);
ZvSample = NumericalSample(ZvValues);
# Fit triangular pdf ’s on the samples Zm and Zv
ZmfittedTriangular =

TriangularFactory ().build(ZmSample)
print ZmfittedTriangular
ZvfittedTriangular =

TriangularFactory ().build(ZvSample)
print ZvfittedTriangular
# Create the operator which transforms the

marginals into uniform pdf ’s
ranksTransf = MarginalTransformationEvaluation(

DistributionCollection( [
Triangular (52.529 ,54.8949 ,57.6723) ,
Triangular (47.6226 ,50.5531 ,52.4077)] ),
MarginalTransformationEvaluation.FROM )

# Transform the initial sample into a ranked one
transformedSample = NumericalSample(

initSample.getSize (), initSample.getDimension () )
for i in range(initSample.getSize ()) :

transformedSample[i] =
ranksTransf(initSample[i])

estimatedCopula =
NormalCopulaFactory ().build(transformedSample)

print estimatedCopula
# Draw a Kendall Plot
myValue = 1000; ResourceMap.SetAsUnsignedLong(

’VisualTest -KendallPlot -MonteCarloSize ’, myValue
)

#Run the Kendall test and show the graph
kendallPlot1 =

VisualTest.DrawKendallPlot(initSample ,
estimatedCopula); Show(kendallPlot1)
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Listing 3: Specification of the uncertainty analysis problem in Open TURNS
# Definition of the input vector [Q, Ks , Zv , Zm]
inputDim = 4; randomInput = Description(inputDim)
randomInput [0] = "Q"; randomInput [1] = "Ks";

randomInput [2] = "Zv"; randomInput [3] = "Zm"
# Description of the output vector
outputVar = Description (1); outputVar [0] = "Zc"
# Description of the model
formula = Description (1); formula [0] = "Zv␣+␣(Q␣/␣

(Ks␣*␣300␣*␣sqrt(abs(Zm-Zv)␣/␣5000)))␣ˆ␣0.6"
# Link deterministic and probabilistic models
finalModelCrue = NumericalMathFunction(randomInput ,

outputVar , formula)
# Definition of the probabilistic problem
loi_Q =

TruncatedDistribution(Distribution(Gumbel (0.00179654 ,
1014.14)) ,0.0, TruncatedDistribution.LOWER)

loi_K =
TruncatedDistribution(Distribution(Normal (30.,
7.5)) ,0., TruncatedDistribution.LOWER)

loi_Zv = Triangular (47.6226 ,50.5531 ,52.4077)
loi_Zm = Triangular (52.529 ,54.8949 ,57.6723)
# Dependence structure : Gauss. copula for (Zm ,Zv)
dim=2; R=CorrelationMatrix(dim); R[0 ,1]=0.677732
normalCopula = NormalCopula(R)
# Dependence structure : Final composed copula
copulaColl = CopulaCollection (2)
copulaColl [0] = Copula(IndependentCopula (2))
copulaColl [1] = Copula(normalCopula)
copula = ComposedCopula(copulaColl)
# Definition of the joint distribution
inputJointDistribution =

ComposedDistribution(inputDistribCollection ,
Copula( copula ) )

inputJointDistribution.setDescription(randomInput)
# Input Random Vector
inputRandomVector =

RandomVector(inputJointDistribution)
# Output Random Vector
outputVariable =

RandomVector(finalModelCrue ,inputRandomVector)
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Listing 4: Central tendency analysis
# Taylor ’s approximation
myQuadCum = QuadraticCumul(outputVariable)
print "Mean␣-␣First␣order␣=␣",

myQuadCum.getMeanFirstOrder ()[0]
print "Mean␣-␣Second␣order␣=␣",

myQuadCum.getMeanSecondOrder ()[0]
print "Variance␣-␣First␣order␣=␣",

myQuadCum.getCovariance ()[0,0]
# Monte Carlo
# Create a random sample of the output variabe of

interest of size 10000
size = 10000; outputSample =

outputVariable.getNumericalSample(size)
# Get the empirical mean

empiricalMean = outputSample.computeMean ()
print "Empirical␣Mean␣=␣", empiricalMean
# Get the empirical covariance matrix
empiricalCovarianceMatrix =

outputSample.computeCovariance ()
print "Empirical␣Covariance␣Matrix␣=␣",

empiricalCovarianceMatrix
print "Standard␣deviation␣of␣output␣=␣",

sqrt(empiricalCovarianceMatrix [0 ,0])
# Histogram
H_Hist = VisualTest.DrawHistogram(outputSample);

H_Hist.draw("Histogram_H");
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Listing 5: Excess probability evaluation
# Event definition
threshold = 58.0; myEvent = Event(outputVariable ,

ComparisonOperator(Greater ()), threshold)
# FORM algorithm
myCobyla = Cobyla () ; meanInputVector =

inputRandomVector.getMean ()
myFORM = FORM(NearestPointAlgorithm(myCobyla),

myEvent , meanInputVector)
myFORM.run() ; FormResult = myFORM.getResult ()
# FORM Importance factors
importanceFactorsGraph =

FormResult.drawImportanceFactors ()
# Importance Sampling
maximumOuterSampling_IS = 40000; StdPt =

FormResult.getStandardSpaceDesignPoint ()
# Define the importance distribution
mean = StdPt; sigma = NumericalPoint (4 ,1.0)
importanceDistrib =

Normal(mean ,sigma ,CorrelationMatrix (4))
# Define the IS algorithm : event , distribution ,

criteria of convergence ,...
myStandardEvent = StandardEvent(myEvent)
myAlgoImportanceSampling = ImportanceSampling

(myStandardEvent ,
Distribution(importanceDistrib))

myAlgoImportanceSampling.setMaximumOuterSampling
(maximumOuterSampling_IS)

myAlgoImportanceSampling.setMaximumCoefficientOfVariation
(0.05)

myAlgoImportanceSampling.setConvergenceStrategy
(HistoryStrategy(Full()))

myAlgoImportanceSampling.run()
# Monte Carlo algorithm
myMonteCarlo = MonteCarlo(myEvent)
numberSimulation = 100000
myMonteCarlo.setMaximumOuterSampling(numberSimulation)
myMonteCarlo.setBlockSize (1)
myMonteCarlo.setMaximumCoefficientOfVariation (0.1)
myMonteCarlo.run()
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Listing 6: Sensitivity Analysis
# Compute the SRC ’s
from math import sqrt
inputSample =

inputRandomVector.getNumericalSample (1000)
outputSample = finalModelCrue(inputSample)
SRCCoefficient =

CorrelationAnalysis.SRC(inputSample ,
outputSample)

print "SRC␣Coefficients", SRCCoefficient
linearRegressionModel =

LinearModelFactory ().build(inputSample ,
outputSample , 0.90)

print "Coefficients␣of␣the␣linear␣regression␣model␣
=␣" , linearRegressionModel.getRegression ()

resultLinearModelRSquared =
LinearModelTest.LinearModelRSquared(inputSample ,
outputSample , linearRegressionModel ,0.90)

print "R-2␣=␣", resultLinearModelRSquared
# Draw the Cobweb plot
descr_input =

Description(inputSample.getDimension ())
descr_output =

Description(outputSample.getDimension ())
descr_output [0] =’H’; descr_input [0] = ’Q’;

descr_input [1] = ’K’; descr_input [2] = ’Zv’;
descr_input [3] = ’Zm’

inputSample.setDescription(descr_input)
outputSample.setDescription(descr_output)
sample _trie = outputSample.sort(); i=50
# Graph 1 : value based scale to describe the Y

range
minValue = sample _trie[inputSample.getSize ()-i][0]
maxValue = sample _trie[inputSample.getSize () -1][0]
myCobweb = VisualTest.DrawCobWeb(inputSample ,

outputSample , minValue , maxValue , ’red’, False)
myCobweb.setTitle(’’)
myCobweb.draw(’cobWeb ’, 640, 480,

GraphImplementation.PDF)
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Toulouse, Série 6, 21(3):557 – 591, 2012.

G. Chastaing, F. Gamboa, and C. Prieur. Generalized Hoeffding-Sobol de-
composition for dependent variables. Application to sensitivity analysis.
Electronic Journal of Statistics, 6:2420–2448, 2012.

O. Ditlevsen and H.O. Madsen. Structural Reliability Methods. Wiley, 1996.

A. Dutfoy, I. Dutka-Malen, A. Pasanisi, R. Lebrun, F. Mangeant,
J. Sen Gupta, M. Pendola, and T. Yalamas. OpenTURNS, an Open
Source initiative to Treat Uncertainties, Risks’N Statistics in a structured
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Journal de la Société Française de Statistique, 152:1–23, 2011.

Joint Committee for Guides in Metrology. Evaluation of measurement
data — Guide to the expression of uncertainty in measurement. Interna-
tional Bureau of Weights and Measures (BIPM), Sèvres, France, Septem-
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