Random moment problems

Fabrice Gamboa

Institut de Mathématiques de Toulouse
Université Paul Sabatier
The world in Caracas for Chichi (Doctor León!!)

Agenda

Random moment problems

$\left\llcorner_{\text {Some papers }}\right.$

Some papers and collaborators: Random Moments

Some papers and collaborators: Random Moments

- F. Chang, J. Kemperman, W. Studden J. (1993) A normal limit theorem for moment sequences. AOP
(The seminal paper)

Some papers and collaborators: Random Moments

- F. Chang, J. Kemperman, W. Studden J. (1993) A normal limit theorem for moment sequences. AOP (The seminal paper)
- F.G., L. Lozada Chang (2004) Large deviations for random power moment problem. AOP

Some papers and collaborators: Random Moments

- F. Chang, J. Kemperman, W. Studden J. (1993) A normal limit theorem for moment sequences. AOP (The seminal paper)
- F.G., L. Lozada Chang (2004) Large deviations for random power moment problem. AOP
- L. Lozada Chang (2005) Large Deviations on Moment Spaces. EJP

Some papers and collaborators: Random Moments

- F. Chang, J. Kemperman, W. Studden J. (1993) A normal limit theorem for moment sequences. AOP (The seminal paper)
- F.G., L. Lozada Chang (2004) Large deviations for random power moment problem. AOP
- L. Lozada Chang (2005) Large Deviations on Moment Spaces. EJP
- H. Dette, F.G. (2007) Asymptotic properties of the algebraic moment range process. Acta Math. Hungar.

Random moment problems

$\left\llcorner_{\text {Some papers }}\right.$

Some papers and collaborators: Link with others models

Some papers and collaborators: Link with others models

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)

Some papers and collaborators: Link with others models

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math (Szegö like theorems)

Some papers and collaborators: Link with others models

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math
(Szegö like theorems)
- F.G., A. Rouault (2010) Canonical moments and random measures. JTP

Some papers and collaborators: Link with others models

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math
(Szegö like theorems)
- F.G., A. Rouault (2010) Canonical moments and random measures. JTP
- F. Barthe, F.G., L. Lozada Chang, A. Rouault (2010) Balls, moments and canonical representations. ALEA

Some papers and collaborators: Link with others models

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math (Szegö like theorems)
- F.G., A. Rouault (2010) Canonical moments and random measures. JTP
- F. Barthe, F.G., L. Lozada Chang, A. Rouault (2010) Balls, moments and canonical representations. ALEA
- F.G., A. Rouault (2011) Large deviations for random spectral measures and sum rules. AMRX

Some papers and collaborators: Link with others models

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math (Szegö like theorems)
- F.G., A. Rouault (2010) Canonical moments and random measures. JTP
- F. Barthe, F.G., L. Lozada Chang, A. Rouault (2010) Balls, moments and canonical representations. ALEA
- F.G., A. Rouault (2011) Large deviations for random spectral measures and sum rules. AMRX
- H. Dette et al (2012) Non compact case. CLT. To appear in AOP

Some papers and collaborators: Link with others models

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math (Szegö like theorems)
- F.G., A. Rouault (2010) Canonical moments and random measures. JTP
- F. Barthe, F.G., L. Lozada Chang, A. Rouault (2010) Balls, moments and canonical representations. ALEA
- F.G., A. Rouault (2011) Large deviations for random spectral measures and sum rules. AMRX
- H. Dette et al (2012) Non compact case. CLT. To appear in AOP
- H. Dette et al (2009-2012) Matricial moment case.

The algebraic moment space

$\mathbb{P}:=\{$ Probability measures on $[0,1]\}$

The algebraic moment space

$$
\mathbb{P}:=\{\text { Probability measures on }[0,1]\}
$$

$$
\mathbb{M}_{k}:=\left\{\left(\int_{[0,1]} x^{j} \mu(d x)\right)_{j=1, \ldots, k}: \mu \in \mathbb{P}\right\},\left(k \in \mathbb{N}^{*}\right)
$$

The algebraic moment space

$$
\mathbb{P}:=\{\text { Probability measures on }[0,1]\}
$$

$$
\mathbb{M}_{k}:=\left\{\left(\int_{[0,1]} x^{j} \mu(d x)\right)_{j=1, \ldots, k}: \mu \in \mathbb{P}\right\},\left(k \in \mathbb{N}^{*}\right)
$$

$\mathbb{M}_{k}=$ convex hull of the curve in $\mathbb{R}^{k},\left(x^{j}\right)_{j=1, \ldots, k, x \in[0,1]}$

Random moment problems

$L_{\text {Introduction }}$

Example: the space \mathbb{M}_{2}

Random moment problems

L Introduction

Example: the space \mathbb{M}_{2}

Random moment problems

LIntroduction

Example: the space \mathbb{M}_{3}

Random moment problems

LIntroduction

Example: the space \mathbb{M}_{3}

Random moment problems

L Introduction

Example: the space \mathbb{M}_{3}

Random moment problems

L Introduction

Example: the space \mathbb{M}_{3}

Random moment problems

$L_{\text {Introduction }}$

Example: the space \mathbb{M}_{3}

Random moment problems

$L_{\text {Introduction }}$

Example: the space \mathbb{M}_{3}

Random moment problems

LIntroduction

Example: the space \mathbb{M}_{3}

Concentration of \mathbb{M}_{n}

$$
P_{n}:=\text { Uniform probability on } \mathbb{M}_{n} \text {. Let } Z_{n} \sim P_{n}(n \geq 1)
$$

Concentration of \mathbb{M}_{n}

$$
P_{n}:=\text { Uniform probability on } \mathbb{M}_{n} \text {. Let } Z_{n} \sim P_{n}(n \geq 1)
$$

$Z_{n}^{k}:=$ Natural projection of Z_{n} on $\mathbb{M}_{k}(n \geq k \geq 1)$

Concentration of \mathbb{M}_{n}

$P_{n}:=$ Uniform probability on \mathbb{M}_{n}. Let $Z_{n} \sim P_{n}(n \geq 1)$
$Z_{n}^{k}:=$ Natural projection of Z_{n} on $\mathbb{M}_{k}(n \geq k \geq 1)$

First Stone (fixed k) see Kemperman et al. AOP 1993:

$$
\lim _{n} Z_{n}^{k}=\bar{c}^{(k)}(\text { a.s. })
$$

$\bar{c}^{(k)}=\left(\bar{c}_{1}, \ldots, \bar{c}_{k}\right)$ are the k first moments of the arcsine law ν

$$
\nu(d x):=\frac{1}{\pi \sqrt{x(1-x)}} d x,(x \in[0,1])
$$

$$
\bar{c}_{1}=0.5, \bar{c}_{2}=3 / 8, \ldots
$$

Random moment problems

$L_{\text {Introduction }}$

Example: projections of \mathbb{M}_{3}

Random moment problems

$L_{\text {Introduction }}$

Example: projections of \mathbb{M}_{3}

Random moment problems

$L_{\text {Introduction }}$

Example: projections of \mathbb{M}_{3}

Random moment problems

LIntroduction

Example: concentration of the first moment $(k=1)$ with n

Evolution de la distribution du premier moment en fonction de la dimension

Random moment problems

LIntroduction

Example: concentration of the first moment $(k=1)$ with n

Evolution de la distribution du premier moment en fonction de la dimension

Random moment problems

LIntroduction

Example: concentration of the first moment $(k=1)$ with n

Evolution de la distribution du premier moment en fonction de la dimension

Random moment problems

LIntroduction

Example: concentration of the first moment $(k=1)$ with n

Evolution de la distribution du premier moment en fonction de la dimension

Random moment problems

LIntroduction

Example: concentration of the first moment $(k=1)$ with n

Evolution de la distribution du premier moment en fonction de la dimension

$$
\text { CLT for } Z_{n}^{k}
$$

Main result of the seminal paper of Kemperman et al.

CLT for Z_{n}^{k}

Main result of the seminal paper of Kemperman et al.
Theorem
$\sqrt{n}\left(Z_{n}^{k}-\bar{c}^{(k)}\right)$ converges in distribution toward $\mathcal{N}_{k}\left(0, \Gamma_{k}\right)$. The asymptotic covariance matrix Γ_{k} depends only on the moments of the arsine law (the \bar{c}_{j})

Main result of the seminal paper of Kemperman et al.
Theorem
$\sqrt{n}\left(Z_{n}^{k}-\bar{c}^{(k)}\right)$ converges in distribution toward $\mathcal{N}_{k}\left(0, \Gamma_{k}\right)$. The asymptotic covariance matrix Γ_{k} depends only on the moments of the arsine law (the \bar{c}_{j})
In view of this result some questions

Trying to answer some questions in this probabilistic model

- How does it work?

Trying to answer some questions in this probabilistic model

- How does it work?
- Is it true for other asymptotic (Large deviations)?

Trying to answer some questions in this probabilistic model

- How does it work?
- Is it true for other asymptotic (Large deviations)?
- Concentration for others statistics?

Trying to answer some questions in this probabilistic model

- How does it work?
- Is it true for other asymptotic (Large deviations)?
- Concentration for others statistics?
- Some links with other model?

How does it work? Canonical moments

Seeing the space \mathbb{M}_{n} in other coordinates: The canonical moments

How does it work? Canonical moments

Seeing the space \mathbb{M}_{n} in other coordinates: The canonical moments

$$
\mathcal{P}: c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{M}_{n} \longleftrightarrow p=\left(p_{1}, \ldots, p_{n}\right) \in[0,1]^{n}
$$

How does it work? Canonical moments

Seeing the space \mathbb{M}_{n} in other coordinates: The canonical moments

$$
\mathcal{P}: c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{M}_{n} \longleftrightarrow p=\left(p_{1}, \ldots, p_{n}\right) \in[0,1]^{n}
$$

Canonical moments defined recursively:

$$
p_{1}:=c_{1}
$$

How does it work? Canonical moments

Seeing the space \mathbb{M}_{n} in other coordinates: The canonical moments

$$
\mathcal{P}: c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{M}_{n} \longleftrightarrow p=\left(p_{1}, \ldots, p_{n}\right) \in[0,1]^{n}
$$

Canonical moments defined recursively:

$$
\begin{aligned}
& p_{1}:=c_{1} \\
& p_{2}:=\frac{c_{2}-c_{2}^{-}}{c_{2}^{+}-c_{2}^{-}}
\end{aligned}
$$

How does it work? Canonical moments

Seeing the space \mathbb{M}_{n} in other coordinates: The canonical moments

$$
\mathcal{P}: c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{M}_{n} \longleftrightarrow p=\left(p_{1}, \ldots, p_{n}\right) \in[0,1]^{n}
$$

Canonical moments defined recursively:

$$
\begin{aligned}
p_{1} & :=c_{1} \\
p_{2} & :=\frac{c_{2}-c_{2}^{-}}{c_{2}^{+}-c_{2}^{-}} \\
p_{j} & :=\frac{c_{j}-c_{j}^{-}}{c_{j}^{+}-c_{j}^{-}}, j=1 \ldots n
\end{aligned}
$$

$c_{j}^{-}:=\inf _{\mu \text { fitting } c_{1}, \ldots, c_{j-1}} \int x^{j} \mu(d x)$, and the same with sup for c_{j}^{+}
Observe that c_{j}^{-}and c_{j}^{+}depends only on c_{1}, \ldots, c_{j-1}

Random moment problems

LHow does it work?

Canonical moment p_{2}

Random moment problems

LHow does it work?

Canonical moment p_{2}

Random moment problems

LHow does it work?

Canonical moment p_{2}

Result of Kemperman et al. using Sibinsky (1967)

Theorem

The coordinates of $\mathcal{P}\left(Z_{n}\right)$ are independent. Moreover,

$$
\left(\mathcal{P}\left(Z_{n}\right)\right)_{j} \sim \beta(n-j+1, n-j+1), j=1, \ldots, n
$$

Result of Kemperman et al. using Sibinsky (1967)

Theorem
The coordinates of $\mathcal{P}\left(Z_{n}\right)$ are independent. Moreover,

$$
\left(\mathcal{P}\left(Z_{n}\right)\right)_{j} \sim \beta(n-j+1, n-j+1), j=1, \ldots, n
$$

The Convergence and the CLT are obtained directly using classical arguments (continuity and δ-method). Indeed

Result of Kemperman et al. using Sibinsky (1967)

Theorem
The coordinates of $\mathcal{P}\left(Z_{n}\right)$ are independent. Moreover,

$$
\left(\mathcal{P}\left(Z_{n}\right)\right)_{j} \sim \beta(n-j+1, n-j+1), j=1, \ldots, n
$$

The Convergence and the CLT are obtained directly using classical arguments (continuity and δ-method). Indeed

- $\lim _{I \rightarrow \infty} \beta(I, I)=1 / 2$

Result of Kemperman et al. using Sibinsky (1967)

Theorem
The coordinates of $\mathcal{P}\left(Z_{n}\right)$ are independent. Moreover,

$$
\left(\mathcal{P}\left(Z_{n}\right)\right)_{j} \sim \beta(n-j+1, n-j+1), j=1, \ldots, n
$$

The Convergence and the CLT are obtained directly using classical arguments (continuity and δ-method). Indeed

- $\lim _{I \rightarrow \infty} \beta(I, I)=1 / 2$
- $\sqrt{I}(\beta(I, I)-1 / 2) \rightarrow \mathcal{N}(0,1 / 8)$

Result of Kemperman et al. using Sibinsky (1967)

Theorem
The coordinates of $\mathcal{P}\left(Z_{n}\right)$ are independent. Moreover,

$$
\left(\mathcal{P}\left(Z_{n}\right)\right)_{j} \sim \beta(n-j+1, n-j+1), j=1, \ldots, n
$$

The Convergence and the CLT are obtained directly using classical arguments (continuity and δ-method). Indeed

- $\lim _{I \rightarrow \infty} \beta(I, I)=1 / 2$
- $\sqrt{I}(\beta(I, I)-1 / 2) \rightarrow \mathcal{N}(0,1 / 8)$

Other asymptotics?

Large deviations for Z_{n}^{k}

For $c \in \mathbb{M}_{k}$ define the range of order $k+1$ as

$$
r_{k+1}(c):=c_{k+1}^{+}(c)-c_{k+1}^{-}(c)
$$

Large deviations for Z_{n}^{k}

For $c \in \mathbb{M}_{k}$ define the range of order $k+1$ as

$$
r_{k+1}(c):=c_{k+1}^{+}(c)-c_{k+1}^{-}(c)
$$

Observe that this range is always maximum for the arsine law

Large deviations for Z_{n}^{k}

For $c \in \mathbb{M}_{k}$ define the range of order $k+1$ as

$$
r_{k+1}(c):=c_{k+1}^{+}(c)-c_{k+1}^{-}(c)
$$

Observe that this range is always maximum for the arsine law Indeed, for all $k \geq 1$

$$
r_{k+1}\left(\bar{c}^{(k)}\right)=\frac{1}{4^{k}}
$$

Large deviations for Z_{n}^{k}

For $c \in \mathbb{M}_{k}$ define the range of order $k+1$ as

$$
r_{k+1}(c):=c_{k+1}^{+}(c)-c_{k+1}^{-}(c)
$$

Observe that this range is always maximum for the arsine law Indeed, for all $k \geq 1$

$$
r_{k+1}\left(\bar{c}^{(k)}\right)=\frac{1}{4^{k}}
$$

$\bar{c}^{(k)}$ is the center of \mathbb{M}_{k}

Large deviations for Z_{n}^{k}

For $c \in \mathbb{M}_{k}$ define the range of order $k+1$ as

$$
r_{k+1}(c):=c_{k+1}^{+}(c)-c_{k+1}^{-}(c)
$$

Observe that this range is always maximum for the arsine law Indeed, for all $k \geq 1$

$$
r_{k+1}\left(\bar{c}^{(k)}\right)=\frac{1}{4^{k}}
$$

$\bar{c}^{(k)}$ is the center of \mathbb{M}_{k}
For $c \in \mathbb{M}_{k}$ define

$$
I_{k}(c):=-\log \left[r_{k+1}(c)\right]-k \log 4
$$

(and $I_{k}(c)=+\infty$ if $c \in \mathbb{R}^{k}$ but $c \notin \mathbb{M}_{k}$)
I_{k} is a rate function (in the terminology of large deviations)

Large deviations Theorem 1

Theorem
$\left(Z_{n}^{k}\right)$ satisfies a LDP with rate function I_{k}

Large deviations Theorem 1

Theorem
$\left(Z_{n}^{k}\right)$ satisfies a $L D P$ with rate function I_{k}

Meaning

$$
P\left(Z_{n}^{k} \in A\right) \approx \exp \left[-n \inf _{c \in A} I_{k}(c)\right],\left(A \text { measurable subset of } \mathbb{R}^{k}\right)
$$

Large deviations Theorem 1

Theorem
$\left(Z_{n}^{k}\right)$ satisfies a $L D P$ with rate function I_{k}

Meaning

$$
P\left(Z_{n}^{k} \in A\right) \approx \exp \left[-n \inf _{c \in A} I_{k}(c)\right],\left(A \text { measurable subset of } \mathbb{R}^{k}\right)
$$

The proof is easy and mostly rely on exponential convergence toward $1 / 2$ of $\beta(\alpha, \alpha)$ and classical LD tools.

Large deviations Theorem 1

Theorem
$\left(Z_{n}^{k}\right)$ satisfies a $L D P$ with rate function I_{k}

Meaning

$$
P\left(Z_{n}^{k} \in A\right) \approx \exp \left[-n \inf _{c \in A} I_{k}(c)\right],\left(A \text { measurable subset of } \mathbb{R}^{k}\right)
$$

The proof is easy and mostly rely on exponential convergence toward $1 / 2$ of $\beta(\alpha, \alpha)$ and classical LD tools. Not completely satisfying depends on $k!!!$

Large deviations Theorem 2

Let σ_{n} be any random probability on $[0,1]$ having Z_{n} as n first moments.

Large deviations Theorem 2

Let σ_{n} be any random probability on $[0,1]$ having Z_{n} as n first moments.

Theorem
$\left(\sigma_{n}\right)$ satisfies a LDP with rate function I defined for $P \in \mathbb{P}$ by

$$
I(P):= \begin{cases}\int \log \frac{d \nu}{d P} d \nu & \text { if } \nu \ll P \text { and } \log \frac{d \nu}{d P} \in L^{1}(P) \\ +\infty & \text { otherwise }\end{cases}
$$

Large deviations Theorem 2

Let σ_{n} be any random probability on $[0,1]$ having Z_{n} as n first moments.

Theorem

$\left(\sigma_{n}\right)$ satisfies a LDP with rate function I defined for $P \in \mathbb{P}$ by

$$
I(P):= \begin{cases}\int \log \frac{d \nu}{d P} d \nu & \text { if } \nu \ll P \text { and } \log \frac{d \nu}{d P} \in L^{1}(P) \\ +\infty & \text { otherwise }\end{cases}
$$

Remarks

- Rate function=the reversed Kullback info with respect to ν

Large deviations Theorem 2

Let σ_{n} be any random probability on $[0,1]$ having Z_{n} as n first moments.

Theorem

$\left(\sigma_{n}\right)$ satisfies a LDP with rate function I defined for $P \in \mathbb{P}$ by

$$
I(P):= \begin{cases}\int \log \frac{d \nu}{d P} d \nu & \text { if } \nu \ll P \text { and } \log \frac{d \nu}{d P} \in L^{1}(P) \\ +\infty & \text { otherwise }\end{cases}
$$

Remarks

- Rate function=the reversed Kullback info with respect to ν
- The proof relies on LD projective limit and Szegö theorem

Large deviations Theorem 2

Let σ_{n} be any random probability on $[0,1]$ having Z_{n} as n first moments.

Theorem

$\left(\sigma_{n}\right)$ satisfies a LDP with rate function I defined for $P \in \mathbb{P}$ by

$$
I(P):= \begin{cases}\int \log \frac{d \nu}{d P} d \nu & \text { if } \nu \ll P \text { and } \log \frac{d \nu}{d P} \in L^{1}(P) \\ +\infty & \text { otherwise }\end{cases}
$$

Remarks

- Rate function=the reversed Kullback info with respect to ν
- The proof relies on LD projective limit and Szegö theorem
- obvious nice Corollary linking the two Theorems:

$$
r_{k+1}(c)=\exp \left(-\inf _{P \text { fitting } c} I(P)-k \log 4\right) \quad\left(c \in \mathbb{M}_{k}\right)
$$

Other statistic: Range process

Full evolution of the range: the range process

$$
R_{t}^{n}:=4^{\lfloor n t\rfloor} r_{\lfloor n t\rfloor+1}\left(Z_{n}^{\lfloor n t\rfloor}\right), \quad t \in[0, T], 0<T<1
$$

Other statistic: Range process

Full evolution of the range: the range process

$$
R_{t}^{n}:=4^{\lfloor n t\rfloor} r_{\lfloor n t\rfloor+1}\left(Z_{n}^{\lfloor n t\rfloor}\right), \quad t \in[0, T], 0<T<1
$$

- For $0<T<1,\left(R_{t}^{n}\right)_{t \in[0, T]}$ converges in probability toward the deterministic process $(\sqrt{1-t})_{t \in[0, T]}$.

Other statistic: Range process

Full evolution of the range: the range process

$$
R_{t}^{n}:=4^{\lfloor n t\rfloor} r_{\lfloor n t\rfloor+1}\left(Z_{n}^{\lfloor n t\rfloor}\right), \quad t \in[0, T], 0<T<1
$$

- For $0<T<1,\left(R_{t}^{n}\right)_{t \in[0, T]}$ converges in probability toward the deterministic process $(\sqrt{1-t})_{t \in[0, T]}$.
- Let $\left.\left(B_{t}\right)\right)_{t \in[0, T]}$ denotes a standard Brownian motion

$$
\left(\left(\frac{R_{t}^{n}}{\sqrt{1-t}}\right)^{\sqrt{n}}\right)_{t \in[0, T]} \rightsquigarrow\left(\exp \frac{1}{\sqrt{2}} \int_{0}^{t} \frac{d B_{u}}{1-u}\right)_{t \in[0, T]}
$$

Other statistic: Range process

Full evolution of the range: the range process

$$
R_{t}^{n}:=4^{\lfloor n t\rfloor} r_{\lfloor n t\rfloor+1}\left(Z_{n}^{\lfloor n t\rfloor}\right), \quad t \in[0, T], 0<T<1
$$

- For $0<T<1,\left(R_{t}^{n}\right)_{t \in[0, T]}$ converges in probability toward the deterministic process $(\sqrt{1-t})_{t \in[0, T]}$.
- Let $\left.\left(B_{t}\right)\right)_{t \in[0, T]}$ denotes a standard Brownian motion

$$
\left(\left(\frac{R_{t}^{n}}{\sqrt{1-t}}\right)^{\sqrt{n}}\right)_{t \in[0, T]} \rightsquigarrow\left(\exp \frac{1}{\sqrt{2}} \int_{0}^{t} \frac{d B_{u}}{1-u}\right)_{t \in[0, T]}
$$

- Large deviations for $\left(R_{t}^{n}\right)_{t \in[0, T]}$ are also available (The rate function is explicit but quite complicated!!)

Other statistic: Range process

Full evolution of the range: the range process

$$
R_{t}^{n}:=4^{\lfloor n t\rfloor} r_{\lfloor n t\rfloor+1}\left(Z_{n}^{\lfloor n t\rfloor}\right), \quad t \in[0, T], 0<T<1
$$

- For $0<T<1,\left(R_{t}^{n}\right)_{t \in[0, T]}$ converges in probability toward the deterministic process $(\sqrt{1-t})_{t \in[0, T]}$.
- Let $\left.\left(B_{t}\right)\right)_{t \in[0, T]}$ denotes a standard Brownian motion

$$
\left(\left(\frac{R_{t}^{n}}{\sqrt{1-t}}\right)^{\sqrt{n}}\right)_{t \in[0, T]} \rightsquigarrow\left(\exp \frac{1}{\sqrt{2}} \int_{0}^{t} \frac{d B_{u}}{1-u}\right)_{t \in[0, T]}
$$

- Large deviations for $\left(R_{t}^{n}\right)_{t \in[0, T]}$ are also available (The rate function is explicit but quite complicated!!)

Idea of the proof: $\left(R_{t}^{n}\right)_{t \in[0, T]}$ is a product of β r.vs

Random moment problems

L Others statistics and frames

Others frames

Others frames

- Trigonometric moment problem: everything remains true, ν is the uniform measure on the circle (Lozada EJP)

Others frames

- Trigonometric moment problem: everything remains true, ν is the uniform measure on the circle (Lozada EJP)
- Multidimensional moment problem on the simplex: everything remains true on a polyhedral approximation of the moment space, ν is the uniform measure on the simplex (Lozada EJP)

Others frames

- Trigonometric moment problem: everything remains true, ν is the uniform measure on the circle (Lozada EJP)
- Multidimensional moment problem on the simplex: everything remains true on a polyhedral approximation of the moment space, ν is the uniform measure on the simplex (Lozada EJP)
- More general distributions on moment spaces: Tilted distributions, generalized Dirichlet distributions (G-Lozada AOP, Barthe et al. ALEA- The non compact case: Dette et al to appear AOP)

Another frame: trigonometric moment problem

The trigonometric moment space

$$
\mathbb{P}_{\mathbb{T}}:=\{\text { Probability measures on } \mathbb{T}\}
$$

Another frame: trigonometric moment problem

The trigonometric moment space

$$
\mathbb{P}_{\mathbb{T}}:=\{\text { Probability measures on } \mathbb{T}\}
$$

$$
\mathbb{M}_{k}^{\mathbb{T}}:=\left\{\left(\int_{\mathbb{T}} x^{j} \mu(d x)\right)_{j=1, \ldots, k}: \mu \in \mathbb{P}_{\mathbb{T}}\right\},\left(k \in \mathbb{N}^{*}\right)
$$

Another frame: trigonometric moment problem

The trigonometric moment space
$\mathbb{P}_{\mathbb{T}}:=\{$ Probability measures on $\mathbb{T}\}$

$$
\mathbb{M}_{k}^{\mathbb{T}}:=\left\{\left(\int_{\mathbb{T}} x^{j} \mu(d x)\right)_{j=1, \ldots, k}: \mu \in \mathbb{P}_{\mathbb{T}}\right\},\left(k \in \mathbb{N}^{*}\right)
$$

$\mathbb{M}_{k}^{\mathbb{T}}=$ convex hull of the curve in $\mathbb{C}^{k},\left(x^{j}\right)_{j=1, \ldots, k, x \in \mathbb{T}}$

Random moment problems

L Others statistics and frames

Trivial example: the space $\mathbb{M}_{1}^{\mathbb{T}}$

Random moment problems

L Others statistics and frames

Trivial example: the space $\mathbb{M}_{1}^{\mathbb{T}}$

Random moment problems

L Others statistics and frames

Frame, main tool and asymptotic

Random moment problems

L Others statistics and frames

Frame, main tool and asymptotic

- Uniform measure on $\mathbb{M}_{k}^{\mathbb{T}}$

Frame, main tool and asymptotic

- Uniform measure on $\mathbb{M}_{k}^{\mathbb{T}}$
- Canonical coordinates:

Frame, main tool and asymptotic

- Uniform measure on $\mathbb{M}_{k}^{\mathbb{T}}$
- Canonical coordinates:
- Relative position (complex)

Frame, main tool and asymptotic

- Uniform measure on $\mathbb{M}_{k}^{\mathbb{T}}$
- Canonical coordinates:
- Relative position (complex)
- Coefficients in othogonal polynomial recursion

Frame, main tool and asymptotic

- Uniform measure on $\mathbb{M}_{k}^{\mathbb{T}}$
- Canonical coordinates:
- Relative position (complex)
- Coefficients in othogonal polynomial recursion
- Verblunsky coefficients, Partial autocorrelation, reflection coefficients....

Random moment problems

L Others statistics and frames

Main properties

Main properties

- Under Uniform measure on $\mathbb{M}_{k}^{\mathbb{T}}$ the Verblunsky coefficients are independent

Main properties

- Under Uniform measure on $\mathbb{M}_{k}^{\mathbb{T}}$ the Verblunsky coefficients are independent
- The distribution is quite explicit it involves β distribution

Main properties

- Under Uniform measure on $\mathbb{M}_{k}^{\mathbb{T}}$ the Verblunsky coefficients are independent
- The distribution is quite explicit it involves β distribution
- Convergence of the random measure towards the uniform on \mathbb{T}

Main properties

- Under Uniform measure on $\mathbb{M}_{k}^{\mathbb{T}}$ the Verblunsky coefficients are independent
- The distribution is quite explicit it involves β distribution
- Convergence of the random measure towards the uniform on \mathbb{T}
- CLT for random moments (diagonal covariance)

Main properties

- Under Uniform measure on $\mathbb{M}_{k}^{\mathbb{T}}$ the Verblunsky coefficients are independent
- The distribution is quite explicit it involves β distribution
- Convergence of the random measure towards the uniform on \mathbb{T}
- CLT for random moments (diagonal covariance)
- Fonctional large deviations: rate function reversed Kullback!!!

Random moment problems

Link with other model

Link with other random model: the ball

Link with other random model: the ball

Recall the so-called Poincaré Theorem
Theorem
Let X_{n} be a random vector uniformly distributed on the I_{2}-ball of \mathbb{R}^{n} (or \mathbb{C}^{n}). Then,

Link with other random model: the ball

Recall the so-called Poincaré Theorem
Theorem
Let X_{n} be a random vector uniformly distributed on the I_{2}-ball of \mathbb{R}^{n} (or \mathbb{C}^{n}). Then,

- $\lim _{n} X_{n}^{k}=0$, (a.s) for fixed $k>0$
- $\sqrt{n} X_{n}^{k}$ converges in distribution toward $\mathcal{N}_{k}\left(0, I_{k}\right)$ (or $\left.\mathcal{N}_{k, \mathbb{C}}\left(0, I_{k}\right)\right)$

Link with other random model: the ball

Recall the so-called Poincaré Theorem
Theorem
Let X_{n} be a random vector uniformly distributed on the I_{2}-ball of \mathbb{R}^{n} (or \mathbb{C}^{n}). Then,

- $\lim _{n} X_{n}^{k}=0$, (a.s) for fixed $k>0$
- $\sqrt{n} X_{n}^{k}$ converges in distribution toward $\mathcal{N}_{k}\left(0, I_{k}\right)$ (or $\left.\mathcal{N}_{k, \mathbb{C}}\left(0, I_{k}\right)\right)$

Revisiting this known result

Link with other random model: the ball

Recall the so-called Poincaré Theorem
Theorem
Let X_{n} be a random vector uniformly distributed on the I_{2}-ball of \mathbb{R}^{n} (or \mathbb{C}^{n}). Then,

- $\lim _{n} X_{n}^{k}=0,($ a.s $)$ for fixed $k>0$
- $\sqrt{n} X_{n}^{k}$ converges in distribution toward $\mathcal{N}_{k}\left(0, I_{k}\right)$ (or $\left.\mathcal{N}_{k, \mathbb{C}}\left(0, I_{k}\right)\right)$

Revisiting this known result
\rightarrow here there also is a canonical reparametrization giving independent coordinates (Stick breaking: Barthe et al. ALEA)

Random moment problems

Link with other model

Link with Poincaré

Link with Poincaré

The complex l_{2}-ball is strongly connected with the trigonometric moment space

Link with Poincaré

The complex I_{2}-ball is strongly connected with the trigonometric moment space
\rightarrow There exists an explicit transport function from \mathbb{M}_{n} to the ball transforming the normalized Lebesgue measure in the normalized Lebesgue Measure

Link with Poincaré

The complex I_{2}-ball is strongly connected with the trigonometric moment space
\rightarrow There exists an explicit transport function from \mathbb{M}_{n} to the ball transforming the normalized Lebesgue measure in the normalized Lebesgue Measure
\rightarrow This application is built on the Verblunsky coefficients (Barthe et al. ALEA)

Spectral measure of random matrices

A a normal square complex matrix of size N
e_{1} first vector of the canonical basis.

Spectral measure of random matrices

A a normal square complex matrix of size N
e_{1} first vector of the canonical basis.

$$
A=\Pi D \Pi^{*},
$$

$D:=\operatorname{diag}\left(\lambda_{i}\right)_{i=1, \ldots, N} \Pi:=\left(\pi_{i j}\right)_{i, j=1, \ldots, N}$ unitary.

Spectral measure of random matrices

A a normal square complex matrix of size N
e_{1} first vector of the canonical basis.

$$
A=\Pi D \Pi^{*},
$$

$D:=\operatorname{diag}\left(\lambda_{i}\right)_{i=1, \ldots, N} \Pi:=\left(\pi_{i j}\right)_{i, j=1, \ldots, N}$ unitary.
The spectral measure μ_{A} of A have moment of order k equal to $\left\langle e_{1}, A^{k} e_{1}\right\rangle$:

$$
\mu_{A}(d \lambda)=\sum_{k}\left|\pi_{1 k}\right|^{2} \delta_{\lambda_{k}}(\lambda)
$$

An easy nice result

Canonical moment representation + Killip et al results on tridiagonal representations give

An easy nice result

Canonical moment representation + Killip et al results on tridiagonal representations give

Theorem
Assume that A has the Haar distribution on the unitary group.

An easy nice result

Canonical moment representation + Killip et al results on tridiagonal representations give

Theorem
Assume that A has the Haar distribution on the unitary group. Then, the canonical moment of μ_{A} (Verblunsky coefficients) are independent with good beta distributions.

An easy nice result

Canonical moment representation + Killip et al results on tridiagonal representations give
Theorem
Assume that A has the Haar distribution on the unitary group. Then, the canonical moment of μ_{A} (Verblunsky coefficients) are independent with good beta distributions.
All the asymptotic results remain true!!!

An easy nice result

Corollary
Assume that A has the Haar distribution on the unitary group. Then, μ_{A} satisfies a LDP with good rate function the reversed Kullback information with respect to the uniform.

An easy nice result

Corollary
Assume that A has the Haar distribution on the unitary group. Then, μ_{A} satisfies a LDP with good rate function the reversed Kullback information with respect to the uniform.
Large deviations for spectral measures of other popular matricial models???

An easy nice result

Corollary
Assume that A has the Haar distribution on the unitary group. Then, μ_{A} satisfies a LDP with good rate function the reversed Kullback information with respect to the uniform.
Large deviations for spectral measures of other popular matricial models???

YES!!!!

An easy nice result

Corollary

Assume that A has the Haar distribution on the unitary group. Then, μ_{A} satisfies a LDP with good rate function the reversed Kullback information with respect to the uniform.
Large deviations for spectral measures of other popular matricial models???

YES!!!!

But up to now explicit rate functions only for β-Hermite ensemble

Random moment problems

Link with other model
β-Hermite ensemble I

β-Hermite ensemble I

GOE(N)

β-Hermite ensemble I

- GOE (N) diagonal entries $=$ independent $\mathcal{N}(0 ; 2 / N)$

β-Hermite ensemble I

- $\operatorname{GOE}(\mathrm{N})$ diagonal entries $=$ independent $\mathcal{N}(0 ; 2 / N)$ non diagonal entries independent (up to symmetry) $\mathcal{N}(0 ; 1 / N)$

β-Hermite ensemble I

- $\operatorname{GOE}(\mathrm{N})$ diagonal entries $=$ independent $\mathcal{N}(0 ; 2 / N)$ non diagonal entries independent (up to symmetry) $\mathcal{N}(0 ; 1 / N)$ Eigenvalues density proportional to

$$
\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right) \exp -\frac{N}{4} \sum_{j} \lambda_{j}^{2}
$$

β-Hermite ensemble I

- GOE (N) diagonal entries $=$ independent $\mathcal{N}(0 ; 2 / N)$ non diagonal entries independent (up to symmetry) $\mathcal{N}(0 ; 1 / N)$ Eigenvalues density proportional to

$$
\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right) \exp -\frac{N}{4} \sum_{j} \lambda_{j}^{2}
$$

Eigenvectors independent and Haar distributed on $O(N)$
$\Delta=$ Vandermonde determinant

Random moment problems

Link with other model

β-Hermite ensemble II

Random moment problems

Link with other model

β-Hermite ensemble II

β-Hermite ensemble II

- GUE(N) Diagonal entries independent distribution $\mathcal{N}(0 ; 1 / N)$

β-Hermite ensemble II

- GUE(N) Diagonal entries independent distribution $\mathcal{N}(0 ; 1 / N)$ non diagonal entries independent (up to symmetry) distribution $\mathcal{N}(0 ; 1 / 2 N)+\sqrt{-1} \mathcal{N}(0 ; 1 / 2 N)$ (imaginary and real parts are independent)

β-Hermite ensemble II

- GUE(N) Diagonal entries independent distribution $\mathcal{N}(0 ; 1 / N)$ non diagonal entries independent (up to symmetry) distribution $\mathcal{N}(0 ; 1 / 2 N)+\sqrt{-1} \mathcal{N}(0 ; 1 / 2 N)$ (imaginary and real parts are independent)
Joint eigenvalue density proportional to

$$
\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)^{2} \exp -\frac{N}{2} \sum_{j} \lambda_{j}^{2}
$$

β-Hermite ensemble II

- GUE(N) Diagonal entries independent distribution $\mathcal{N}(0 ; 1 / N)$ non diagonal entries independent (up to symmetry) distribution $\mathcal{N}(0 ; 1 / 2 N)+\sqrt{-1} \mathcal{N}(0 ; 1 / 2 N)$ (imaginary and real parts are independent)
Joint eigenvalue density proportional to

$$
\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)^{2} \exp -\frac{N}{2} \sum_{j} \lambda_{j}^{2}
$$

Eigenvectors independent and Haar distributed on $U(N)$

Random moment problems

Link with other model

β-Hermite ensemble III

β-Hermite ensemble III

- Coulomb gas model

$$
\left|\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right|^{\beta} \exp -\frac{N \beta}{4} \sum_{j} \lambda_{j}^{2}
$$

β-Hermite ensemble III

- Coulomb gas model

$$
\left|\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right|^{\beta} \exp -\frac{N \beta}{4} \sum_{j} \lambda_{j}^{2}
$$

- $\beta=1$ for the GOE,
- $\beta=2$ for the GUE
- $\beta=4$ for the GSE

As $N \rightarrow \infty$, Empirical measure goes to the semicircle distribution LDP speed N^{2} and rate function connected to the Voiculescu entropy.

Spectral measure for β-Hermite ensemble

Eigenvalues=Coulomb gas model

Spectral measure for β-Hermite ensemble

Eigenvalues=Coulomb gas model
Random spectral measure μ_{A} :

$$
\mu_{A}(d \lambda)=\sum_{k}\left|\pi_{1 k}\right|^{2} \delta_{\lambda_{k}}(\lambda)
$$

Spectral measure for β-Hermite ensemble

Eigenvalues=Coulomb gas model
Random spectral measure μ_{A} :

$$
\mu_{A}(d \lambda)=\sum_{k}\left|\pi_{1 k}\right|^{2} \delta_{\lambda_{k}}(\lambda)
$$

$\left(\left|\pi_{1}\right|^{2}, \ldots,\left|\pi_{N}\right|^{2}\right)$

- Independent of eigenvalues and
- Dir $N(\beta / 2)$ distributed.

Theorem
For the β-Hermite ensemble μ_{A} satisfies a LDP (projective throught its moments) with rate function the reversed Kullback information with respect to the semi-circle+ function involving mass of the measure away from $[-2,2]$.

Theorem

For the β-Hermite ensemble μ_{A} satisfies a LDP (projective throught its moments) with rate function the reversed Kullback information with respect to the semi-circle+ function involving mass of the measure away from $[-2,2]$.
Coments

- Proof quite technical involving sum rules (B. Simon et al)

Theorem

For the β-Hermite ensemble μ_{A} satisfies a LDP (projective throught its moments) with rate function the reversed Kullback information with respect to the semi-circle+ function involving mass of the measure away from $[-2,2]$.
Coments

- Proof quite technical involving sum rules (B. Simon et al)
- Contribution away from $[-2,2]$ for the rate function involves rate function for extreme eigenvalues (see Ferral)

End

Gracias por su atencion

Thanks for your attention Merci
Obrigado
Danke
Grazie

