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Introduction

The algebraic moment space

P := {Probability measures on [0, 1]}

Mk :=


(∫

[0,1]
x jµ(dx)

)
j=1,...,k

: µ ∈ P

 , (k ∈ N∗)

Mk = convex hull of the curve in Rk , (x j)j=1,...,k,x∈[0,1]
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Introduction

Concentration of Mn

Pn := Uniform probability on Mn. Let Zn ∼ Pn (n ≥ 1)

Z k
n := Natural projection of Zn on Mk (n ≥ k ≥ 1)

First Stone (fixed k) see Kemperman et al. AOP 1993:

lim
n

Z k
n = c(k) (a.s.)

c(k) = (c1, . . . , ck) are the k first moments of the arcsine law ν

ν(dx) :=
1

π
√

x(1− x)
dx , (x ∈ [0, 1])

c1 = 0.5, c2 = 3/8, ...
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Example: concentration of the first moment (k = 1) with n
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CLT for Z k
n

Main result of the seminal paper of Kemperman et al.

Theorem√
n(Z k

n − c(k)) converges in distribution toward Nk(0, Γk). The
asymptotic covariance matrix Γk depends only on the moments of
the arsine law (the c j)

In view of this result some questions
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I How does it work?

I Is it true for other asymptotic (Large deviations)?

I Concentration for others statistics?

I Some links with other model?
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How does it work?

How does it work? Canonical moments
Seeing the space Mn in other coordinates: The canonical moments

P : c = (c1, . . . , cn) ∈Mn ←→ p = (p1, . . . , pn) ∈ [0, 1]n

Canonical moments defined recursively:

p1 := c1

p2 :=
c2 − c−2
c+

2 − c−2

pj :=
cj − c−j

c+
j − c−j

, j = 1 . . . n

c−j := inf
µ fitting c1,...,cj−1

∫
x jµ(dx), and the same with sup for c+

j

Observe that c−j and c+
j depends only on c1, . . . , cj−1
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How does it work?

Result of Kemperman et al. using Sibinsky (1967)

Theorem
The coordinates of P(Zn) are independent. Moreover,

(P(Zn))j ∼ β(n − j + 1, n − j + 1), j = 1, . . . , n

The Convergence and the CLT are obtained directly using classical
arguments (continuity and δ-method). Indeed

I liml→∞ β(l , l) = 1/2

I
√

l(β(l , l)− 1/2)→ N (0, 1/8)

Other asymptotics?
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Large deviations for Zk
n

Large deviations for Z k
n

For c ∈Mk define the range of order k + 1 as

rk+1(c) := c+
k+1(c)− c−k+1(c)

Observe that this range is always maximum for the arsine law
Indeed, for all k ≥ 1

rk+1(c(k)) =
1

4k

c(k) is the center of Mk

For c ∈Mk define

Ik(c) := − log[rk+1(c)]− k log 4

(and Ik(c) = +∞ if c ∈ Rk but c 6∈Mk)
Ik is a rate function (in the terminology of large deviations)
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Large deviations for Zk
n

Large deviations Theorem 1

Theorem
(Z k

n ) satisfies a LDP with rate function Ik

Meaning

P(Z k
n ∈ A) ≈ exp[−n inf

c∈A
Ik(c)], (A measurable subset of Rk)

The proof is easy and mostly rely on exponential convergence
toward 1/2 of β(α, α) and classical LD tools.
Not completely satisfying depends on k!!!
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Large deviations for Zk
n

Large deviations Theorem 2
Let σn be any random probability on [0, 1] having Zn as n first
moments.

Theorem
(σn) satisfies a LDP with rate function I defined for P ∈ P by

I (P) :=

{ ∫
log dν

dP dν if ν � P and log dν
dP ∈ L1(P)

+∞ otherwise

Remarks
I Rate function=the reversed Kullback info with respect to ν
I The proof relies on LD projective limit and Szegö theorem
I obvious nice Corollary linking the two Theorems:

rk+1(c) = exp

(
− inf

P fitting c
I (P)− k log 4

)
(c ∈Mk).
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Random moment problems

Others statistics and frames

Other statistic: Range process
Full evolution of the range: the range process

Rn
t := 4bntcrbntc+1

(
Z
bntc
n

)
, t ∈ [0,T ], 0 < T < 1

Theorem

I For 0 < T < 1, (Rn
t )t∈[0,T ] converges in probability toward

the deterministic process (
√

1− t)t∈[0,T ].

I Let (Bt))t∈[0,T ] denotes a standard Brownian motion((
Rn

t√
1− t

)√n
)

t∈[0,T ]

 

(
exp

1√
2

∫ t

0

dBu

1− u

)
t∈[0,T ]

.

I Large deviations for (Rn
t )t∈[0,T ] are also available (The rate

function is explicit but quite complicated!!)

Idea of the proof: (Rn
t )t∈[0,T ] is a product of β r.vs



Random moment problems

Others statistics and frames

Other statistic: Range process
Full evolution of the range: the range process

Rn
t := 4bntcrbntc+1

(
Z
bntc
n

)
, t ∈ [0,T ], 0 < T < 1

Theorem

I For 0 < T < 1, (Rn
t )t∈[0,T ] converges in probability toward

the deterministic process (
√

1− t)t∈[0,T ].

I Let (Bt))t∈[0,T ] denotes a standard Brownian motion((
Rn

t√
1− t

)√n
)

t∈[0,T ]

 

(
exp

1√
2

∫ t

0

dBu

1− u

)
t∈[0,T ]

.

I Large deviations for (Rn
t )t∈[0,T ] are also available (The rate

function is explicit but quite complicated!!)

Idea of the proof: (Rn
t )t∈[0,T ] is a product of β r.vs



Random moment problems

Others statistics and frames

Other statistic: Range process
Full evolution of the range: the range process

Rn
t := 4bntcrbntc+1

(
Z
bntc
n

)
, t ∈ [0,T ], 0 < T < 1

Theorem

I For 0 < T < 1, (Rn
t )t∈[0,T ] converges in probability toward

the deterministic process (
√

1− t)t∈[0,T ].

I Let (Bt))t∈[0,T ] denotes a standard Brownian motion((
Rn

t√
1− t

)√n
)

t∈[0,T ]

 

(
exp

1√
2

∫ t

0

dBu

1− u

)
t∈[0,T ]

.

I Large deviations for (Rn
t )t∈[0,T ] are also available (The rate

function is explicit but quite complicated!!)

Idea of the proof: (Rn
t )t∈[0,T ] is a product of β r.vs



Random moment problems

Others statistics and frames

Other statistic: Range process
Full evolution of the range: the range process

Rn
t := 4bntcrbntc+1

(
Z
bntc
n

)
, t ∈ [0,T ], 0 < T < 1

Theorem

I For 0 < T < 1, (Rn
t )t∈[0,T ] converges in probability toward

the deterministic process (
√

1− t)t∈[0,T ].

I Let (Bt))t∈[0,T ] denotes a standard Brownian motion((
Rn

t√
1− t

)√n
)

t∈[0,T ]

 

(
exp

1√
2

∫ t

0

dBu

1− u

)
t∈[0,T ]

.

I Large deviations for (Rn
t )t∈[0,T ] are also available (The rate

function is explicit but quite complicated!!)

Idea of the proof: (Rn
t )t∈[0,T ] is a product of β r.vs



Random moment problems

Others statistics and frames

Other statistic: Range process
Full evolution of the range: the range process

Rn
t := 4bntcrbntc+1

(
Z
bntc
n

)
, t ∈ [0,T ], 0 < T < 1

Theorem

I For 0 < T < 1, (Rn
t )t∈[0,T ] converges in probability toward

the deterministic process (
√

1− t)t∈[0,T ].

I Let (Bt))t∈[0,T ] denotes a standard Brownian motion((
Rn

t√
1− t

)√n
)

t∈[0,T ]

 

(
exp

1√
2

∫ t

0

dBu

1− u

)
t∈[0,T ]

.

I Large deviations for (Rn
t )t∈[0,T ] are also available (The rate

function is explicit but quite complicated!!)

Idea of the proof: (Rn
t )t∈[0,T ] is a product of β r.vs



Random moment problems

Others statistics and frames

Others frames

I Trigonometric moment problem: everything remains true, ν is
the uniform measure on the circle (Lozada EJP)

I Multidimensional moment problem on the simplex: everything
remains true on a polyhedral approximation of the moment
space, ν is the uniform measure on the simplex (Lozada EJP)

I More general distributions on moment spaces: Tilted
distributions, generalized Dirichlet distributions (G-Lozada
AOP, Barthe et al. ALEA- The non compact case: Dette et al
to appear AOP)
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Another frame: trigonometric moment problem

The trigonometric moment space

PT := {Probability measures on T}

MT
k :=

{(∫
T

x jµ(dx)

)
j=1,...,k

: µ ∈ PT

}
, (k ∈ N∗)

MT
k = convex hull of the curve in Ck , (x j)j=1,...,k,x∈T
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Frame, main tool and asymptotic

I Uniform measure on MT
k

I Canonical coordinates:
I Relative position (complex)
I Coefficients in othogonal polynomial recursion
I Verblunsky coefficients, Partial autocorrelation, reflection

coefficients....



Random moment problems

Others statistics and frames

Frame, main tool and asymptotic

I Uniform measure on MT
k

I Canonical coordinates:
I Relative position (complex)
I Coefficients in othogonal polynomial recursion
I Verblunsky coefficients, Partial autocorrelation, reflection

coefficients....



Random moment problems

Others statistics and frames

Frame, main tool and asymptotic

I Uniform measure on MT
k

I Canonical coordinates:

I Relative position (complex)
I Coefficients in othogonal polynomial recursion
I Verblunsky coefficients, Partial autocorrelation, reflection

coefficients....



Random moment problems

Others statistics and frames

Frame, main tool and asymptotic

I Uniform measure on MT
k

I Canonical coordinates:
I Relative position (complex)

I Coefficients in othogonal polynomial recursion
I Verblunsky coefficients, Partial autocorrelation, reflection

coefficients....



Random moment problems

Others statistics and frames

Frame, main tool and asymptotic

I Uniform measure on MT
k

I Canonical coordinates:
I Relative position (complex)
I Coefficients in othogonal polynomial recursion

I Verblunsky coefficients, Partial autocorrelation, reflection
coefficients....



Random moment problems

Others statistics and frames

Frame, main tool and asymptotic

I Uniform measure on MT
k

I Canonical coordinates:
I Relative position (complex)
I Coefficients in othogonal polynomial recursion
I Verblunsky coefficients, Partial autocorrelation, reflection

coefficients....



Random moment problems

Others statistics and frames

Main properties

I Under Uniform measure on MT
k the Verblunsky coefficients are

independent
I The distribution is quite explicit it involves β distribution

I Convergence of the random measure towards the uniform on T
I CLT for random moments (diagonal covariance)
I Fonctional large deviations: rate function reversed Kullback!!!
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Link with other model

Link with other random model: the ball

Recall the so-called Poincaré Theorem

Theorem
Let Xn be a random vector uniformly distributed on the l2-ball of
Rn (or Cn). Then,

I limn X k
n = 0, (a.s) for fixed k > 0

I
√

nX k
n converges in distribution toward Nk(0, Ik) (or

Nk,C(0, Ik))

Revisiting this known result
→ here there also is a canonical reparametrization giving
independent coordinates (Stick breaking: Barthe et al. ALEA)
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Theorem
Let Xn be a random vector uniformly distributed on the l2-ball of
Rn (or Cn). Then,

I limn X k
n = 0, (a.s) for fixed k > 0

I
√

nX k
n converges in distribution toward Nk(0, Ik) (or

Nk,C(0, Ik))

Revisiting this known result
→ here there also is a canonical reparametrization giving
independent coordinates (Stick breaking: Barthe et al. ALEA)



Random moment problems

Link with other model

Link with other random model: the ball

Recall the so-called Poincaré Theorem
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Link with Poincaré

The complex l2-ball is strongly connected with the trigonometric
moment space

→ There exists an explicit transport function from Mn to the ball
transforming the normalized Lebesgue measure in the normalized
Lebesgue Measure

→ This application is built on the Verblunsky coefficients ( Barthe
et al. ALEA)
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Link with other model

Spectral measure of random matrices

A a normal square complex matrix of size N
e1 first vector of the canonical basis.

A = ΠDΠ∗,

D := diag(λi )i=1,...,N Π := (πij)i ,j=1,...,N unitary.
The spectral measure µA of A have moment of order k equal to
〈e1,A

ke1〉:
µA(dλ) =

∑
k

|π1k |2 δλk
(λ)
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Link with other model

An easy nice result

Canonical moment representation + Killip et al results on
tridiagonal representations give

Theorem
Assume that A has the Haar distribution on the unitary group.
Then, the canonical moment of µA (Verblunsky coefficients) are
independent with good beta distributions.

All the asymptotic results remain true!!!
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An easy nice result

Corollary

Assume that A has the Haar distribution on the unitary group.
Then, µA satisfies a LDP with good rate function the reversed
Kullback information with respect to the uniform.

Large deviations for spectral measures of other popular matricial
models???

YES!!!!

But up to now explicit rate functions only for β-Hermite ensemble
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Link with other model

β-Hermite ensemble I

I GOE(N) diagonal entries = independent N (0; 2/N)
non diagonal entries independent (up to symmetry) N (0; 1/N)
Eigenvalues density proportional to

∆(λ1, . . . , λN) exp−N

4

∑
j

λ2
j .

Eigenvectors independent and Haar distributed on O(N)

∆ =Vandermonde determinant
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β-Hermite ensemble II

I GUE(N) Diagonal entries independent distribution N (0; 1/N)
non diagonal entries independent (up to symmetry)
distribution N (0; 1/2N) +

√
−1N (0; 1/2N) (imaginary and

real parts are independent)
Joint eigenvalue density proportional to

∆(λ1, . . . , λN)2 exp−N

2

∑
j

λ2
j .

Eigenvectors independent and Haar distributed on U(N)
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β-Hermite ensemble III

I Coulomb gas model

|∆(λ1, . . . , λN)|β exp−Nβ

4

∑
j

λ2
j .

I β = 1 for the GOE,
I β = 2 for the GUE
I β = 4 for the GSE

As N →∞, Empirical measure goes to the semicircle distribution
LDP speed N2 and rate function connected to the Voiculescu
entropy.
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I Coulomb gas model

|∆(λ1, . . . , λN)|β exp−Nβ
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Spectral measure for β-Hermite ensemble

Eigenvalues=Coulomb gas model

Random spectral measure µA:

µA(dλ) =
∑
k

|π1k |2 δλk
(λ)

(|π1|2, . . . , |πN |2)

I Independent of eigenvalues and

I Dir N(β/2) distributed.



Random moment problems

Link with other model

Spectral measure for β-Hermite ensemble

Eigenvalues=Coulomb gas model
Random spectral measure µA:

µA(dλ) =
∑
k

|π1k |2 δλk
(λ)

(|π1|2, . . . , |πN |2)

I Independent of eigenvalues and

I Dir N(β/2) distributed.



Random moment problems

Link with other model

Spectral measure for β-Hermite ensemble

Eigenvalues=Coulomb gas model
Random spectral measure µA:

µA(dλ) =
∑
k

|π1k |2 δλk
(λ)

(|π1|2, . . . , |πN |2)

I Independent of eigenvalues and

I Dir N(β/2) distributed.



Random moment problems

Link with other model

Theorem
For the β-Hermite ensemble µA satisfies a LDP (projective
throught its moments) with rate function the reversed Kullback
information with respect to the semi-circle+ function involving
mass of the measure away from [−2, 2].

Coments

I Proof quite technical involving sum rules (B. Simon et al)

I Contribution away from [−2, 2] for the rate function involves
rate function for extreme eigenvalues (see Ferral)
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Theorem
For the β-Hermite ensemble µA satisfies a LDP (projective
throught its moments) with rate function the reversed Kullback
information with respect to the semi-circle+ function involving
mass of the measure away from [−2, 2].

Coments

I Proof quite technical involving sum rules (B. Simon et al)

I Contribution away from [−2, 2] for the rate function
involves rate function for extreme eigenvalues (see
Ferral)
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End

Gracias por su atencion
Thanks for your attention
Merci
Obrigado
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