Random moment problems

Random moment problems

Fabrice Gamboa

Institut de Mathématiques de Toulouse Université Paul Sabatier

The world in Caracas for Chichi (Doctor León!!)

Agenda

 F. Chang, J. Kemperman, W. Studden J. (1993) A normal limit theorem for moment sequences. AOP (The seminal paper)

- F. Chang, J. Kemperman, W. Studden J. (1993) A normal limit theorem for moment sequences. AOP (The seminal paper)
- F.G., L. Lozada Chang (2004) Large deviations for random power moment problem. AOP

- F. Chang, J. Kemperman, W. Studden J. (1993) A normal limit theorem for moment sequences. AOP (The seminal paper)
- F.G., L. Lozada Chang (2004) Large deviations for random power moment problem. AOP
- L. Lozada Chang (2005) Large Deviations on Moment Spaces. EJP

- F. Chang, J. Kemperman, W. Studden J. (1993) A normal limit theorem for moment sequences. AOP (The seminal paper)
- F.G., L. Lozada Chang (2004) Large deviations for random power moment problem. AOP
- L. Lozada Chang (2005) Large Deviations on Moment Spaces.
 EJP
- ▶ H. Dette, F.G. (2007) Asymptotic properties of the algebraic moment range process. Acta Math. Hungar.

 R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math (Szegö like theorems)

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math (Szegö like theorems)
- F.G., A. Rouault (2010) Canonical moments and random measures. JTP

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math (Szegö like theorems)
- F.G., A. Rouault (2010) Canonical moments and random measures. JTP
- ► F. Barthe, F.G., L. Lozada Chang, A. Rouault (2010) Balls, moments and canonical representations. ALEA

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math (Szegö like theorems)
- F.G., A. Rouault (2010) Canonical moments and random measures. JTP
- ► F. Barthe, F.G., L. Lozada Chang, A. Rouault (2010) Balls, moments and canonical representations. ALEA
- F.G., A. Rouault (2011) Large deviations for random spectral measures and sum rules. AMRX

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math (Szegö like theorems)
- F.G., A. Rouault (2010) Canonical moments and random measures. JTP
- ► F. Barthe, F.G., L. Lozada Chang, A. Rouault (2010) Balls, moments and canonical representations. ALEA
- F.G., A. Rouault (2011) Large deviations for random spectral measures and sum rules. AMRX
- ▶ H. Dette et al (2012) Non compact case. CLT. To appear in AOP

- R. Killip and I. Nenciu. (2004) Matrix models for circular ensembles. Int. Math. Res (Very interesting tridiagonal representation)
- R. Killip and B. Simon. (2003) Sum rules for Jacobi matrices and their applications to spectral theory. Ann. of Math (Szegö like theorems)
- F.G., A. Rouault (2010) Canonical moments and random measures. JTP
- ► F. Barthe, F.G., L. Lozada Chang, A. Rouault (2010) Balls, moments and canonical representations. ALEA
- F.G., A. Rouault (2011) Large deviations for random spectral measures and sum rules. AMRX
- ▶ H. Dette et al (2012) Non compact case. CLT. To appear in AOP
- ► H. Dette et al (2009-2012) Matricial moment case.

The algebraic moment space

$\mathbb{P} := \{ \mathsf{Probability measures on } [0,1] \}$

The algebraic moment space

$$\mathbb{P} := \{ \mathsf{Probability measures on } [0,1] \}$$

$$\mathbb{M}_k := \left\{ \left(\int_{[0,1]} x^j \mu(dx)
ight)_{j=1,...,k} : \ \mu \in \mathbb{P}
ight\}, (k \in \mathbb{N}^*)$$

The algebraic moment space

$$\mathbb{P} := \{ \mathsf{Probability measures on } [0,1] \}$$

$$\mathbb{M}_k := \left\{ \left(\int_{[0,1]} x^j \mu(dx)
ight)_{j=1,...,k} : \ \mu \in \mathbb{P}
ight\}, (k \in \mathbb{N}^*)$$

 $\mathbb{M}_k = ext{convex}$ hull of the curve in \mathbb{R}^k , $(x^j)_{j=1,...,k,x\in[0,1]}$

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへで

- * ロ * * @ * * 差 * そき * 「き」 の Q ()*

| ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ● のへで

Concentration of \mathbb{M}_n

 $P_n :=$ Uniform probability on \mathbb{M}_n . Let $Z_n \sim P_n$ $(n \ge 1)$

Concentration of \mathbb{M}_n

 $P_n :=$ Uniform probability on \mathbb{M}_n . Let $Z_n \sim P_n$ $(n \ge 1)$

 $Z_n^k :=$ Natural projection of Z_n on \mathbb{M}_k $(n \ge k \ge 1)$

Concentration of \mathbb{M}_n

 $P_n :=$ Uniform probability on \mathbb{M}_n . Let $Z_n \sim P_n$ $(n \ge 1)$

$$Z_n^k:=\mathsf{N}\mathsf{a}\mathsf{tural}$$
 projection of Z_n on \mathbb{M}_k $(n\geq k\geq 1)$

First Stone (fixed k) see Kemperman et al. AOP 1993:

$$\lim_{n} Z_{n}^{k} = \overline{c}^{(k)} \text{ (a.s.)}$$

 $\overline{c}^{(k)} = (\overline{c}_1, \dots, \overline{c}_k)$ are the k first moments of the arcsine law ν

$$u(dx) := rac{1}{\pi \sqrt{x(1-x)}} dx, \ (x \in [0,1])$$

 $\overline{c}_1=0.5,\ \overline{c}_2=3/8,...$

Example: projections of \mathbb{M}_3

- * ロ * * 個 * * 画 * * 画 * * の < @

Example: projections of \mathbb{M}_3

- ◆ ロ ▶ ◆ 昼 ▶ ◆ 臣 ▶ ◆ 臣 • ⑦ � @

Example: projections of \mathbb{M}_3

Example: concentration of the first moment (k = 1) with n

Example: concentration of the first moment (k = 1) with n

Example: concentration of the first moment (k = 1) with n

▲口▶ ▲圖▶ ▲画▶ ▲画▶ 三回 めんゆ
Example: concentration of the first moment (k = 1) with n

- イロ・ イヨ・ イヨ・ ヨー シタの

Example: concentration of the first moment (k = 1) with n

| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ● の Q @

Random moment problems

CLT for Z_n^k

Main result of the seminal paper of Kemperman et al.

CLT for Z_n^k

Main result of the seminal paper of Kemperman et al.

Theorem

 $\sqrt{n}(Z_n^k - \overline{c}^{(k)})$ converges in distribution toward $\mathcal{N}_k(0, \Gamma_k)$. The asymptotic covariance matrix Γ_k depends only on the moments of the arsine law (the \overline{c}_j)

CLT for Z_n^k

Main result of the seminal paper of Kemperman et al.

Theorem

 $\sqrt{n}(Z_n^k - \overline{c}^{(k)})$ converges in distribution toward $\mathcal{N}_k(0, \Gamma_k)$. The asymptotic covariance matrix Γ_k depends only on the moments of the arsine law (the \overline{c}_j)

In view of this result some questions

How does it work?

How does it work?

Is it true for other asymptotic (Large deviations)?

- How does it work?
- Is it true for other asymptotic (Large deviations)?
- Concentration for others statistics?

- How does it work?
- Is it true for other asymptotic (Large deviations)?
- Concentration for others statistics?
- Some links with other model?

Seeing the space \mathbb{M}_n in other coordinates: The canonical moments

Seeing the space \mathbb{M}_n in other coordinates: The canonical moments

$$\mathcal{P}: \boldsymbol{c} = (c_1, \ldots, c_n) \in \mathbb{M}_n \longleftrightarrow \boldsymbol{p} = (p_1, \ldots, p_n) \in [0, 1]^n$$

Seeing the space \mathbb{M}_n in other coordinates: The canonical moments

$$\mathcal{P}: \boldsymbol{c} = (c_1, \ldots, c_n) \in \mathbb{M}_n \longleftrightarrow \boldsymbol{p} = (p_1, \ldots, p_n) \in [0, 1]^n$$

Canonical moments defined recursively:

$$p_1 := c_1$$

Seeing the space \mathbb{M}_n in other coordinates: The canonical moments

$$\mathcal{P}: \boldsymbol{c} = (c_1, \ldots, c_n) \in \mathbb{M}_n \longleftrightarrow \boldsymbol{p} = (p_1, \ldots, p_n) \in [0, 1]^n$$

Canonical moments defined recursively:

$$p_1 := c_1$$

$$p_2 := \frac{c_2 - c_2^-}{c_2^+ - c_2^-}$$

Seeing the space \mathbb{M}_n in other coordinates: The canonical moments

$$\mathcal{P}: \boldsymbol{c} = (c_1, \ldots, c_n) \in \mathbb{M}_n \longleftrightarrow \boldsymbol{p} = (p_1, \ldots, p_n) \in [0, 1]^n$$

Canonical moments defined recursively:

$$p_{1} := c_{1}$$

$$p_{2} := \frac{c_{2} - c_{2}^{-}}{c_{2}^{+} - c_{2}^{-}}$$

$$p_{j} := \frac{c_{j} - c_{j}^{-}}{c_{j}^{+} - c_{j}^{-}}, j = 1 \dots n$$

 $c_j^- := \inf_{\mu \text{ fitting } c_1,...,c_{j-1}} \int x^j \mu(dx)$, and the same with sup for c_j^+ Observe that c_j^- and c_j^+ depends only on c_1,\ldots,c_{j-1}

Canonical moment p_2

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ● の Q @

Canonical moment p_2

- イロト イ団ト イヨト イヨト ヨー のくで

Canonical moment p_2

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ● の Q @

Theorem

The coordinates of $\mathcal{P}(Z_n)$ are independent. Moreover,

$$(\mathcal{P}(Z_n))_j \sim \beta(n-j+1, n-j+1), j = 1, \ldots, n$$

Theorem The coordinates of $\mathcal{P}(Z_n)$ are independent. Moreover,

$$(\mathcal{P}(Z_n))_j \sim \beta(n-j+1, n-j+1), j = 1, \ldots, n$$

The Convergence and the CLT are obtained directly using classical arguments (continuity and δ -method). Indeed

Theorem The coordinates of $\mathcal{P}(Z_n)$ are independent. Moreover,

$$(\mathcal{P}(Z_n))_j \sim \beta(n-j+1, n-j+1), j = 1, \ldots, n$$

The Convergence and the CLT are obtained directly using classical arguments (continuity and δ -method). Indeed

$$\blacktriangleright \lim_{I\to\infty}\beta(I,I)=1/2$$

Theorem The coordinates of $\mathcal{P}(Z_n)$ are independent. Moreover,

$$(\mathcal{P}(Z_n))_j \sim \beta(n-j+1, n-j+1), \ j = 1, \ldots, n$$

The Convergence and the CLT are obtained directly using classical arguments (continuity and δ -method). Indeed

$$\blacktriangleright \lim_{I\to\infty}\beta(I,I)=1/2$$

$$\blacktriangleright \sqrt{I}(\beta(I,I)-1/2) \rightarrow \mathcal{N}(0,1/8)$$

Theorem The coordinates of $\mathcal{P}(Z_n)$ are independent. Moreover,

$$(\mathcal{P}(Z_n))_j \sim \beta(n-j+1, n-j+1), \ j = 1, \ldots, n$$

The Convergence and the CLT are obtained directly using classical arguments (continuity and δ -method). Indeed

$$\lim_{I\to\infty}\beta(I,I)=1/2$$

$$\blacktriangleright \sqrt{I}(\beta(I,I)-1/2) \rightarrow \mathcal{N}(0,1/8)$$

Other asymptotics?

For $c \in \mathbb{M}_k$ define the range of order k+1 as

$$r_{k+1}(c) := c_{k+1}^+(c) - c_{k+1}^-(c)$$

For $c \in \mathbb{M}_k$ define the range of order k+1 as

$$r_{k+1}(c) := c_{k+1}^+(c) - c_{k+1}^-(c)$$

Observe that this range is always maximum for the arsine law

For $c \in \mathbb{M}_k$ define the range of order k+1 as

$$r_{k+1}(c) := c_{k+1}^+(c) - c_{k+1}^-(c)$$

Observe that this range is always maximum for the arsine law Indeed, for all $k\geq 1$

$$r_{k+1}(\overline{c}^{(k)}) = \frac{1}{4^k}$$

For $c \in \mathbb{M}_k$ define the range of order k+1 as

$$r_{k+1}(c) := c_{k+1}^+(c) - c_{k+1}^-(c)$$

Observe that this range is always maximum for the arsine law Indeed, for all $k\geq 1$

$$r_{k+1}(\overline{c}^{(k)}) = \frac{1}{4^k}$$

 $\overline{c}^{(k)}$ is the *center* of \mathbb{M}_k

For $c \in \mathbb{M}_k$ define the range of order k+1 as

$$r_{k+1}(c) := c_{k+1}^+(c) - c_{k+1}^-(c)$$

Observe that this range is always maximum for the arsine law Indeed, for all $k \ge 1$

$$r_{k+1}(\overline{c}^{(k)}) = \frac{1}{4^k}$$

 $\overline{c}^{(k)}$ is the *center* of \mathbb{M}_k For $c \in \mathbb{M}_k$ define

$$I_k(c) := -\log[r_{k+1}(c)] - k\log 4$$

(and $I_k(c) = +\infty$ if $c \in \mathbb{R}^k$ but $c \notin \mathbb{M}_k$) I_k is a rate function (in the terminology of large deviations)

Theorem (Z_n^k) satisfies a LDP with rate function I_k

Theorem (Z_n^k) satisfies a LDP with rate function I_k

Meaning

$$P(Z_n^k \in A) \approx \exp[-n \inf_{c \in A} I_k(c)], \ (A \text{ measurable subset of } \mathbb{R}^k)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Z_n^k) satisfies a LDP with rate function I_k

Meaning

$$P(Z_n^k \in A) \approx \exp[-n \inf_{c \in A} I_k(c)], \ (A \text{ measurable subset of } \mathbb{R}^k)$$

The proof is easy and mostly rely on exponential convergence toward 1/2 of $\beta(\alpha, \alpha)$ and classical LD tools.

Theorem (Z_n^k) satisfies a LDP with rate function I_k

Meaning

$$P(Z_n^k \in A) \approx \exp[-n \inf_{c \in A} I_k(c)], \ (A \text{ measurable subset of } \mathbb{R}^k)$$

The proof is easy and mostly rely on exponential convergence toward 1/2 of $\beta(\alpha, \alpha)$ and classical LD tools. Not completely satisfying depends on k!!!

Let σ_n be any **random** probability on [0, 1] having Z_n as *n* first moments.

Let σ_n be any **random** probability on [0, 1] having Z_n as *n* first moments.

Theorem

 (σ_n) satisfies a LDP with rate function I defined for $P \in \mathbb{P}$ by

$$I(P) := \begin{cases} \int \log \frac{d\nu}{dP} d\nu & \text{if } \nu \ll P \text{ and } \log \frac{d\nu}{dP} \in L^1(P) \\ +\infty & \text{otherwise} \end{cases}$$

Let σ_n be any **random** probability on [0, 1] having Z_n as *n* first moments.

Theorem

 (σ_n) satisfies a LDP with rate function I defined for $P \in \mathbb{P}$ by

$$I(P) := \begin{cases} \int \log \frac{d\nu}{dP} d\nu & \text{if } \nu \ll P \text{ and } \log \frac{d\nu}{dP} \in L^1(P) \\ +\infty & \text{otherwise} \end{cases}$$

Remarks

Rate function=the reversed Kullback info with respect to ν

Let σ_n be any **random** probability on [0, 1] having Z_n as *n* first moments.

Theorem

 (σ_n) satisfies a LDP with rate function I defined for $P \in \mathbb{P}$ by

$$I(P) := \begin{cases} \int \log \frac{d\nu}{dP} d\nu & \text{if } \nu \ll P \text{ and } \log \frac{d\nu}{dP} \in L^1(P) \\ +\infty & \text{otherwise} \end{cases}$$

Remarks

- Rate function=the reversed Kullback info with respect to ν
- The proof relies on LD projective limit and Szegö theorem

Let σ_n be any **random** probability on [0, 1] having Z_n as *n* first moments.

Theorem

 (σ_n) satisfies a LDP with rate function I defined for $P \in \mathbb{P}$ by

$$I(P) := \begin{cases} \int \log \frac{d\nu}{dP} d\nu & \text{if } \nu \ll P \text{ and } \log \frac{d\nu}{dP} \in L^1(P) \\ +\infty & \text{otherwise} \end{cases}$$

Remarks

- Rate function=the reversed Kullback info with respect to ν
- The proof relies on LD projective limit and Szegö theorem
- obvious nice Corollary linking the two Theorems:

$$r_{k+1}(c) = \exp\left(-\inf_{P \text{ fitting } c} I(P) - k \log 4\right) \quad (c \in \mathbb{M}_k).$$
Random moment problems

-Others statistics and frames

Other statistic: Range process

$\begin{array}{l} \mbox{Full evolution of the range: the range process} \\ R^n_t := 4^{\lfloor nt \rfloor} r_{\lfloor nt \rfloor + 1} \left(Z^{\lfloor nt \rfloor}_n \right), \ t \in [0,T], 0 < T < 1 \end{array}$

Other statistic: Range process

Full evolution of the range: the range process $R_t^n := 4^{\lfloor nt \rfloor} r_{\lfloor nt \rfloor+1} \left(Z_n^{\lfloor nt \rfloor} \right), \ t \in [0, T], 0 < T < 1$ Theorem

For 0 < T < 1, (Rⁿ_t)_{t∈[0,T]} converges in probability toward the deterministic process (√1−t)_{t∈[0,T]}.

Other statistic: Range process

Full evolution of the range: the range process $R_t^n := 4^{\lfloor nt \rfloor} r_{\lfloor nt \rfloor+1} \left(Z_n^{\lfloor nt \rfloor} \right), \ t \in [0, T], 0 < T < 1$ Theorem

- For 0 < T < 1, (Rⁿ_t)_{t∈[0,T]} converges in probability toward the deterministic process (√1−t)_{t∈[0,T]}.
- ▶ Let $(B_t))_{t \in [0,T]}$ denotes a standard Brownian motion

$$\left(\left(\frac{R_t^n}{\sqrt{1-t}}\right)^{\sqrt{n}}\right)_{t\in[0,T]} \rightsquigarrow \left(\exp\frac{1}{\sqrt{2}}\int_0^t \frac{dB_u}{1-u}\right)_{t\in[0,T]}$$

Other statistic: Range process

Full evolution of the range: the range process $R_t^n := 4^{\lfloor nt \rfloor} r_{\lfloor nt \rfloor+1} \left(Z_n^{\lfloor nt \rfloor} \right), \ t \in [0, T], 0 < T < 1$ Theorem

- For 0 < T < 1, (Rⁿ_t)_{t∈[0,T]} converges in probability toward the deterministic process (√1−t)_{t∈[0,T]}.
- ▶ Let $(B_t))_{t \in [0,T]}$ denotes a standard Brownian motion

$$\left(\left(\frac{R_t^n}{\sqrt{1-t}}\right)^{\sqrt{n}}\right)_{t\in[0,T]} \rightsquigarrow \left(\exp\frac{1}{\sqrt{2}}\int_0^t \frac{dB_u}{1-u}\right)_{t\in[0,T]}$$

► Large deviations for (Rⁿ_t)_{t∈[0,T]} are also available (The rate function is explicit but quite complicated!!)

Other statistic: Range process

Full evolution of the range: the range process $R_t^n := 4^{\lfloor nt \rfloor} r_{\lfloor nt \rfloor+1} \left(Z_n^{\lfloor nt \rfloor} \right), \ t \in [0, T], 0 < T < 1$ Theorem

- For 0 < T < 1, (Rⁿ_t)_{t∈[0,T]} converges in probability toward the deterministic process (√1−t)_{t∈[0,T]}.
- Let $(B_t))_{t \in [0,T]}$ denotes a standard Brownian motion

$$\left(\left(\frac{R_t^n}{\sqrt{1-t}}\right)^{\sqrt{n}}\right)_{t\in[0,T]} \rightsquigarrow \left(\exp\frac{1}{\sqrt{2}}\int_0^t \frac{dB_u}{1-u}\right)_{t\in[0,T]}$$

► Large deviations for (Rⁿ_t)_{t∈[0,T]} are also available (The rate function is explicit but quite complicated!!)

Idea of the proof: $(R_t^n)_{t \in [0,T]}$ is a product of β r.vs

Others frames

Others frames

 Trigonometric moment problem: everything remains true, ν is the uniform measure on the circle (Lozada EJP)

Others frames

- Trigonometric moment problem: everything remains true, ν is the uniform measure on the circle (Lozada EJP)
- Multidimensional moment problem on the simplex: everything remains true on a polyhedral approximation of the moment space, v is the uniform measure on the simplex (Lozada EJP)

Others frames

- Trigonometric moment problem: everything remains true, ν is the uniform measure on the circle (Lozada EJP)
- Multidimensional moment problem on the simplex: everything remains true on a polyhedral approximation of the moment space, v is the uniform measure on the simplex (Lozada EJP)
- More general distributions on moment spaces: Tilted distributions, generalized Dirichlet distributions (G-Lozada AOP, Barthe et al. ALEA- The non compact case: Dette et al to appear AOP)

Another frame: trigonometric moment problem

The trigonometric moment space

$$\mathbb{P}_{\mathbb{T}} := \{\mathsf{Probability} \ \mathsf{measures} \ \mathsf{on} \ \mathbb{T}\}$$

Another frame: trigonometric moment problem

The trigonometric moment space

$$\mathbb{P}_{\mathbb{T}}:=\{\mathsf{Probability} ext{ measures on } \mathbb{T}\}$$

$$\mathbb{M}_{k}^{\mathbb{T}} := \left\{ \left(\int_{\mathbb{T}} x^{j} \mu(dx) \right)_{j=1,\ldots,k} : \ \mu \in \mathbb{P}_{\mathbb{T}} \right\}, (k \in \mathbb{N}^{*})$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへの

Another frame: trigonometric moment problem

The trigonometric moment space

$$\mathbb{P}_{\mathbb{T}}:=\{\mathsf{Probability} ext{ measures on } \mathbb{T}\}$$

$$\mathbb{M}_k^{\mathbb{T}} := \left\{ \left(\int_{\mathbb{T}} \mathsf{x}^j \mu(d\mathsf{x})
ight)_{j=1,...,k} : \ \mu \in \mathbb{P}_{\mathbb{T}}
ight\}, (k \in \mathbb{N}^*)$$

 $\mathbb{M}_k^{\mathbb{T}}=$ convex hull of the curve in \mathbb{C}^k , $(x^j)_{j=1,...,k,x\in\mathbb{T}}$

・ロト ・団 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Random moment problems

Others statistics and frames

Trivial example: the space $\mathbb{M}_1^\mathbb{T}$

▲日 → ▲園 → ▲屋 → ▲屋 → ▲目 → ● ●

Random moment problems

Others statistics and frames

Trivial example: the space $\mathbb{M}_1^\mathbb{T}$

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Frame, main tool and asymptotic

◆□ → ◆□ → ◆三 → ◆□ → ● ● ● ●

Frame, main tool and asymptotic

• Uniform measure on $\mathbb{M}_k^{\mathbb{T}}$

- Uniform measure on $\mathbb{M}_k^{\mathbb{T}}$
- Canonical coordinates:

- Uniform measure on $\mathbb{M}_k^{\mathbb{T}}$
- Canonical coordinates:
 - Relative position (complex)

- Uniform measure on $\mathbb{M}_k^{\mathbb{T}}$
- Canonical coordinates:
 - Relative position (complex)
 - Coefficients in othogonal polynomial recursion

- Uniform measure on $\mathbb{M}_k^{\mathbb{T}}$
- Canonical coordinates:
 - Relative position (complex)
 - Coefficients in othogonal polynomial recursion
 - Verblunsky coefficients, Partial autocorrelation, reflection coefficients....

Main properties

► Under Uniform measure on M^T_k the Verblunsky coefficients are independent

- ► Under Uniform measure on M^T_k the Verblunsky coefficients are independent
- The distribution is quite explicit it involves β distribution

- Under Uniform measure on $\mathbb{M}_k^{\mathbb{T}}$ the Verblunsky coefficients are independent
- \blacktriangleright The distribution is quite explicit it involves β distribution
 - \blacktriangleright Convergence of the random measure towards the uniform on $\mathbb T$

- ► Under Uniform measure on M^T_k the Verblunsky coefficients are independent
- \blacktriangleright The distribution is quite explicit it involves β distribution
 - \blacktriangleright Convergence of the random measure towards the uniform on $\mathbb T$
 - CLT for random moments (diagonal covariance)

- ► Under Uniform measure on M^T_k the Verblunsky coefficients are independent
- \blacktriangleright The distribution is quite explicit it involves β distribution
 - \blacktriangleright Convergence of the random measure towards the uniform on $\mathbb T$
 - CLT for random moments (diagonal covariance)
 - ► Fonctional large deviations: rate function reversed Kullback!!!

Recall the so-called Poincaré Theorem

Theorem

Let X_n be a random vector uniformly distributed on the l_2 -ball of \mathbb{R}^n (or \mathbb{C}^n). Then,

Recall the so-called Poincaré Theorem

Theorem

Let X_n be a random vector uniformly distributed on the l_2 -ball of \mathbb{R}^n (or \mathbb{C}^n). Then,

- $\lim_{n} X_{n}^{k} = 0$, (a.s) for fixed k > 0
- ▶ $\sqrt{n}X_n^k$ converges in distribution toward $\mathcal{N}_k(0, I_k)$ (or $\mathcal{N}_{k,\mathbb{C}}(0, I_k)$)

Recall the so-called Poincaré Theorem

Theorem

Let X_n be a random vector uniformly distributed on the l_2 -ball of \mathbb{R}^n (or \mathbb{C}^n). Then,

- $\lim_{n} X_n^k = 0$, (a.s) for fixed k > 0
- ▶ $\sqrt{n}X_n^k$ converges in distribution toward $\mathcal{N}_k(0, I_k)$ (or $\mathcal{N}_{k,\mathbb{C}}(0, I_k)$)

Revisiting this known result

Recall the so-called Poincaré Theorem

Theorem

Let X_n be a random vector uniformly distributed on the l_2 -ball of \mathbb{R}^n (or \mathbb{C}^n). Then,

- $\lim_{n} X_{n}^{k} = 0$, (a.s) for fixed k > 0
- ▶ $\sqrt{n}X_n^k$ converges in distribution toward $\mathcal{N}_k(0, I_k)$ (or $\mathcal{N}_{k,\mathbb{C}}(0, I_k)$)

Revisiting this known result

 \rightarrow here there also is a canonical reparametrization giving independent coordinates (*Stick breaking:* Barthe et al. ALEA)

Random moment problems

Link with Poincaré

Link with Poincaré

The complex *l*₂-ball is strongly connected with the trigonometric moment space

Link with Poincaré

The complex I_2 -ball is strongly connected with the trigonometric moment space

 \rightarrow There exists an explicit transport function from \mathbb{M}_n to the ball transforming the normalized Lebesgue measure in the normalized Lebesgue Measure

Link with Poincaré

The complex I_2 -ball is strongly connected with the trigonometric moment space

 \rightarrow There exists an explicit transport function from \mathbb{M}_n to the ball transforming the normalized Lebesgue measure in the normalized Lebesgue Measure

 \rightarrow This application is built on the Verblunsky coefficients (Barthe et al. ALEA)

Spectral measure of random matrices

A a normal square complex matrix of size N e_1 first vector of the canonical basis.
Spectral measure of random matrices

A a normal square complex matrix of size N e_1 first vector of the canonical basis.

 $A = \Pi D \Pi^*,$

 $D := \operatorname{diag}(\lambda_i)_{i=1,...,N} \ \Pi := (\pi_{ij})_{i,j=1,...,N}$ unitary.

Spectral measure of random matrices

A a normal square complex matrix of size N e_1 first vector of the canonical basis.

 $A = \Pi D \Pi^*,$

 $D := \text{diag}(\lambda_i)_{i=1,...,N} \prod := (\pi_{ij})_{i,j=1,...,N}$ unitary. The spectral measure μ_A of A have moment of order k equal to $\langle e_1, A^k e_1 \rangle$:

$$\mu_A(d\lambda) = \sum_k |\pi_{1k}|^2 \, \delta_{\lambda_k}(\lambda)$$

Canonical moment representation + Killip et al results on tridiagonal representations give

- (口) (固) (三) (三) (三) (〇 (

Canonical moment representation + Killip et al results on tridiagonal representations give

Theorem

Assume that A has the Haar distribution on the unitary group.

Canonical moment representation + Killip et al results on tridiagonal representations give

Theorem

Assume that A has the Haar distribution on the unitary group. Then, the canonical moment of μ_A (Verblunsky coefficients) are independent with good beta distributions.

Canonical moment representation + Killip et al results on tridiagonal representations give

Theorem

Assume that A has the Haar distribution on the unitary group. Then, the canonical moment of μ_A (Verblunsky coefficients) are independent with good beta distributions.

All the asymptotic results remain true!!!

Corollary

Assume that A has the Haar distribution on the unitary group. Then, μ_A satisfies a LDP with good rate function the reversed Kullback information with respect to the uniform.

Corollary

Assume that A has the Haar distribution on the unitary group. Then, μ_A satisfies a LDP with good rate function the reversed Kullback information with respect to the uniform.

Large deviations for spectral measures of other popular matricial models???

Corollary

Assume that A has the Haar distribution on the unitary group. Then, μ_A satisfies a LDP with good rate function the reversed Kullback information with respect to the uniform.

Large deviations for spectral measures of other popular matricial models???

YES!!!!

Corollary

Assume that A has the Haar distribution on the unitary group. Then, μ_A satisfies a LDP with good rate function the reversed Kullback information with respect to the uniform.

Large deviations for spectral measures of other popular matricial models???

YES!!!!

But up to now explicit rate functions only for $\beta\text{-Hermite}$ ensemble

- ◆□ → ◆□ → ◆三 → ◆三 → ○ ● ○ ○ ○ ○

Random moment problems

β -Hermite ensemble l

• GOE(N) diagonal entries = independent $\mathcal{N}(0; 2/N)$

 GOE(N) diagonal entries = independent N(0; 2/N) non diagonal entries independent (up to symmetry) N(0; 1/N)

 GOE(N) diagonal entries = independent N(0; 2/N) non diagonal entries independent (up to symmetry) N(0; 1/N) Eigenvalues density proportional to

$$\Delta(\lambda_1,\ldots,\lambda_N)\exp{-rac{N}{4}\sum_j\lambda_j^2}$$
 .

 GOE(N) diagonal entries = independent N(0; 2/N) non diagonal entries independent (up to symmetry) N(0; 1/N) Eigenvalues density proportional to

$$\Delta(\lambda_1,\ldots,\lambda_N)\exp{-rac{N}{4}\sum_j\lambda_j^2}$$

Eigenvectors independent and Haar distributed on O(N)

 $\Delta =$ Vandermonde determinant

- < ロ > < 回 > < 画 > < 画 > < 画 > 、 画 > の < の

- < ロ > < 回 > < 画 > < 画 > < 画 > 、 画 > の < の

$\beta\text{-Hermite ensemble II}$

• GUE(N) Diagonal entries independent distribution $\mathcal{N}(0; 1/N)$

▶ GUE(N) Diagonal entries independent distribution $\mathcal{N}(0; 1/N)$ non diagonal entries independent (up to symmetry) distribution $\mathcal{N}(0; 1/2N) + \sqrt{-1}\mathcal{N}(0; 1/2N)$ (imaginary and real parts are independent)

▶ GUE(N) Diagonal entries independent distribution $\mathcal{N}(0; 1/N)$ non diagonal entries independent (up to symmetry) distribution $\mathcal{N}(0; 1/2N) + \sqrt{-1}\mathcal{N}(0; 1/2N)$ (imaginary and real parts are independent) Joint eigenvalue density proportional to

$$\Delta(\lambda_1,\ldots,\lambda_N)^2 \exp{-\frac{N}{2}\sum_j \lambda_j^2}.$$

▶ GUE(N) Diagonal entries independent distribution $\mathcal{N}(0; 1/N)$ non diagonal entries independent (up to symmetry) distribution $\mathcal{N}(0; 1/2N) + \sqrt{-1}\mathcal{N}(0; 1/2N)$ (imaginary and real parts are independent) Joint eigenvalue density proportional to

$$\Delta(\lambda_1,\ldots,\lambda_N)^2 \exp{-rac{N}{2}\sum_j \lambda_j^2}.$$

Eigenvectors independent and Haar distributed on U(N)

- < ロ > < 団 > < 匡 > < 匡 > ・ 匡 - の < @

Coulomb gas model

$$|\Delta(\lambda_1,\ldots,\lambda_N)|^eta\exp{-rac{Neta}{4}\sum_j\lambda_j^2}.$$

Coulomb gas model

$$|\Delta(\lambda_1,\ldots,\lambda_N)|^eta\exp{-rac{Neta}{4}\sum_j\lambda_j^2}.$$

- $\beta = 1$ for the GOE,
- $\beta = 2$ for the GUE
- $\beta = 4$ for the GSE

As $N \to \infty$, Empirical measure goes to the semicircle distribution LDP speed N^2 and rate function connected to the Voiculescu entropy.

Spectral measure for β -Hermite ensemble

Eigenvalues=Coulomb gas model

Spectral measure for β -Hermite ensemble

Eigenvalues=Coulomb gas model Random spectral measure μ_A :

$$\mu_{\mathcal{A}}(d\lambda) = \sum_{k} |\pi_{1k}|^2 \, \delta_{\lambda_k}(\lambda)$$

Spectral measure for β -Hermite ensemble

Eigenvalues=Coulomb gas model Random spectral measure μ_A :

$$\mu_{\mathcal{A}}(d\lambda) = \sum_{k} |\pi_{1k}|^2 \, \delta_{\lambda_k}(\lambda)$$

 $(|\pi_1|^2,\ldots,|\pi_N|^2)$

- Independent of eigenvalues and
- Dir $N(\beta/2)$ distributed.

Theorem

For the β -Hermite ensemble μ_A satisfies a LDP (projective throught its moments) with rate function the reversed Kullback information with respect to the semi-circle+ function involving mass of the measure away from [-2, 2].

Theorem

For the β -Hermite ensemble μ_A satisfies a LDP (projective throught its moments) with rate function the reversed Kullback information with respect to the semi-circle+ function involving mass of the measure away from [-2, 2].

Coments

▶ **Proof quite technical involving** sum rules (B. Simon et al)

Theorem

For the β -Hermite ensemble μ_A satisfies a LDP (projective throught its moments) with rate function the reversed Kullback information with respect to the semi-circle+ function involving mass of the measure away from [-2, 2].

\mathbf{C} oments

- ▶ Proof quite technical involving *sum rules (B. Simon et al)*
- Contribution away from [-2,2] for the rate function involves rate function for extreme eigenvalues (see Ferral)

Random moment problems

End

Gracias por su atencion Thanks for your attention Merci Obrigado Danke Grazie

