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Framework

Road traffic (Mediamobile) :
@ Activity: Real-time prediction of traveling time
@ Aim: Understand the speed process on the road traffic
network
@ Observations :
e Fixed sensors: corrupted values
o Cars fleet: unobserved areas
e The graph is known
@ Probem: Use the spatial dependency for:

e Spatial completion
@ Spatio-temporal prediction
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Steps

Modeling : Random process (X,(")),,Ez,,-ea
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Steps

Modeling : Random process (X,(")),,Ez,,-ea

@ Indexed by (discrete) time Z and the graph G of the road
traffic network

@ Gaussian

@ Centered

@ “Stationary”

@ Extension of classical tools from time series to graphs

Objective: Yield a parametric model (Ky),.¢ for covariance
operators of X
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Modeling

Problem

Speed of vehicles on the road network at a fixed time:
zero-mean Gaussian field (X;);cg indexed by the vertices of a
graph.
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Modeling

Problem

Speed of vehicles on the road network at a fixed time:
zero-mean Gaussian field (X;);cg indexed by the vertices of a
graph.

Aim: Chose a model for covariance operators

Modeling constraints
@ Adaptability to physical modeling
@ Compatibility with classical cases (time series, Z9,
homogeneous tree...)

@ Extension of classical tools from time series (spectral
representation, Whittle’s estimation...)
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Modeling

Problem

Speed of vehicles on the road network at a fixed time:
zero-mean Gaussian field (X;);cg indexed by the vertices of a
graph.

Aim: Chose a model for covariance operators

Modeling constraints
@ Adaptability to physical modeling
@ Compatibility with classical cases (time series, Z9,
homogeneous tree...)

@ Extension of classical tools from time series (spectral
representation, Whittle’s estimation...)

= Define covariance operators from a spectral construction

F. Gamboa et al Modeling and estimation for Gaussian fields indexed by graphs, application to road



Modeling

A few bibliography

Spectral representation of stationary process
@ 79: X. Guyon
@ Homogeneous tree: J-P. Arnaud
@ Distance transitive graphs: H. Heyer
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Modeling

A few bibliography

Spectral representation of stationary process
@ 79: X. Guyon
@ Homogeneous tree: J-P. Arnaud
@ Distance transitive graphs: H. Heyer
Maximum likelihood
@ 7Z: R. Azencott and D. Dacunha-Castelle
@ 79: X. Guyon, R. Dahlhaus
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Modeling

Model: Zero-mean Gaussian field (X;);cg indexed by the
vertices G of a graph G.

Definition (Unoriented weigthed graph)

G=(GW):
@ G set of vertices (countable)
o W e [-1,1]9%C Weighted adjacency operator (symmetric)
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Modeling

Model: Zero-mean Gaussian field (X;);cg indexed by the
vertices G of a graph G.

Definition (Unoriented weigthed graph)
G=(G W):
@ G set of vertices (countable)
o W e [-1,1]9%C Weighted adjacency operator (symmetric)

Neighbors: / ~ jif W; #0
Degree of a vertex: D, =4 {j,i ~ j}.

Assumption ()
@ D :=sup;c.g D; < +o0, G has bouded degree
 Vie G, Y .q|Wj| <1 even renormalizing
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Modeling

Modeling for covariance operators

Models for covariance operators (of the speed field)
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Modeling

Modeling for covariance operators

Models for covariance operators (of the speed field)

W acts on 2(G) :

Vu e P(G),Vi € G, (Wu); =) Wu;.
jeG
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Modeling

Modeling for covariance operators

Models for covariance operators (of the speed field)

W is a bounded Hilbertian self-adjoint operator in
Bg = P(G) — PP(G):

IWll,0p < 1-
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Modeling

Modeling for covariance operators

Models for covariance operators (of the speed field)

Definition (Identity resolution)
M o-algebra E : M — Bg such that Vw,w' € M,
@ E(w)self-adjoints projectors.
Q E(s)=0,E(Q) =1
Q E(wnuw')=E(W)E(w)
Q Siwnuw =g, alors E(wUuW') = E(w) + E(w')
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Modeling

Modeling for covariance operators

Models for covariance operators (of the speed field)

Spectral decomposition

aE,M,W:/ ME()
M
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Modeling

Modeling for covariance operators

Models for covariance operators (of the speed field)

Spectral decomposition

HE,M,W:/ ME()
M

Definition
Local measures

Vi,j € G,Yw € M, uj(w) = Ejw).
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Modeling

Modeling for covariance operators

Models for covariance operators (of the speed field)

Spectral decomposition

aE,M,W:/ ME()
M

Caracterized by:

Vi,j € G,Vk € Z, <W")ij :/S " Mdpi(N).
p
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Modeling

Models for covariance operators, spectral density

Definition (Construction of the covariance operators)
Let g be an positive function, analytic over Sp(W),

K(g) = / INAE(N).
Sp(W)
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Modeling

Models for covariance operators, spectral density

Definition (Construction of the covariance operators)
Let g be an positive function, analytic over Sp(W),

K(g) = / INAE(N).
Sp(W)

@ g polynomial: MAgW)

° é polynomial: AR{,W)

Remarks:
® K(g) =9(W)
@ Dependency in W
@ Analogy with Z
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Modeling

G = Z: compatibility with time series

Adjacency operator
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Modeling

G = Z: compatibility with time series

Adjacency operator

Local measure

Tizi(\
Vi,j e G,Vkez,(wk).:l )\km(v\.
i V1= X2

T, : k'™ Chebychev polynomials
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Modeling

G = Z: compatibility with time series

Adjacency operator

W §1|I—/\—1
Local measure
.. 1 ey
Vije GVkez, (WK) = / Ak R g
! ( >i/ ™)1 V12
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Modeling

G = Z: compatibility with time series

Adjacency operator

1
Wi = 51)i-j=1
Local measure
VI,/GG,VkeZ,(W")_‘:/ NAIEICNN
T J-10] 1 -2

Spectral density

f(t) = g(cos(t))
K(g); = 21%/[_ (0005 (G~ D)t = (T

F. Gamboa et al Modeling and estimation for Gaussian fields indexed by graphs, application to road



Estimation

Outline

e Estimation

Gamboa et al Modeling and estimation for Gaussian fields indexed by graphs, application to road 13/31



Estimation

The concrete problem
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Estimation

The concrete problem

Seleat Source: | ALL |z|
Date: | 2012-02-17 | From: | 12:00 | 7o: | 22:00

Set Default Time Range Get Traffic Data

5

Distance (km)

—_— ]
100 BD0 400 1300 K10 YO0 BD00 100 2000 2100 2200

2012-02-17 Romance Standard Time
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Estimation

Framework: Parametric model of covariances operators
K(fy) = fo(W).

Aim: Parametric estimation
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Estimation

Framework: Parametric model of covariances operators
K(fy) = fo(W).

Aim: Parametric estimation
Remark: Spectral density ~ Asymptotic eigendistribution of the
covariance operators
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Estimation

Framework: Parametric model of covariances operators
K(fy) = fo(W).

Aim: Parametric estimation

Remark: Spectral density ~ Asymptotic eigendistribution of the
covariance operators

Computational issues

@ logdet Term of the log-likelihood
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Framework: Parametric model of covariances operators
K(fy) = fo(W).

Aim: Parametric estimation

Remark: Spectral density ~ Asymptotic eigendistribution of the
covariance operators

Computational issues

@ logdet Term of the log-likelihood
e ' term of the log-likelihood
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Estimation

Framework: Parametric model of covariances operators
K(fy) = fo(W).

Aim: Parametric estimation

Remark: Spectral density ~ Asymptotic eigendistribution of the
covariance operators

Computational issues

@ logdet Term of the log-likelihood

e ' term of the log-likelihood
Other important ideas

@ Trace measure
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Estimation

Framework: Parametric model of covariances operators
K(fy) = fo(W).

Aim: Parametric estimation

Remark: Spectral density ~ Asymptotic eigendistribution of the
covariance operators

Computational issues

@ logdet Term of the log-likelihood

e ' term of the log-likelihood
Other important ideas

@ Trace measure

@ Tappered periodogram

F. Gamboa et al Modeling and estimation for Gaussian fields indexed by graphs, application to road



Estimation

Problem:

@ © C R compact
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Problem:

@ © C R compact
@ (fy)pco parametric family of spectral densities associated
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Estimation

Problem:

@ © C R compact

@ (fy)pco parametric family of spectral densities associated
to K(fy) = fo(W)

@ Asymptotic on (Gp),cy s€quence of nested subgraphs
inducted by G
Example G=Z: G, =[1,n].
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Estimation

Problem:

@ © C R compact

@ (fy)pco parametric family of spectral densities associated
to K(fy) = fo(W)

@ Asymptotic on (Gp),cy s€quence of nested subgraphs
inducted by G
Example G=Z: G, =[1,n].

@ Og € é, X NN(OaK(fGO))
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@ © C R compact

@ (fy)pco parametric family of spectral densities associated
to K(fy) = fo(W)

@ Asymptotic on (Gp),cy s€quence of nested subgraphs
inducted by G
Example G=Z: G, =[1,n].
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@ We observe the restriction X, of X to G, cov : Kn(f)
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@ © C R compact

@ (fy)pco parametric family of spectral densities associated
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@ Asymptotic on (Gp),cy s€quence of nested subgraphs
inducted by G
Example G=Z: G, =[1,n].
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Estimation

Problem:

@ © C R compact

@ (fy)pco parametric family of spectral densities associated
to K(fy) = fo(W)

@ Asymptotic on (Gp),cy s€quence of nested subgraphs
inducted by G
Example G=Z: G, =[1,n].

@ 0 €0, X~ N (0,K(fy,))

@ We observe the restriction X, of X to G, cov : Kn(f)

e m,=1G,

Aim: Estimate 6y with a maximum likelihood method:

Ln(0) := f% (mnlog(2r) + log det (Ka()) + XT (Ka(f)) ™" Xa )
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Estimation

Classical case Z

Computational issues: Maximize an approximation of the
log-likelihood

Ln(0) := —g<log(27r) + % logdet (Tn(f)) + %X,,T (777(f9))‘1 Xn>

F. Gamboa et al Modeling and estimation for Gaussian fields indexed by graphs, application to road



Estimation

Classical case Z

Computational issues: Maximize an approximation of the
log-likelihood

Ln(0) := —g<log(27r) + % logdet (Tn(f)) + %X,,T (777(f9))‘1 Xn>

Whittle’s approximation for Z, log det

™

1 logdet (Th(f)) — 1/ log (f,) dt.
n 27 J[0,2x]
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Estimation

Classical case Z

Computational issues: Maximize an approximation of the
log-likelihood

n 1 [ 1 _
Ln(6) == _2<|og(27r)+2W /[02 ]Iog(f())dt+EX,,T (Tn(fy)) 1x,,>

Whittle’s approximation for Z, log det

™

1 logdet (Th(f)) — 1/ log (f,) dt.
n 27 J[0,2x]
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Estimation

Classical case Z

Computational issues: Maximize an approximation of the
log-likelihood

L1(0) = 3 tog(zn)+ - ., Joat)ats xT (7o) %)

Whittle’s approximation for Z, log det

1 logdet (Th(f)) — / log () dt.
n 27 J[0,2x]

—_
—

™

Whittle’s approximation for Z, periodogram

1 _ 1
- <an (Tn(£)) 1xn—)(anr,,(fg)x,,) -0, p.s.
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Computational issues: Maximize an approximation of the
log-likelihood
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Whittle’s approximation for Z, log det
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Estimation

Classical case Z

Computational issues: Maximize an approximation of the
log-likelihood

™

. 1 1 1 1

Whittle’s approximation for Z, log det

1 logdet (7a(1))) — / log (f,) dt.
n 27 J[0,2x]

—_
—

™

Whittle’s approximation for Z, periodogram

1 _ 1
- <an (Tn(£)) 1xn—)(anr,,(fg)x,,) -0, p.s.
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Estimation

Classical case Z

Computational issues: Maximize an approximation of the
log-likelihood

Whittle’s approximation for Z, log det

1Iogdet(777(f9))—>1/ log (f)) dt.
n 27 J[0,2x]

™

Whittle’s approximation for Z, periodogram

1 _ 1
= <x,,T (Tn(fy)) 1x,,anT,,(fg)xn> — 0, ps.

Aim: Extension to the graph case
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Estimation

Classical case Z

Computational issues: Maximize an approximation of the
log-likelihood

Whittle’s approximation for Z, log det

1Iogdet(777(f9))—>1/ log (f)) dt.
n 27 J[0,2x]

™

Whittle’s approximation for Z, periodogram

1 _ 1
(X ) X0 - XTTa()%0) = 0, ps.

Example G=7: 6, =2
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Estimation

log det approximation for a graph

Assumption (Existence of the trace measure)

Hi 2 3p, 2 Y gy Hag = 1

Assumption (Edge effects)
H2 . (Sn = O(mn)
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Estimation

log det approximation for a graph

Assumption (Existence of the trace measure)

Hi 2 3p, 2 Y gy Hag = 1

Assumption (Edge effects)
H2 . (Sn = O(mn)

Whittle’s approximation for G, log det

,717,7 log det (Kn(fy)) — /Sp(W) log (f5) dpu(t)
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Estimation

Approximation for the periodogram

Close to a "weak” version for Z
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Estimation

Approximation for the periodogram

Close to a "weak” version for Z
Norm by, :

YA € Mn,(R), bn(A) = — > |Aj]
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Estimation

Approximation for the periodogram

Close to a "weak” version for Z
Norm by, :

VA € Mp,(R),bn(A) = 5l Z }A"A

MjcGn

Lemma (Asymptotic homomorphism)

bn (Kn()Kn(9) ~ Kn(15)) < 3(f)a(g).

where, if f = >, fixk,

a(f) = S I (k+ 1)

k
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Estimation

Consistency

Let 6, 0,, 0, resp. argmax of

L,(0) = f% (mn log(27) + logdet (ICh(fy)) + XT (/Cn(fe)r1 Xn)
L) = % (m,, log(27) + mn/Iog (f(x))dp(x) + XT (Kn(f)) ™" Xn>
L,(0) = % (m,, log(27) + m,,/log (fy(x))du(x) + X (IC,, (;)) Xn>
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Estimation

Consistency

Let 6, 0,, 0, resp. argmax of

L) = f% (malog(2r) +log det (Ka(f)) + X] (Ka())™" X0)
L) = % (m,, log(2n) +mn/Iog (f(x))dp(x) + XT (Kn(f)) ™" Xn>
L,(0) = % (m,, log(27) + mn/log (fy(x))du(x) + X (IC,, (é)) Xn>

Assumption ()

@ 0 — fy injective
@ VX e Sp(W),0 — fy(\) continuous.
@ Vo € ©,a(log(fy)) < p < +o0
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Estimation

Consistency

Let 6, 0,, 0, resp. argmax of

Lo(0) = — (malog(2n) +logdet (Kn(1)) + X] (Ka(1))”" X)
L) = —% (m,, log(27) + mn/Iog(fg(x))du(x) + X T (Kn(f5)) X,,)
L) = — (mn log(2r)+ my [ 10g(fs(x))au(x) + X] (icn (;)) xn>

Theorem (Consistancy of the Whittle’s estimate)

The estimators 0,0, 0, converge Pfeo -a.s. to the true value 0q.
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Estimation

Asymptotic normality and efficiency

We need:
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Estimation

Asymptotic normality and efficiency

We need: ]

NG

Problem: Not true in general !!!
@ 79: X. Guyon, R. Dahlhaus
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Estimation

Asymptotic normality and efficiency

We need: ]

V/mp

Problem: Not true in general !!!

@ 79: X. Guyon, R. Dahlhaus
@ Order: 3=
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Estimation

Asymptotic normality and efficiency

We need: ]

V/mp

Problem: Not true in general !!!

@ 79: X. Guyon, R. Dahlhaus
@ Order: 3=

Solution: Extension of the tappered periodogram O.
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Estimation

Asymptotic normality and efficiency

We need: ]

V/mp

Problem: Not true in general !!!

@ 79: X. Guyon, R. Dahlhaus
@ Order: 3=

Solution: Extension of the tappered periodogram O.
Framework:

@ Strong assumptions on the symmetries of the graph
@ Contruction of Q

e AR,

o MA,
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Estimation

Asymptotic normality and efficiency

Tappered likelihood

—21(9) := mylog(2r) + my, / log(fy(x))du(x) + XT (Q,,()jg)) X,
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Estimation

Asymptotic normality and efficiency

Tappered likelihood

—21(9) := mylog(2r) + my, / log(fy(x))du(x) + XT (Q,,()jg)) X,

oY) = argmax LY.
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Estimation

Asymptotic normality and efficiency

Tappered likelihood

—21(0) := m,log(2r) + m, / log(fy(x))du(x) + XT (Q,,(;e)) X,

Theorem (Asymptotic normality)

For 6y € ©, in the AR, or MA, cases, and under assumptions

on the graph and the family of spectral densities,e,g“) converges
to 6y, and is asymptotically normal and efficient:

V(0 — 00) = N (0, (1 / f

2
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Figure: Graphe G
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Figure: Empirical spectral measure
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Figure: Empirical distribution of estimation error
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Applications

Spectrum of the road network

a et al
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Applications

Real datas

Aim: Predict missing values on FRC 0 in Toulouse
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Applications

Real datas

Aim: Predict missing values on FRC 0 in Toulouse
Protocol:

@ 10% of datas hidden to test the quality of the prediction
@ Model: AR;
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Applications

Real datas

Aim: Predict missing values on FRC 0 in Toulouse

100
|

— AR(1)
—— 1-adjacents mean

80
|

80

rmse
40

20

[teration
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Applications

A concrete problem

Seleat Source: | ALL |z|
Date: | 2012-02-17 | From: | 12:00 | 7o: | 22:00

Set Default Time Range Get Traffic Data

5

Distance (km)

—_— ]
100 BD0 400 1300 K10 YO0 BD00 100 2000 2100 2200

2012-02-17 Romance Standard Time
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Applications

A solution ?

Select Source: | Propagated |Z|

Date: (2012-02-17 | From: | 12:00 | To:|22:00

Set Default Time Range Get Traffic Data

Distance (km)

T 5% who 130 &m0 O WP0 BP0 0% 1M ;i
2012-02-17 Romance Standard Time
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Projects

In progress

@ Choice/estimation of the generator
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In progress

@ Choice/estimation of the generator
@ Spectral study and modeling of the road network

@ Maximum likelihood for stationary processes indexed by
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Projects

In progress

@ Choice/estimation of the generator
@ Spectral study and modeling of the road network

@ Maximum likelihood for stationary processes indexed by
trees

@ “Blind“ prediction

Future works ?

@ Link with physicals models
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Applications

Projects

In progress

@ Choice/estimation of the generator
@ Spectral study and modeling of the road network

@ Maximum likelihood for stationary processes indexed by
trees

@ “Blind“ prediction

Future works ?

@ Link with physicals models
@ Use approximation of manifolds by graphs
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Applications

Projects

In progress

@ Choice/estimation of the generator
@ Spectral study and modeling of the road network

@ Maximum likelihood for stationary processes indexed by
trees

@ “Blind“ prediction

@ Link with physicals models
@ Use approximation of manifolds by graphs
@ Extension of the notion of causality
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