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Modeling
Estimation

Applications

Framework

Road traffic (Mediamobile) :
Activity: Real-time prediction of traveling time
Aim: Understand the speed process on the road traffic
network
Observations :

Fixed sensors: corrupted values
Cars fleet: unobserved areas
The graph is known

Probem: Use the spatial dependency for:
Spatial completion
Spatio-temporal prediction
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Steps

Modeling : Random process (X (n)
i )n∈Z,i∈G
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Steps

Modeling : Random process (X (n)
i )n∈Z,i∈G

Indexed by (discrete) time Z and the graph G of the road
traffic network
Gaussian
Centered
“Stationary“
Extension of classical tools from time series to graphs

Objective: Yield a parametric model (Kθ)θ∈Θ for covariance
operators of X
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Problem

Speed of vehicles on the road network at a fixed time:
zero-mean Gaussian field (Xi)i∈G indexed by the vertices of a
graph.

Aim: Chose a model for covariance operators

Modeling constraints
Adaptability to physical modeling
Compatibility with classical cases (time series, Zd ,
homogeneous tree...)
Extension of classical tools from time series (spectral
representation, Whittle’s estimation...)

⇒ Define covariance operators from a spectral construction
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Graph

Model: Zero-mean Gaussian field (Xi)i∈G indexed by the
vertices G of a graph G.

Definition (Unoriented weigthed graph)

G = (G,W ) :
G set of vertices (countable)
W ∈ [−1,1]G×G Weighted adjacency operator (symmetric)

Neighbors: i ∼ j if Wij 6= 0
Degree of a vertex: Di = ] {j , i ∼ j}.

Assumption (H0)
D := supi∈G Di < +∞, G has bouded degree
∀i ∈ G,

∑
j∈G

∣∣Wij
∣∣ ≤ 1 even renormalizing
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Modeling for covariance operators

Models for covariance operators (of the speed field)

K(f ) = f (W )

W acts on l2(G) :

∀u ∈ l2(G), ∀i ∈ G, (Wu)i :=
∑
j∈G

Wijuj .
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Applications

Modeling for covariance operators

Models for covariance operators (of the speed field)

K(f ) = f (W )

Under H0

W is a bounded Hilbertian self-adjoint operator in
BG := l2(G)→ l2(G):

‖W‖2,op ≤ 1.
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Modeling for covariance operators

Models for covariance operators (of the speed field)

K(f ) = f (W )

Definition (Identity resolution)

M σ-algebra E :M→ BG such that ∀ω, ω′ ∈M,
1 E(ω)self-adjoints projectors.
2 E(ø) = 0,E(Ω) = I
3 E(ω ∩ ω′) = E(ω)E(ω′)

4 Si ω ∩ ω′ = ø, alors E(ω ∪ ω′) = E(ω) + E(ω′)
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Modeling for covariance operators

Models for covariance operators (of the speed field)

K(f ) = f (W )

Spectral decomposition

∃E ,M,W =

∫
M
λdE(λ)
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Modeling for covariance operators

Models for covariance operators (of the speed field)

K(f ) = f (W )

Spectral decomposition

∃E ,M,W =

∫
M
λdE(λ)

Definition
Local measures

∀i , j ∈ G,∀ω ∈M, µij(ω) = Eij(ω).
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Modeling for covariance operators

Models for covariance operators (of the speed field)

K(f ) = f (W )

Spectral decomposition

∃E ,M,W =

∫
M
λdE(λ)

Caracterized by:

∀i , j ∈ G,∀k ∈ Z,
(

W k
)

ij
=

∫
Sp(W )

λkdµij(λ).
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Models for covariance operators, spectral density

Definition (Construction of the covariance operators)

Let g be an positive function, analytic over Sp(W ),

K(g) =

∫
Sp(W )

g(λ)dE(λ),

g polynomial: MA(W )
q

1
g polynomial: AR(W )

p · · ·
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Models for covariance operators, spectral density

Definition (Construction of the covariance operators)

Let g be an positive function, analytic over Sp(W ),

K(g) =

∫
Sp(W )

g(λ)dE(λ),

g polynomial: MA(W )
q

1
g polynomial: AR(W )

p · · ·

K(g)ij :=

∫
Sp(W )

g(λ)dµij(λ).
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Models for covariance operators, spectral density

Definition (Construction of the covariance operators)

Let g be an positive function, analytic over Sp(W ),

K(g) =

∫
Sp(W )

g(λ)dE(λ),

g polynomial: MA(W )
q

1
g polynomial: AR(W )

p · · ·

Remarks:
K(g) = g(W )

Dependency in W
Analogy with Z
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G = Z: compatibility with time series
Adjacency operator

Wij =
1
2

11|i−j|=1.
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Applications

G = Z: compatibility with time series
Adjacency operator

Wij =
1
2

11|i−j|=1.

Local measure

∀i , j ∈ G,∀k ∈ Z,
(

W k
)

ij
=

1
π

∫
[−1,1]

λk T|j−i|(λ)
√

1− λ2
dλ.

Tk : k ième Chebychev polynomials
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Local measure

∀i , j ∈ G,∀k ∈ Z,
(

W k
)

ij
=

1
π

∫
[−1,1]

λk T|j−i|(λ)
√

1− λ2
dλ.

Model

(K(g))ij =
1
π

∫
[−1,1]

g(λ)
T|j−i|(λ)
√

1− λ2
dλ.
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G = Z: compatibility with time series
Adjacency operator

Wij =
1
2

11|i−j|=1.

Local measure

∀i , j ∈ G,∀k ∈ Z,
(

W k
)

ij
=

1
π

∫
[−1,1]

λk T|j−i|(λ)
√

1− λ2
dλ.

Spectral density

f (t) = g(cos(t))

K(g)ij =
1

2π

∫
[−π,π]

f (t) cos ((j − i)t) dt := (T (f ))ij
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Ideas

Framework: Parametric model of covariances operators

K(fθ) = fθ(W ).

Aim: Parametric estimation
Remark: Spectral density ∼ Asymptotic eigendistribution of the
covariance operators
Computational issues

log det Term of the log-likelihood
Γ−1 term of the log-likelihood

Other important ideas
Trace measure
Tappered periodogram
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Problem:

Θ ⊂ R compact
(fθ)θ∈Θ parametric family of spectral densities associated
to K(fθ) = fθ(W )

Asymptotic on (Gn)n∈N sequence of nested subgraphs
inducted by G
Example G = Z : Gn = [1,n].

θ0 ∈ Θ̊, X ∼ N
(
0,K(fθ0)

)
We observe the restriction Xn of X to Gn, cov : Kn(fθ)

mn = ]Gn

Aim: Estimate θ0 with a maximum likelihood method:

Ln(θ) := −1
2

(
mn log(2π) + log det (Kn(fθ)) + X T

n (Kn(fθ))−1 Xn

)
F. Gamboa et al Modeling and estimation for Gaussian fields indexed by graphs, application to road traffic prediction 17 / 31
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Applications

Classical case Z
Computational issues: Maximize an approximation of the
log-likelihood

Ln(θ) := −n
2

(
log(2π) +

1
n

log det (Tn(fθ)) +
1
n

X T
n (Tn(fθ))−1 Xn

)
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Aim: Extension to the graph case
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log-likelihood
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Let δn = ]δGn.
Example G = Z: δn = 2
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log det approximation for a graph

Assumption (Existence of the trace measure)

H1 : ∃µ, 1
mn

∑
g∈Gn

µgg → µ

Assumption (Edge effects)

H2 : δn = o(mn)

Whittle’s approximation for G, log det

1
mn

log det (Kn(fθ))→
∫

Sp(W )
log (fθ)dµ(t)

F. Gamboa et al Modeling and estimation for Gaussian fields indexed by graphs, application to road traffic prediction 19 / 31



Modeling
Estimation

Applications

log det approximation for a graph

Assumption (Existence of the trace measure)

H1 : ∃µ, 1
mn

∑
g∈Gn

µgg → µ

Assumption (Edge effects)

H2 : δn = o(mn)

Whittle’s approximation for G, log det

1
mn

log det (Kn(fθ))→
∫

Sp(W )
log (fθ)dµ(t)

F. Gamboa et al Modeling and estimation for Gaussian fields indexed by graphs, application to road traffic prediction 19 / 31



Modeling
Estimation

Applications

Approximation for the periodogram
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Close to a ”weak” version for Z
Norm bn :

∀A ∈ Mmn (R),bn(A) =
1
δn

∑
i,j∈Gn

∣∣Aij
∣∣
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Approximation for the periodogram
Close to a ”weak” version for Z
Norm bn :

∀A ∈ Mmn (R),bn(A) =
1
δn

∑
i,j∈Gn

∣∣Aij
∣∣

Lemma (Asymptotic homomorphism)

bn

(
Kn(f )Kn(g)−Kn(fg)

)
≤ 1

2
α(f )α(g),

where, if f =
∑

k fkxk ,

α(f ) =
∑

k

|fk | (k + 1)
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Consistency
Let θn, θ̄n, θ̃n resp. arg max of

Ln(θ) := −1
2

(
mn log(2π) + log det (Kn(fθ)) + X T

n (Kn(fθ))−1 Xn

)
L̄n(θ) := −1

2

(
mn log(2π) + mn

∫
log(fθ(x))dµ(x) + X T

n (Kn(fθ))−1 Xn

)
L̃n(θ) := −1

2

(
mn log(2π) + mn

∫
log(fθ(x))dµ(x) + X T

n

(
Kn

(
1
fθ

))
Xn

)

F. Gamboa et al Modeling and estimation for Gaussian fields indexed by graphs, application to road traffic prediction 21 / 31



Modeling
Estimation

Applications

Consistency
Let θn, θ̄n, θ̃n resp. arg max of

Ln(θ) := −1
2

(
mn log(2π) + log det (Kn(fθ)) + X T

n (Kn(fθ))−1 Xn

)
L̄n(θ) := −1

2

(
mn log(2π) + mn

∫
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)
L̃n(θ) := −1

2

(
mn log(2π) + mn

∫
log(fθ(x))dµ(x) + X T

n

(
Kn

(
1
fθ

))
Xn

)

Assumption (H3)

θ → fθ injective

∀λ ∈ Sp(W ), θ → fθ(λ) continuous.

∀θ ∈ Θ, α(log(fθ)) ≤ ρ < +∞
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2
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mn log(2π) + mn

∫
log(fθ(x))dµ(x) + X T

n

(
Kn

(
1
fθ

))
Xn

)

Theorem (Consistancy of the Whittle’s estimate)

The estimators θn,θ̄n, θ̃n converge Pfθ0
-a.s. to the true value θ0.
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Asymptotic normality and efficiency

We need:
1√
mn

E
[
L′n(θ0)

]
→ 0

Problem: Not true in general !!!

Zd : X. Guyon, R. Dahlhaus
Order: δn

mn

Solution: Extension of the tappered periodogram Q.
Framework:

Strong assumptions on the symmetries of the graph
Contruction of Q
ARL

MAL
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Asymptotic normality and efficiency

Tappered likelihood

−2L(u)
n (θ) := mn log(2π) + mn

∫
log(fθ(x))dµ(x) + X T

n

(
Qn(

1
fθ

)

)
Xn.
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n (θ) := mn log(2π) + mn

∫
log(fθ(x))dµ(x) + X T

n

(
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1
fθ

)

)
Xn.

θ
(u)
n = arg max L(u)

n .
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Asymptotic normality and efficiency

Tappered likelihood

−2L(u)
n (θ) := mn log(2π) + mn

∫
log(fθ(x))dµ(x) + X T

n

(
Qn(

1
fθ

)

)
Xn.

Theorem (Asymptotic normality)

For θ0 ∈ Θ̊, in the ARL or MAL cases, and under assumptions
on the graph and the family of spectral densities,θ(u)

n converges
to θ0, and is asymptotically normal and efficient:

√
mn(θ

(u)
n − θ0)→ N

0,

(
1
2

∫
(f ′θ0

)2

f 2
θ0

dµ

)−1
 .
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Outline

1 Modeling

2 Estimation

3 Applications
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Figure: Graphe G
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Figure: Empirical spectral measure
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Figure: Empirical distribution of estimation error
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Spectrum of the road network
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Real datas
Aim: Predict missing values on FRC 0 in Toulouse
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Applications

Real datas
Aim: Predict missing values on FRC 0 in Toulouse
Protocol:

10% of datas hidden to test the quality of the prediction
Model: AR1
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A concrete problem
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A solution ?
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Applications

Projects

In progress

Choice/estimation of the generator
Spectral study and modeling of the road network
Maximum likelihood for stationary processes indexed by
trees
“Blind“ prediction

Future works ?
Link with physicals models
Use approximation of manifolds by graphs
Extension of the notion of causality
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Merci !
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