

Sensitivity analysis and computer code experiments

Fabrice Gamboa

IMT Toulouse

1th de June

Workshop on Applied Statistics UTB Cartagena

Agenda

- Scientific context
 - What are we dealing with?
 - Some questions on the general model
 - Introduction
 - Frame: Black box
 - Gains of stochastic methods
 - Presented techniques
 - Some links
 - A toy model

Sensivity analysis

- Deterministic methods
- A first insight in probability theory
- Sobol method
- Sobol indices estimation

Gaussian emulator

- A short journey towards Gaussian fields
- Kriging

The small story

Early 2000, IMT Toulouse begin to work with many Labs :

- CEA Cadarache. N. Devictor, B. looss. Nuclear safety (Ph D A. Marrel-currently CEA-)
- ONERA-DOTA Palaiseau. G. Durand, A. Roblin. infrared profile of a plane (Ph D S. Varet)
- IFP Lyon. P. Duchène, F. Wahl-Univ Grenoble. A Antoniadis. Chemical cinetic problems (Ph D S. Da Veiga-Currently IFP-)
- \Rightarrow Scientific meetings in Toulouse- Février 2006 and in Lyon en 2007 GDR CNRS borned

What are we dealing with?

Big computer codes= F black box

Y = F(X)

- Code inputs: X high dimension object (vectors or curves).
- Code outputs Y (scalar or vectorial).

X complex structure and/or uncertain

 \Rightarrow seen as random

STOCHASTIC APPROACH

Some questions on the general model

- Sensitivity and uncertainty analysis= take informations on the joint distribution (*X*, *Y*)
- *F* too complicated. Design a reduced model= Estimate a response surface
- Optimise the run number= make an experimental design

People working around this topic

- GDR MASCOT NUM Annual meeting march 2012 : CEA Bruyères le Chatel http://www.gdr-mascotnum.fr/
- ANR project : OPUS EADS, CEA, EDF, ... (CEA)

http://www.opus-project.fr/

- ANR project : COSTA BRAVA CEA, IFP, Univ Toulouse, Univ Grenoble http://www.math.univ-toulouse.fr/COSTA_BRAVA/doku.php?id=index
- SIAM conference : Uncertainty quantification 2th-5Th April 2012 http://www.siam.org/meetings/uq12

Fabrice Gamboa (IMT Toulouse) Sensitivity analysis and computer code experie

• Main object : complicated computer simulation code

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.
 - Many input: vectorial, functional, uncertain.

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.
 - Many input: vectorial, functional, uncertain.
 - Many output: vectorial, functional.

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.
 - Many input: vectorial, functional, uncertain.
 - Many output: vectorial, functional.
 - Expensive: from some minutes up to several days

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.
 - Many input: vectorial, functional, uncertain.
 - Many output: vectorial, functional.
 - Expensive: from some minutes up to several days
 - Example functional code CERES from CEA CERES

- Main object : complicated computer simulation code
- Examples: Meteo, Oceanography, Complex physical or chemical process, Economics evolutions
- Complexity:
 - Big Code: many different numerical methods elaborated during a large time.
 - Many input: vectorial, functional, uncertain.
 - Many output: vectorial, functional.
 - Expensive: from some minutes up to several days
 - Example functional code CERES from CEA CERES
- Need methods to enlight.

Fabrice Gamboa (IMT Toulouse) Sensitivity analysis and computer code experie

(日) (四) (三) (三) (三)

Today conference: vectorial input et scalar output Y =output is a number and X =input is a vector of numbers

Today conference: vectorial input et scalar output Y = output is a number and X = input is a vector of numbers

Black box model

Today conference: vectorial input et scalar output Y = output is a number and X = input is a vector of numbers

Black box model

Today conference: vectorial input et scalar output Y = output is a number and X = input is a vector of numbers

Black box model

Non linear regression model

Y = f(X).

The code is modeled as an abstract complicated function f

\bullet Take into account random characteristic of some components of X

• Take into account random characteristic of some components of X

- Physical measures with error: Pressure, temperature...
- unknown physical constants: wave in random media.

• Take into account random characteristic of some components of X

- Physical measures with error: Pressure, temperature...
- unknown physical constants: wave in random media.
- Allow to model multimodal distributions: double mode...

• Take into account random characteristic of some components of X

- Physical measures with error: Pressure, temperature...
- unknown physical constants: wave in random media.
- Allow to model multimodal distributions: double mode...

• Parametric and non parametric estimation methods

Fabrice Gamboa (IMT Toulouse) Sensitivity analysis and computer code experie

• Sobol sensitivity analysis

Sobol sensitivity analysis

- Within the (random) components of the input (vector) X what are those having most influence on the output?
- "influence" is quantified in terms of "variability" induced by this component.
- Global analysis taking into account the whole distribution of the input.
- Response surface methods (Reduced model)

Sobol sensitivity analysis

- Within the (random) components of the input (vector) X what are those having most influence on the output?
- "influence" is quantified in terms of "variability" induced by this component.
- Global analysis taking into account the whole distribution of the input.
- Response surface methods (Reduced model)
 - Replace the complicated code by a simple one easy to build from a short sample y cheap in CPU.
 - Goal: optimization, computation of a critical threshold, sensitivity analysis...
 - Discussed method: come from geostatistics (KRIGING).

• Research/Developpement

- Research/Developpement
 - GDR CNRS MASCOT NUM http://www.gdr-mascotnum.fr/ ,
 - OPUS- ANR project big open source plateform including tools for codes.
 - COSTA BRAVA- ANR project functional input or output coupling random and deterministic methods.
- Softwares

- Research/Developpement
 - GDR CNRS MASCOT NUM http://www.gdr-mascotnum.fr/ ,
 - OPUS- ANR project big open source plateform including tools for codes.
 - COSTA BRAVA- ANR project functional input or output coupling random and deterministic methods.
- Softwares
 - R package DICE (IRSN, EDF, Renault, ...). http://crocus.emse.fr/dice
 - MATLAB Kriging package: DACE http://www2.imm.dtu.dk/ hbn/dace/
 - Free software of O' Oakley and O' Hagan computation of sensitivity indices: GEM

http://www.tonyohagan.co.uk/academic/GEM/index.html

Fabrice Gamboa (IMT Toulouse) Sensitivity analysis and computer code experie

(日) (四) (三) (三) (三)

• Some references to begin with
Some links II

- Some references to begin with
 - Linear and non linear regression: Azais, Antoniadis et al
 - Computer code experiments : Santner et al
 - Sensitivity analysis: Tarantolla et al, pioneering papers of Sobol, Antoniadis
 - Kriging: Stein, Cressie

A toy model

Rastrigin function

$$f(x) = f(x_1, x_2) = 8||x||^2 - 10(\cos(4\pi x_1) + \cos(8\pi x_2))$$

See http://www.gdr-mascotnum.fr/doku.php?id=benchmarks

Fabrice Gamboa (IMT Toulouse) Sensitivity analysis and computer code experiment

Recall the goal

Model

Y = f(X).

•
$$X = (X_i)_{i=1...k}$$
 input vector

• Y output (real number).

Goal: Which of the components of X are more influent on Y?

Roughltly speaking are based on derivative of f:

Roughltly speaking are based on derivative of *f*:

• \overline{x} being a point where the code is usually used

Roughltly speaking are based on derivative of f:

- \overline{x} being a point where the code is usually used
- the influence of X_j is quantified using $(\frac{\partial f}{\partial X_i})(\overline{x})$.

Effective computation of the derivative

Roughltly speaking are based on derivative of f:

- \overline{x} being a point where the code is usually used
- the influence of X_j is quantified using $(\frac{\partial f}{\partial X_i})(\overline{x})$.

Effective computation of the derivative

Finite differences

$$\left(\frac{\partial f}{\partial X_j}\right)(\overline{x}) \approx h^{-1}\left[f(\overline{x}_{j,h^+}) - f(\overline{x}_{j,h^-})\right]$$

Roughltly speaking are based on derivative of *f*:

- \overline{x} being a point where the code is usually used
- the influence of X_j is quantified using $(\frac{\partial f}{\partial X_i})(\overline{x})$.

Effective computation of the derivative

• Finite differences

$$\left(\frac{\partial f}{\partial X_j}\right)(\overline{x}) \approx h^{-1}\left[f(\overline{x}_{j,h^+}) - f(\overline{x}_{j,h^-})\right]$$

• Adjoint methods: the derivative is directly computed by the code (PDE models).

Deterministic methods-toy model

Rastrigin function

$$f(x) = f(x_1, x_2) = 8||x||^2 - 10(\cos(4\pi x_1) + \cos(8\pi x_2))$$

Deterministic methods-toy model

Rastrigin function

$$f(x) = f(x_1, x_2) = 8||x||^2 - 10(\cos(4\pi x_1) + \cos(8\pi x_2))$$

The derivative method is quite unstable.

A first insight in probability theory: Random variables

Probability distribution

► Z random variable on R: most often with *density*. Repartition of Z is described by a function, ("mass function ").

▶ Generalization: random vector on ℝ^k. Example multivariate (centered) Gaussian distribution with density

$$\frac{1}{(2\pi)^{\frac{k}{2}}\sqrt{\det\Gamma}}\exp[\frac{1}{2}z^{T}\Gamma^{-1}z].$$

• Independence of random variables (Z_1, Z_2) : observing Z_1 give no information on the distribution of Z_2 .

A first insight in probability theory: Expectation, Variance

- Z a random variable having distribution F.
 - Expectation of a random variable: $\mathbb{E}(Z)$
 - Gravity center
 - Constant that explains the best the random variable.
 - Projection on constant random variables
 - Variance of a random variable: Var(Z)
 - Inertia moment
 - Magnitud of the fluctuactions around the mean
 - Squared norm of the random variable after having taken off the mean effect

Pythagora's Theorem

$$\mathbb{E}(Z^2) = \|Z\|^2 = \|\mathbb{E}(Z)\|^2 + \|Z - \mathbb{E}(Z)\|^2 = \mathbb{E}(Z)^2 + \text{Var}(Z)$$
$$\text{Var}(Z) = \mathbb{E}(Z^2) - \mathbb{E}(Z)^2.$$

Distribution examples : Expectation, Variance

• The most popular: Gaussian distribution (m, σ^2)

• density on $\mathbb R$

$$g(z) = rac{1}{\sqrt{2\pi\sigma}} \exp\left[-rac{(z-m)^2}{2\sigma^2}
ight].$$

Expectation

$$\mathbb{E}(Z) = \int_{-\infty}^{+\infty} zg(z)dz = \int_{-\infty}^{+\infty} \frac{z}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(z-m)^2}{2\sigma^2}\right]dz = m.$$

Variance

$$\operatorname{Var}(Z) = \mathbb{E}[(Z - \mathbb{E}(Z)^2)^2] = \mathbb{E}(Z^2) - [\mathbb{E}(Z)]^2 = \sigma^2.$$

- The most random: Uniform on [z_{min}, z_{max}]
 - density on $\mathbb R$

$$g(z) = \frac{\mathbf{1}_{[z_{\min}, z_{\max}]}(z)}{z_{\max} - z_{\min}}.$$

Expectation

$$\mathbb{E}(Z) = \int_{z_{\min}}^{z_{\max}} zg(z)dx = \int_{z_{\min}}^{z_{\max}} zdz = \frac{z_{\min} + z_{\max}}{2}$$

Variance

$$Var(Z) = \mathbb{E}[(Z - \mathbb{E}(Z)^2)^2] = \mathbb{E}(Z^2) - [\mathbb{E}(Z)]^2 = \frac{(z_{max} - z_{min})^2}{12}.$$

A first insight in probability theory: Conditional expectation

- (Z_1, Z_2) a random vector
 - Conditional expectation of Z_2 knowing Z_1): $\mathbb{E}(Z_2|Z_1)$
 - $Z_1 = z_1$ has been observed how one can predict the best Z_2 ?
 - ▶ What is the best function of *Z*₁ to explain *Z*₂?
 - Projection of Z_2 on functions of Z_1 .

Examples

- $\mathbb{E}(Z_2|Z_1) = \mathbb{E}(Z_2)$ when (Z_1, Z_2) are independent random variables
- $\mathbb{E}(Z_2|Z_1) = \rho Z_1$ for a centered Gaussian vector

- Some interesting facts for $\mathbb{E}(Z_2|Z_1)$
 - $\blacktriangleright \mathbb{E}[\mathbb{E}(Z_2|Z_1)] = \mathbb{E}[Z_2]$

$$\blacktriangleright \mathbb{E}[\psi(Z_1)Z_2|Z_1] = \psi(Z_1)\mathbb{E}(Z_2|Z_1)$$

Pythagora's Theorem

$$\mathbb{E}[Z_2^2] = \mathbb{E}[\mathbb{E}(Z_2|Z_1)^2] + \mathbb{E}[(Z_2 - \mathbb{E}(Z_2|Z_1))^2]$$

taking off $[\mathbb{E}(Z_2)]^2$

$$\mathsf{Var}(Z_2) = \mathsf{Var}[\mathbb{E}(Z_2|Z_1)] + \mathbb{E}[(Z_2 - \mathbb{E}(Z_2|Z_1))^2].$$

Of course, it is possible to generalize the notion of conditional expectation for a vector (Z_1 is a random vector).

Example toy model

• Rastrigin function

 $Y = f(X) = f(X_1, X_2) = 8||X||^2 - 10(\cos(4\pi X_1) + \cos(8\pi X_2))$

Example toy model

Assume that $X_1 \sim \mathcal{U}([0,1])$ et $X_2 \sim \mathcal{U}([0,2])$

$$\mathbb{E}(Y|X_1) = 8X_1^2 - 10\cos(4\pi X_1) + \frac{32}{3}$$

$$\mathbb{E}(Y|X_2) = 8X_2^2 - 10\cos(8\pi X_2) + \frac{8}{3}$$

An important example of vectorial conditioning Centered Gaussian model

$$Z^{T} = (Z_1, Z_2)^{T} = (Z_1^1, \dots Z_1^l, Z_2)$$

Gaussian vector with density

$$\frac{1}{(2\pi)^{\frac{k}{2}}\sqrt{\det\Gamma}}\exp[\frac{1}{2}z^{T}\Gamma^{-1}z].$$

 Γ is the covariance matrix of the random vector Z (assumed to be invertible):

$$\Gamma = \begin{pmatrix} \Gamma_{Z_1} & c_{Z_1,Z_2}^T \\ c_{Z_1,Z_2} & \sigma_{Z_2}^2 \end{pmatrix}$$

- Γ_{Z_1} is the covariance matrix of the random vector Z_1 ,
- c_{Z_1,Z_2} is the covariance vector between Z_1 and Z_2 (row vector),
- $\sigma_{Z_2}^2$ is the variance of Z_2 .

Centered Gaussian model

Theorem

$$\mathbb{E}(Z_2|Z_1) = c_{Z_1,Z_2}\Gamma_{Z_1}^{-1}Z_1,$$

 $\mathbb{E}[Z_2 - \mathbb{E}(Z_2|Z_1)]^2 = \sigma_{Z_2}^2 - c_{Z_1,Z_2}\Gamma_{Z_1}^{-1}c_{Z_1,Z_2}^T.$

- Linear prediction,
- 1-d example $\mathbb{E}(Z_2|Z_1) = \rho Z_1$,
- Kalman filter=recursive formulation of the previous theorem

Sobol method

Model

$$Y=f(X).$$

We will quantify the *stochastic* influence of each input variables using previous projections:

Definition

Sobol indices for the output Y

• First order indice for the input X_i

$$S_i = rac{Var(\mathbb{E}[Y|X_i])}{Var(Y)}$$

• 2nd order indice for the inputs X_i, X_{j}

$$S_{i,j} = \frac{Var(\mathbb{E}[Y|X_i, X_j])}{Var(Y)} - S_i - S_j$$

 $S_{i,j}$ Influence of the joint inputs X_i et X_j (marginal effects erased).

Fabrice Gamboa (IMT Toulouse) Sensitivity analysis and

Sobol-Antoniadis (Hoeffding) Decomposition

Generalization: third order for the input X_i, X_j, X_l

$$S_{i,j,l} = \frac{\mathsf{Var}(\mathbb{E}[Y|X_i, X_j, X_l])}{\mathsf{Var}(Y)} - \sum_{i_1 < i_2 \in \{i, j, l\}} S_{i_1, i_2} + S_i + S_j + S_l$$

 $S_{i,j,l}$ joint influence of X_i , X_j et X_k (marginal effects erased).

Theorem (Sobol-Antoniadis-Hoefding)

Assume that. X_1, X_2, \ldots, X_k are independent. then

$$1 = \sum S_{ijl...}$$

Fabrice Gamboa (IMT Toulouse) Sensitivity analysis and computer code experio

Sobol indices estimation

- Monte Carlo methods,
- Quasi Monte Carlo methods: FAST,
- Gaussian methods metamoddeling: Kriging O Oakley et al,
- Mathematical Statistics ANR COSTA BRAVA,

Recall the goal

Model

Y = f(X).

•
$$X = (X_i)_{i=1...k}$$
 is the input vector

• Y is the output (real number).

Goal: Build a function \tilde{f} (cheap in terms of CPU) to emulate (approximate, estimate) f.

Several approaches

Model

Y = f(X).

Goal: Build a function \tilde{f} (cheap in terms of CPU) to emulate (approximate, estimate) f.

- Approximation of f by a linear combination of given functions (e.g. Fourier, chaos or orthogonal polynomials,...),
- The same but non linear approximation (neural networks, non parametric statistics...),
- Discussed method: Bayesian approach using Gaussian processes (fields).

A short journey towards Gaussian fields

Gaussian vector $Z = (Z_i)_{i=1...k}$: finite number of components Random Gaussian field $Z = (Z_t)_{t \in T}$: many components as the elements of T ($T = \mathbb{Z}, \mathbb{R}, \mathbb{C}, \mathbb{R}^k$).

Gaussian vector: the probability density is

$$\frac{1}{(2\pi)^{\frac{k}{2}}\sqrt{\det \Gamma}}\exp[\frac{1}{2}(z-m)^{T}\Gamma^{-1}(z-m)].$$

The important parameters are:

- The mean (expectation) m vector of \mathbb{R}^k ,
- The covariance matrix Γ ($\gamma_{i,j} = \text{cov}(Z_i, Z_j)$)

Random Gaussian field: for any sample points $t_1, t_2, \ldots t_p \in T$, the vector

$$Z:=(Z_{t_i})_{i=1\ldots p}$$

is a Gaussian vector. The important parameters are:

- The mean function $m(t) = \mathbb{E}(Z_t), \ t \in T$,
- The covariance function $\gamma(t,t') = \operatorname{cov}(Z_t,Z_{t'}), t,t' \in \mathcal{T}$

STATIONARY Gaussian field

STATIONARY Gaussian field: modeling an *unmoving dynamic* (in space or time) phenomena Translation on the parameters:

- The mean function is constant $m(t)=m,\;t\in {\mathcal T}$,
- The covariance function only depends on t t' $\gamma(t, t') = \operatorname{cov}(Z_t, Z_{t'}) = r(t - t')$.

Classical frame

- Vanishing mean function $m(t) = 0, t \in T$,
- The covariance function r(u) depends on some parameter θ. For example, assuming isotropy r(u) = exp(h||u||^α) u ∈ T. Here, the parameter is θ = (h, α) (h > 0, α ≥ 2).

Example modeling the sea

STATIONARY Gaussian process on \mathbb{R}^2 with an *ad hoc* covariance function (See the excellent book of Azais-Wchebor)

Bayesian model in geostatistics

Bayesian model in geostatistics

$$f(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

Bayesian model in geostatistics

$$f(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

$\bullet~\theta$ and ν are unknown vectorial parameters

Bayesian model in geostatistics

$$f(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

θ and ν are unknown vectorial parameters
α_θ a simple mean function (*trend*): (θ, x)

Bayesian model in geostatistics

$$f(x) = \alpha_{\theta}(x) + Z_x(\nu)(x \in T)$$

- θ and ν are unknown vectorial parameters
- α_{θ} a simple mean function (*trend*): $\langle \theta, x \rangle$
- $(Z_x)_{x \in T}$ centered stationary Gaussian field $r_{\nu}(x), x \in T$

Kriging I

Main idea=THE COMPUTER CODE IS THE REALIZATION OF A GAUSSIAN FIELD TRAJECTORY

Kriging I

Main idea=THE COMPUTER CODE IS THE REALIZATION OF A GAUSSIAN FIELD TRAJECTORY

The model has been played randomly

 $Y(x) = f(x)(x \text{ deterministic} \in T)$
Main idea=THE COMPUTER CODE IS THE REALIZATION OF A GAUSSIAN FIELD TRAJECTORY

The model has been played randomly

 $Y(x) = f(x)(x \text{ deterministic} \in T)$

Bayesian model for the black box

Bayesian model for the black box

The model is running on a design $x_1, \ldots x_N$ we have at hand $f(x_1), \ldots, f(x_N)$.

Bayesian model for the black box

The model is running on a design $x_1, \ldots x_N$ we have at hand $f(x_1), \ldots, f(x_N)$. Model

$$Y(x) = \alpha_{\theta}(x) + Z_{x}(\nu)(x \in T)$$

Bayesian model for the black box

The model is running on a design $x_1, \ldots x_N$ we have at hand $f(x_1), \ldots, f(x_N)$. Model

$$Y(x) = \alpha_{\theta}(x) + Z_{x}(\nu)(x \in T)$$

• One uses $f(x_1), \ldots, f(x_N)$ to estimate the parameters θ et ν

Bayesian model for the black box

The model is running on a design $x_1, \ldots x_N$ we have at hand $f(x_1), \ldots, f(x_N)$. Model

$$Y(x) = \alpha_{\theta}(x) + Z_{x}(\nu)(x \in T)$$

- One uses $f(x_1), \ldots, f(x_N)$ to estimate the parameters θ et ν
- Maximum likelihood method

Bayesian model for the black box

The model is running on a design $x_1, \ldots x_N$ we have at hand $f(x_1), \ldots, f(x_N)$. Model

$$Y(x) = \alpha_{\theta}(x) + Z_{x}(\nu)(x \in T)$$

- One uses $f(x_1), \ldots, f(x_N)$ to estimate the parameters θ et ν
- Maximum likelihood method
- *Roughtly speaking* : least square fit of the parameters with weight functions depending on the parameters

Kriging III Bayesian approach

イロト イポト イヨト イヨト 二日

Bayesian approach

• One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.

Bayesian approach

- One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.
- Parameters θ and ν has been previously *identified*

Gaussian emulator

$$\widehat{f}(x) = \widehat{Y}(x) = \mathbb{E}[Y(x)|Y(x_1), \dots Y(x_N)]$$

Bayesian approach

- One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.
- Parameters θ and ν has been previously *identified*

Gaussian emulator

$$\widehat{f}(x) = \widehat{Y}(x) = \mathbb{E}[Y(x)|Y(x_1), \dots Y(x_N)]$$

• Very simple formula

$$\widehat{Y}(x) = \alpha_{\theta}(x) + \mathbb{E}[Z_x|Z_{x_1}, \dots, Z_{x_N}]$$

Bayesian approach

- One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.
- Parameters θ and ν has been previously *identified*

Gaussian emulator

$$\widehat{f}(x) = \widehat{Y}(x) = \mathbb{E}[Y(x)|Y(x_1), \dots Y(x_N)]$$

• Very simple formula

$$\widehat{Y}(x) = \alpha_{\theta}(x) + \mathbb{E}[Z_x | Z_{x_1}, \dots Z_{x_N}] \\ = \alpha_{\theta}(x) + c_x^T \Gamma_N^{-1} Z^N$$

Bayesian approach

- One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.
- Parameters θ and ν has been previously *identified*

Gaussian emulator

$$\widehat{f}(x) = \widehat{Y}(x) = \mathbb{E}[Y(x)|Y(x_1), \dots Y(x_N)]$$

• Very simple formula

$$\widehat{Y}(x) = \alpha_{\theta}(x) + \mathbb{E}[Z_x | Z_{x_1}, \dots Z_{x_N}] = \alpha_{\theta}(x) + c_x^T \Gamma_N^{-1} Z^N$$

• c_x covariance vector of Z_x and Z_{x_1}, \ldots, Z_{x_N} ,

Bayesian approach

- One have at hand $f(x_1), \ldots, f(x_N)$. Valeurs modeled by par $Y(x_1), \ldots, Y(x_N)$.
- Parameters θ and ν has been previously *identified*

Gaussian emulator

$$\widehat{f}(x) = \widehat{Y}(x) = \mathbb{E}[Y(x)|Y(x_1), \dots Y(x_N)]$$

• Very simple formula

$$\widehat{Y}(x) = \alpha_{\theta}(x) + \mathbb{E}[Z_{x}|Z_{x_{1}}, \dots Z_{x_{N}}] \\ = \alpha_{\theta}(x) + c_{x}^{T} \Gamma_{N}^{-1} Z^{N}$$

- c_x covariance vector of Z_x and Z_{x_1}, \ldots, Z_{x_N} ,
- Γ_N covariance matrix between $Z^N := (Z_{x_1}, \dots, Z_{x_N})^T$.

Bayesian method in a functional space

Kriging IV

Bayesian method in a functional space

• Emulation method by linear regression

Kriging IV

Bayesian method in a functional space

• Emulation method by linear regression

$$\widehat{Y}(x) = \alpha_{\theta}(x) + c_x^T \Gamma_N^{-1} Z^N$$

Kriging IV

Bayesian method in a functional space

• Emulation method by linear regression

$$\widehat{Y}(x) = \alpha_{\theta}(x) + c_x^T \Gamma_N^{-1} Z^N$$

• Prediction error of Gaussian du model (if the parameter of the model are known)

$$\mathbb{E}[(Y(x) - \widehat{Y}(x))^2] = r_{\nu}(0) - c_x^T \Gamma_N^{-1} c_x$$

One example from :http://www2.imm.dtu.dk/ hbn/dace/

One example

from :http://www2.imm.dtu.dk/ hbn/dace/

Introduction

Given $f:\mathbbm{R}^n\mapsto \mathbbm{R}.$ May be a black-box (and "expensive") function.

Know values $y_i = f(s_i)$ at design sites $S = \{s_1, \dots, s_m\}$. How does the function behave in between?

ISMP 2003

One example

ISMP 2003

3

ISMP 2003

Gracias por su atencion Thanks for your attention Merci Obrigado Danke Grazie

Le code CERES

Evolution dans le temps de l'activité volumique instantanée du ¹³⁷Cs dans l'air

Le code CERES(bis)

Evolution dans le temps de l'activité volumique instantanée du ¹³⁷Cs en 1 point donné

▲ back