TP 14 - Ruine du joueur

1 Rappels sur les Martingales

Voici quelques résultats fondamentaux sur les Martingales, applicables au niveau de l'agrégation. Une référence utilisable est « Probabilités : Tome II, Master - Agrégation » Jean-Yves Ouvrard. On y trouve notamment des exercices corrigés de très bon niveau dont est inspiré ce TP.

1.1 Résultat sur les temps d'arrêt

Un premier résultat sur les temps d'arrêt, fondamental et souvent couplé au théorème de Beppo Levi (pour un passage à la limite croissant) :

Théorème 1.1 (Premier Théorème d'arrêt) X un processus adapté à $(\mathcal{F}_n)_{n\in\mathbb{N}}$, on a l'équivalence entre

- X est une martingale intégrable
- pour T un temps d'arrêt borné, $X_T \in L^1$ et $\mathbb{E}X_T = \mathbb{E}X_0$.
- X_T est une martingale par rapport à \mathcal{F}_T .

Par ailleurs, si S et T sont des temps d'arrêt bornés tels que $S \leq T$, alors

$$\mathbb{E}[X_T | \mathcal{F}_S] = X_S$$

1.2 Résultats de majoration de probabilité d'événement

Deux résultats de majoration de probabilité d'événements maximaux :

Théorème 1.2 (Inégalité maximale de Doob) Si X est une sous-martingale positive ou intégrable, alors

$$P(\sup_{0 \le n \le N} X_n \ge \epsilon) \le \frac{1}{\epsilon} \int_{\left(\sup_{0 < n \le N} X_n\right) > \epsilon} X_N dP$$

et a fortiori

$$P(\sup_{0 \le n \le N} X_n \ge \epsilon) \le \frac{1}{\epsilon} \mathbb{E}|X_N|$$

En particulier, si X est une martingale intégrable bornée dans L^1 , la variable aléatoire $X^* = \sup_{n \in \mathbb{N}} |X_n|$ est finie p.s.

Théorème 1.3 (Inégalité de Doob) Soit X une martingale bornée dans L^2 , X^* est dans L^2 et on a:

$$||X^*||_{L^2} \le 2 \sup_{n \in \mathbb{N}} ||X_n||_{L^2}$$

1.3 Décomposition de Doob

Théorème 1.4 (Décomposition de Doob) Soit X une sous-martingale, alors il existe une unique martingale M et un unique processus croissant prévisible A tel que

$$X = M + A$$

Par ailleurs, on a

$$\sup_{n\in\mathbb{N}} \mathbb{E}X_n^+ < \infty \Longleftrightarrow \sup_n \mathbb{E}|M_n| < \infty \qquad et \qquad A_\infty \in L^1$$

1.4 Convergences des martingales

Un résultat de convergence des martingales L^2

Théorème 1.5 (Convergence L^2) X martingale bornée dans L^2 , alors X_n converge P p.s. et dans L^2 vers X_{∞} . Par ailleurs

$$\mathbb{E}[X_{\infty}|\mathcal{F}_n] = X_n$$

Un résultat de convergence des martingales L^1

Théorème 1.6 (Convergence L^1) Toute martingale bornée dans L^1 converge P p.s. Enfin, si X martingale bornée dans L^1 et T un temps d'arrêt, la martingale arrêtée X^T converge P p.s.

1.5 Convergences des sur- et sous-martingales

Théorème 1.7 Si X est une sous-martingale telle que $\sup \mathbb{E}X_n^+ < \infty$, alors X_n converge P p.s.

Si X est une sur-martingale positive, alors X_n converge P p.s. vers X_∞ à valeurs dans \mathbb{R}^+ et on a

$$X_n \ge \mathbb{E}[X_\infty | \mathcal{F}_n]$$

2 Problème de la ruine du joueur

Un joueur joue à pile ou face avec une pièce non nécessairement équilibrée. On note p la probabilité d'obtenir pile lors d'un jet. Il reçoit un euro de la banque s'il obtient pile et en donne un à la banque s'il obtient face.

Sa fortune initiale est de $a \in \mathbb{N}^*$ euros et celle de la banque de $b \in \mathbb{N}^*$ euros. Le joueur joue jusqu'à sa ruine ou celle de la banque. On modélise ce jeu de la manière suivante : $(Y_n)_{n \in \mathbb{N}^*}$ est une suite de variables aléatoires définies sur un espace probabilisé, indépendantes, de même loi $p\delta_1 + q\delta_{-1}$ où q = 1 - p. La fortune du joueur S_n après n parties est alors définie par

$$S_0 = a$$
 et $S_n = a + \sum_{j=1}^n Y_j$

On pose $Y_0 = a$, \mathcal{F}_n les filtrations naturelles des processus Y et S (qui sont les mêmes), on note aussi T le temps d'arrêt du jeu, c'est-à-dire

$$T = \inf\{n \in \mathbb{N}^* \mid S_n = 0 \text{ ou } S_n = a + b\}$$

Les objectifs sont multiples :

- calculer la probabilité $P(T < \infty)$.
- calculer $\rho = P(S_T = a + b)$.
- calculer le temps moyen du jeu.
- simuler l'évolution de la fortune du joueur dans les différentes situations possibles.
 - 1. Déterminer la nature du processus S suivant les valeurs de p.
 - 2. Lancer différentes simulations du processus S selon différentes valeurs de p,a,b: on écrira une procédure ruine.m prenant en arguments a,b,p ainsi que N correspondant au nombre maximum de « coups » dans une partie.
 - 3. On suppose p > q:
 - (a) Écrire la décomposition de Doob de la sous-martingale S et préciser son processus croissant prévisible A.
 - (b) En déduire que $\mathbb{E}T < \infty$ et préciser la valeur de $P(T < \infty)$ en utilisant le théorème d'arrêt. On montrera alors que

$$\mathbb{E}[T] \le \frac{b}{p-q}$$

- (c) Lancer différentes simulations pour estimer $\mathbb{E}[T]$ en écrivant une procédure ruinet.m prenant en arguments a, b et p et renvoyant le nombre de « coups » avant la fin de la partie. Vérifier alors l'inégalité précédente en effectuant une estimation « Monte-Carlo » de $\mathbb{E}[T]$.
- (d) Donner une expression de $\mathbb{E}T$ en fonction de ρ .
- (e) On définit pour s > 0 le processus $U = s^S$. Déterminer s pour que U soit une martingale non constante.
- (f) Vérifier qu'alors la martingale arrêtée U^T converge presque sûrement et dans L^1 vers U_T en utilisant le théorème d'arrêt.
- (g) En déduire les valeurs de ρ puis $\mathbb{E}T$.
- (h) Retrouver ces valeurs à l'aide de simulation numériques.
- 4. Étude du cas p = 1/2:
 - (a) Vérifier que S est une martingale de carré intégrable et déterminer son processus croissant prévisible B. En déduire $\mathbb{E}T < \infty$, préciser alors la valeur de $P(T < \infty)$.
 - (b) Vérifier que la martingale arrêtée S^T converge presque sûrement dans L^1, L^2 vers S_T .
 - (c) En déduire les valeurs de $\mathbb{E}S_T$, ρ et $\mathbb{E}T$.