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Abstract. In medical imaging, segmenting accurately lung tumors re-
mains a quite challenging task when they are directly in contact with
healthy tissues. In this paper, we address the problem of extracting in-
teractively these tumors with graph cuts. The originality of this work
consists in (1) reducing input graphs to decrease drastically memory
consumption when segmenting a large volume of data and (2) introduc-
ing a novel energy formulation to inhibit the propagation of the object
seeds. We detail our strategy to achieve relevant segmentations of lung
tumors and compare our results to hand made segmentations provided
by an expert. Comprehensive experiments show how our method can give
solutions near from ground truth in a fast and memory e�cient way.
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1 Introduction

Since last years, accurate measurements of lung tumors sizes has become a chal-
lenging task for staging and assessing tumor response to treatments or its pro-
gression. Revised RECIST criterions, largely used by radiologists, are based on
the measurement of one diameter on a few number of lesions [24], and su�er from
a lack of reproducibility [22]. Alternatively, tumor volumetry has been proposed
to overcome those di�culties in order to improve the staging of nodules [5], the
evaluation of tumor aggressiveness [18], tumor response to chemotherapy [3,26]
or to radiotherapy [16] and the progression rate of tumors [18] or metastases [15].
Moreover, it becomes a necessary tool for the automatic screening of lung nodules
on CT scans, and is currently on evaluation on ongoing trials [23]. Several meth-
ods have been proposed to deal with the di�erent kind of objects to segment.
Nodules are homogeneous spheroid of small size. Masses and tumors have larger
sizes and irregular shapes, and may be necrotic. All may be connected to some
extent to vessels, to the pleura wall, or to the mediastinum. To tackle this issue,



methods make often use of morphological operators [9,10,17]. A classi�cation of
those methods can be found for instance in [21] and [5].

Among semi-automatic approaches of segmentation based on level-sets and
(geodesic) active contours, graph cuts have become in few years a leading method
since the introduction of a fast maximum-�ow/minimum-cut algorithm [2]. In
contrast to other methods, graph cuts have the ability to solve quickly a wide
range of problems in computer graphics such as image segmentation [1], while
achieving a global minimum of the energy function.

Recently, Ye et al. have used this technique for automatically segmenting lung
nodules using a volumetric shape index [25]. Since nodules have presumably
an elliptical shape, they can select the appropriate range of index values for
segmenting nodules. However, segmenting lung tumors of various shapes is a
much more di�cult task. Tumors might indeed be connected to healthy tissues
and it is not possible to distinguish the tumor and the healthy tissues by only
using simple features like the gray levels. The correct segmentation can therefore
only be achieved thanks to the interaction of an expert. To our knowledge, this
is the �rst paper to tackle this problem using graph cuts. In this paper, we
propose a semi-interactive graph cut-based method for segmenting lung tumors.
An overview of the approach is given on Figure 1. First, we compute a distance

Fig. 1: Flow diagram of our approach.

map from the object seeds for lowering the �seeds propagation�. Then during the
graph construction, we reduce the input graph by deciding locally which nodes
are really useful for the minimum-cut computation according to [12]. Typically,
the nodes are located around the contours of the object to segment. Finally, we
compute the minimum-cut and get the �nal solution.

The rest of this paper is organized as follows. In section 2, we review the
graph-cuts framework. We detail our strategy for reducing graphs in section 3
while we introduce our novel energy formulation in section 4. Finally, we validate
experimentally our algorithm on several CT images in section 5.

2 Graph cuts framework

Let us �rst review the graph cuts framework. In this setting, an image I is a
function de�ned over a �nite discrete set P ⊂ Zd (d > 0) that maps each point
p ∈ P to a value I(p). Usually, P correspond to a square when d = 2, a cube
when d = 3 and a cube during a time interval when d = 4. A binary segmentation



of the image is de�ned by a mapping u that assigns to each element of P the
value 0 for the background and 1 for the object. We write u ∈ {0, 1}P .

In [1], Boykov and Jolly showed that the image segmentation problem can
be e�ciently solved by minimizing a Markov Random Field of the form:

E(u) = β ·
∑
p∈P

Ep(up) +
∑
p,q∈P
q∈N (p)

Ep,q(up, uq), (1)

among u ∈ {0, 1}P and for β > 0. The neighborhood system N (p) is in practice
either

N0(p) = {q :
∑d
i=1 |qi − pi| = 1} ∀p ∈ P, or

N1(p) = {q : |qi − pi| ≤ 1, ∀1 ≤ i ≤ d} ∀p ∈ P,

where pi denote the ith coordinate of the point p and |.| denotes the modulus.
(in this paper |.| also denotes the cardinality of a set, the notations will note not
be ambiguous once in context). The above neighborhood systems correspond to
the classical 4-connectivity and 8-connectivity when d = 2. Beside on the border
of the image/volume, we have for any d and any p ∈ P: |N0(p)| = (2d) and
|N1(p)| = 3d − 1. In practice, larger neighborhood systems (i.e. N1) yield better
results but increase running time and memory consumption. Typically, we have
|En| ∼ |P|.|N |, where |.| denotes cardinality. In the sequel, the terms �connec-
tivity 0� and �connectivity 1� will denote the use of a N0 and N1 neighborhood,
respectively.

As usually, the region term Ep(.) in (1) favors the belonging of each pixel/voxel
to either the background or to the object. It is deduced from the input data, an
object seed O and a background seed B. The regularity term Ep,q(.) penalizes
neighboring pixels p and q having di�erent labels. The weight of the penaliza-
tion depends on the di�erence |I(p) − I(q)| and favors boundaries located at
pixels/voxels with a strong gradient. Generally speaking, the de�nition of Ep
and Ep,q depends on the considered application.

According to [8], the minimizer of the energy (1) corresponds to a minimum-
cut in a graph that can be e�ciently computed by the algorithm proposed in [2].
In this context, the directed weighted graph G = (V, E , c) consists of a set of nodes
V = P∪{s, t}, a set of edges E ⊂ V×V and a positive weighting function c : E →
R+ de�ning the edge capacity. Notice that two special nodes are distinguished
from V: the source node s (�object� terminal) and the sink node t (�background�
terminal). After the computation of the minimum cut we set up = 1, if p is
connected to s and up = 0 otherwise. Moreover, the set of edges E is split into
two disjoint sets En and Et denoting respectively n-links and t-links. The t-links
are the edges connecting the terminal nodes s or t to the pixels/voxels and the
n-links are the edges connecting pixels/voxels.

3 Reducing graphs

To obtain high-resolution output, graph cuts must build huge graphs containing
several billions of nodes and even more edges. Such graphs may sometimes do not



�t in central memory. To solve this issue, some authors have recently proposed
heuristics [13,14,20,7]. However, these algorithms can easily get trapped in local
minima of the energy. Also, these algorithms often fail to recover details. This is a
real drawback since thin structures like blood vessels or nodules are ubiquitous in
medical imaging. The only exact alternative is [11], but it has not been developed
for the purpose of image segmentation.

Thus, segmenting high-resolution data using graph cuts require a prohibitive
amount of memory. For instance, the maximum-�ow algorithm described in [2] al-
locates 24|P|+14|En| bytes 1. Table 1 shows that for a �xed amount of RAM, the
maximum volume size decreases quickly as dimension d increases. Nevertheless,

@
@@

Connectivity 0 Connectivity 1

2D 6426 4459

3D 319 219

4D 68 45

Table 1: Maximum size of a square image for which the graph �ts in 2GB of RAM.

as showed in a previous paper [12], most of the nodes in the graph are useless
during the maximum-�ow computation. They are indeed not traversed by any
�ow. Then, one would like to extract the smallest possible graph G′ = (V ′, E ′, c)
from G while keeping a minimum cut u′ identical (or very close) to u. In other
words, we want to minimize |V ′| under the constraint that u ' u′. In fact, this
is an ideal optimization problem which we will not try to solve, because the
method for determining G′ also needs to be (very) fast. We will rather consider
heuristics aiming at that goal.

First, let us introduce some de�nitions before describing our method for
building G′. In accordance with the graph construction given in [8], we consider
(without loss of generality) that a node is linked to at most one terminal:

(s, p) ∈ Et ⇒ (p, t) 6∈ Et, ∀p ∈ P.

We also summarize the capacities on the t-links connected to any node p ∈ P:

c(p) = c(s, p)− c(p, t).

Let us consider a square window B of size (2r + 1) (r > 0) centered at the origin.

We denote by B̃p the translation of B at a point p ∈ P: B̃p = {b + p | b ∈ B}.
For Z ⊂ P, we also denote by Z̃B =

⋃
p∈Z B̃p the dilation of Z by B.

The intuitive idea for building G′ is the following: removing the nodes in any
Z ⊂ P such that pixels/voxels in Z are not directly connected to the sink t and

the �ow that might come into the region Z̃B \ Z su�ces to saturate the edges

located around Z̃B (see Figure 2). Building such sets Z is done by testing each
pixel p of Z. Thus, the nodes in G′ are typically located around the contours of
the object to segment. Assuming that all capacities on n-links are smaller than

1 This corresponds to the max-�ow algorithm v2.2 freely available at http://www.cs.
cornell.edu/People/vnk/software.html



Fig. 2: Principle of the reduction. The nodes from Z are removed because every node
p ∈ Z satisfy (2). Remaining nodes are typically located in the narrow band eZB \ Z.
one (which remains true for all the energy models in segmentation), we use a
more conservative condition for testing each individual pixel p ∈ Z [12]:

(
∀q ∈ B̃p, c(q) ≥ δ

)
or(

∀q ∈ B̃p, c(q) ≤ −δ
)
,

(2)

where δ = P (B)
(2r+1)2−1 , with

P (B) = max(|{(p, q) : p ∈ B, q 6∈ B and p ∈ N (q)}|,
|{(p, q) : p ∈ B, q 6∈ B and q ∈ N (p)}|).

For any p satisfying (2), p is only connected to s (respectively t) and the �ow

that might come in (respectively come out) through t-links in B̃p \{p} su�ces to

saturate the n-links going out (respectively going in) of B̃p. The pixel/voxel p is
not needed and can be removed from G. The subgraph G′ is now fully determined
by the set of nodes

V ′ = {p ∈ P not satisfying (2)} ∪ {s, t}.

Experiments presented in [12] con�rm the intuitive dependence between the
reduction rates and the parameters of the model. For instance, the capacities
c(q) are obtained by multiplying a quantity by the parameter β of (1). Looking
at (2), it is straightforward to see that the test is satis�ed on a smaller set of
pixels/voxels if β decreases. In fact, β small corresponds to a strong regulariza-
tion. In such a situation, we need a larger window radius to obtain a smaller
δ. The latter results in wide bands around the object contours. Conversely, this
results in narrow bands around the object contours when β is large. The result
of such a reduction is illustrated in Figure 3. In our experiments, we always take
β = 3 and r = 1. Additionally, the condition (2) can be tested through an easy
to implement �non-optimized� algorithm with a worst-case complexity of O(|B|).
However for large window radii, such an algorithm cannot handle images of large
size and large dimension d. Decomposing (2) along the dimensions d speed up
signi�cantly the previous algorithm. This yields a test whose computation is
of complexity O(1) (except for image borders). In particular, its complexity is
independent of the window radius. Finally, we have both theoretical and empir-
ical evidence suggesting that this reduction scheme provides an exact solution
(see [12] for details).



(a) Image and seeds (b) Graph G′ (c) Segmentation

Fig. 3: Illustration of the reduction for segmenting a CT image (r = 1). Light gray
pixels correspond to the nodes belonging to G′ (middle). Object and background seeds
are superimposed on the original image (left). On the right image, the segmentation is
superimposed in blue.

4 Energy function

The most famous graph cut-based energy model for image segmentation was
proposed by Boykov and Jolly in [1] (see below). Total Variation-based models
have also been proposed (see [19]). To obtain good results, those models require
the colors in the object to be di�erent from the colors of the background. This
requirement is not e�cient when segmenting lung tumors in CT images, because
tumors and healthy tissues appear in the same range of intensities. Moreover,
in many cases (and in our experiments), the tumor is attached to the healthy
tissues and the corresponding area of the image has a uniform color.

To solve this issue, we propose to add in our energy a prior on the location
of the tumor. The prior is obtained from the location of the object seeds. This
leads to a modi�cation of the original Boykov/Jolly's energy model [1]. We take
the same regularity criterion:

Ep,q(up, uq) = g(p, q)·|up−uq| and g(p, q) =
1

de(p, q)
·exp

(
−|I(p)− I(q)|

2

2σ2

)
,

where de is the Euclidean distance between p and q, I is the original image and
σ > 0. The region term is de�ned in Table 2. The sets O and B correspond

p ∈ AσA p 6∈ AσA

Ep(up = ”bkg”) −log
ˆ
Pr(I(p) | p ∈ O)× exp

“
− ( d(p,O)

σa
)2
”˜

+∞
Ep(up = ”obj”) −log

ˆ
Pr(I(p) | p ∈ B)

˜
0

Table 2: De�nition of the region term.

respectively to object and background seeds provided by the user, the proba-
bility distributions are estimated according to [1], d(p,O) is a distance function
between the point p ∈ P and the set O ⊂ P and σa > 0 is a parameter. The
parameter σa controls how far the object seeds propagate from their location
and then de�nes an area of in�uence Aσa . Beyond this area, the nodes are only



linked to the background terminal with a large weight. This ensures both that
the algorithm categorizes them as background pixels or voxels and that the ca-
pacity of the corresponding t-link is su�ciently high for removing the node from
the graph. Although the parameter σA is an important parameter that impact
the way of positioning the seeds in the image, we always take σa = 10 in our
experiments.

The main di�erence between the proposed energy and [1] lies in the distance
term. The function d is de�ned as d(p,O) = min{dist(p, q) | q ∈ O}, where dist
denotes the distance between two points. We have made two attempts for dist:

� The Euclidean distance. In this case, the distance between a set and a point
is e�ciently computed with the algorithm described in [4]. We mostly use it
for the purpose of illustration.

� The geodesic distance is according to the graph metric where the distance
between a node p ∈ P and a node q ∈ P is de�ned as:

dist(p, q) =
{√

(I(p)− I(q))2 + |p− q|2 if q ∈ N (p),
0 otherwise.

In this latter case, the distance transform is computed with [6].

The area of in�uence for the above two metrics is displayed through an example
on Figure 4. The green color corresponds to the region where the exponential in
the region term is greater than some ε ' 0. Observe how the geodesic distance
better sticks to the tumor boundaries than the Euclidean distance. In particular,
it only has a limited over�ow on the healthy tissues.

(a) Image and seeds (b) Euclidean dis-
tance

(c) Geodesic distance

Fig. 4: Area of in�uence for an Euclidean and a geodesic distance. Here, we set σa = 40.

5 Experimental results

In this section, we present experiments for segmenting a set of ten 3D CT images
consisting both of nodules, masses and tumors (see Table 3 for more informa-
tion). Each volume has a size of 512 × 512 × 50 except T8 which has a size of
512 × 512 × 316. All experiments are performed in connectivity 1. Objects to
segment may present a very di�erent contrast with their surrounding structures



among the images. Since the parameter σ is contrast-sensitive, we are constrained
to use di�erent values for this parameter. For example, when the average gra-
dient around the object become lower, we need a smaller σ. Then, the edges
around the object are more likely to belong to the minimum-cut because they
become cheaper to cut. The automatic tuning of σ is left for future work. In this
setting, we use σ = 0.2 for all images except for T8 where σ = 2 and T7 where
σ = 0.05. Note that a sub-volume is automatically extracted for all images (ex-
cept for T8 where the border is su�ciently high to encompass the whole volume)
by considering an extra border of 60 pixels around the object seeds for speeding
up the segmentation.

First, we evaluate our algorithm with hand made segmentations provided
by an expert, for all CT images. Table 4 contains statistics on the di�erences
between the segmentation and the ground truth. We use several evaluation mea-
sures 2. Table 4 shows promosing results. For all images, we always get a Dice
Coe�cient greater than 70% while having a mean maximum distance less than
20mm between the ground truth and the segmentation.

We also evaluate our method in a qualitative manner. Figure 7 shows the
segmentations obtained at equally spaced z-values for images T1, T8 and T9
(see Figure 5). For illustrating the propagation of seeds, the seeds in the Figure
were chosen on equally spaced on z but for di�erent values. Thus, one can observe
how the seeds propagate around object seeds, avoiding us to mark every slice.
Compared to the ground truth, the segmentation of T1 is very close, while the
segmentations obtained for T8 and T9 di�er sligthly. This also illustrate the
di�culty to extract tumors/masses with a large connection to healthy tissues
and the ability of our method to segment such objects.

Secondly, we compare the performance of standard graph cuts against our
method in terms of speed and memory consumption (see Table 5) for segmenting
the CT images using the same set of seeds and parameters as previously. Exper-
iments were performed on an Athlon Dual Core 6000+ 3GHz with 2GB RAM.
Times are averaged over 10 runs. Table 5 also indicates the proportion of object
seeds with respect to the tumor volume in the ground truth. This provides an
objective measure of the interaction for assessing the e�ort required by the user
for positioning the seeds. The results obtained show that our method performs
a little bit faster using 7 to 500x less memory while getting exactly the same
solution. Note that a relatively small amount of seeds is necessary for segmenting
all images.

Generally, the segmentation time depends both on the image size and the skill
of the user for positioning the seeds not too far from the contours of the object to
segment. The segmentation accuracy also depend directly on the seeds location
but additionnal corrections can be done quickly if some parts of the object are
uncorrectly labeled. The computation of the distance map, the building of the
graph and the computation of the minimum-cut take only few seconds. Thus,
our method demonstrates its ability to segment lung tumors quickly without
requiring much e�ort if it is supported by a good graphical user interface.

2 A detailed view of these measures is available at http://lts08.bigr.nl/about.php



Tumor Type Resolutions (x,y,z) Description

T1 Mass 0.68× 0.68× 3 Mass of the upper right lobe (CT)

T2 Nodule 0.70× 0.70× 1 Nodule of the right apex (CT)

T3 Nodule 0.68× 0.68× 3 Nodule of the lower right lobe (CT)

T4 Tumor 1.17× 1.17× 1.5 Marge left hilar tumor inducing a peripheral
atelectasia (CT)

T5 Tumor 1.17× 1.17× 1.5 Same as T4 (dosimetric CT scanner)

T6 Mass 0.77× 0.77× 1.25 Mass of the lower left lobe appended to the
pleura (CT)

T7 Mass 0.69× 0.69× 1.25 Same as T6, after four months of treatment
(CT)

T8 Tumor 0.63× 0.63× 1 Large left hilar tumor and peripheral atelecta-
sia, before treatment (contrast enhanced CT)

T9 Tumor 0.70× 0.70× 1 Same as T8, after chemo-radiotherapy (CE-
CT)

T10 Mass 1.17× 1.17× 1.5 Right hilar lymph node mass

Table 3: Characteristics of images containing lung tumors. Resolutions are given in
millimeters.

Tumor Dice
Coe�cient

(%)

Volume
Overlap
(%)

Volume
Di�erence

(%)

Average
Surface
Distance
(mm)

RMS
Surface
Distance
(mm)

Maximum
Surface
Distance
(mm)

T1 90.97 83.45 7.39 0.86 0.92 4.42

T2 80.95 67.99 4.98 1.25 1.54 6.63

T3 72.95 57.42 15.76 1.26 1.50 6.87

T4 71.33 55.44 42.31 3.30 4.01 14.34

T5 80.53 67.41 29.22 3.63 4.55 16.56

T6 86.63 76.42 18.02 1.30 1.49 5.90

T7 82.49 70.21 22.28 1.34 1.56 5.16

T8 89.25 80.59 9.59 1.20 1.47 9.32

T9 72.66 57.07 34.17 1.75 2.09 7.36

T10 74.04 58.79 41.09 4.97 5.55 15.99

Average 80.18 67.47 22.48 2.08 2.46 9.25

Table 4: Comparison between our method and the segmentations provided by the
expert.

Fig. 5: Overall context of lung tumors T1 (left), T8 (middle) and T9 (right).



Tumor
Standard graph cuts Our method

Amount of object seeds (%)
Time Memory Time Memory

T1 4.08 472.34 2.00 24.71 2.52

T2 4.89 573.05 2.71 83.42 2.71

T3 4.90 580.78 2.87 83.42 2.47

T4 5.34 729.72 2.14 37.07 12.99

T5 5.36 737.41 2.10 36.37 10.22

T6 10.18 1476.30 3.80 37.07 3.15

T7 5.16 544.74 3.21 83.42 8.86

T8 MP 43091.25 68.93 83.42 2.45

T9 4.24 496.79 2.39 37.07 8.01

T10 10.36 1151.74 5.42 125.13 9.19

Table 5: Speed (secs) an memory usage (Mb) for our method and the graph cuts without
reduction. The label MP means there is not enough memory for allocating the graph.

Fig. 6: Seeds location for segmenting lung tumors T1 (top row), T8 (middle row) and
T9 (bottom row). Object seeds (cyan) and background seeds (red) are superimposed
on successive slices of the original image.
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