
Non-heuristic reduction of the graph in graph-cut

optimization

François Malgouyres1 and Nicolas Lermé2

1Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université de Toulouse, France
2LAGA, CNRS UMR 7539 and LIPN CNRS UMR 7030, Université de Paris 13, France

E-mail:
1Francois.Malgouyres@math.univ-toulouse.fr 2nicolas.lerme@lipn.univ-paris13.fr

Abstract. During the last ten years, graph cuts had a growing impact in shape optimization.
In particular, they are commonly used in applications of shape optimization such as image
processing, computer vision and computer graphics. Their success is due to their ability to
efficiently solve (apparently) difficult shape optimization problems which typically involve the
perimeter of the shape. Nevertheless, solving problems with a large number of variables remains
computationally expensive and requires a high memory usage since underlying graphs sometimes
involve billion of nodes and even more edges. Several strategies have been proposed in the
literature to improve graph-cuts in this regards. In this paper, we give a formal statement
which expresses that a simple and local test performed on every node before its construction
permits to avoid the construction of useless nodes for the graphs typically encountered in image
processing and vision. A useless node is such that the value of the maximum flow in the graph
does not change when removing the node from the graph. Such a test therefore permits to limit
the construction of the graph to a band of useful nodes surrounding the final cut.

1. Introduction
Shape optimization is a field which has many practical applications. Among shape optimization
methods, graph-cut methods have recently received a growing interest because of their ability
to minimize pairwise Markov Random Fields of the form

E(u) = β
∑
p∈P

Ep(up) +
∑

(p,q)∈(P×P)

Ep,q(up, uq), β ∈ R+, (1)

among u ∈ {0, 1}P , for a set of pixels P ⊂ Zd and for a positive integer d. Indeed, when the
terms Ep,q(.) are submodular, there is a way to build a graph (see [1, 2]) such that if, for any
S ⊂ P, we denote by uS ∈ {0, 1}P the binary partition of P defined for all p ∈ P by

uSp =

{
1 , if p ∈ S,
0 , if p 6∈ S, (2)

we have
valG (S) = E(uS) +K, (3)

for some (irrelevant in the current minimization context) constant K ∈ R and where valG (S) is
the value of the cut defined by S ⊂ P (see next section for a precise definition).



Moreover, since (2) makes a one to one correspondence between cuts and elements of {0, 1}P ,
we trivially obtain from (3) that to any minimum cut (min-cut) in G corresponds a minimizer
of (1) and vice versa. Moreover, a min-cut can efficiently be computed with a maximum flow
(max-flow) algorithm such as the one described in [3, 4]. The max flow is indeed the dual of the
min-cut problem.

One drawback of graph-cuts is that the graph contains as many nodes as the number of pixels
and that its number of edges behaves like

O

∑
p∈P

#σ(p)

 ,

where #σ(p) is the number of neighbors of a pixel p ∈ P (see Section 2 for a detailed description
of the graph). Such a memory requirement is a strong limitation when minimizing (1) for #P
large and/or for d large (#σ(p) typically grows like a radius raised to the power d...)

As a consequence, many strategies have been proposed to avoid the construction of the whole
graph. We can find in the literature few methods that actually provide a global solution of the
minimization problem [5, 6, 7]. However, most of he proposed methods are heuristics who may
fail to accurately preserve thin structures [8, 9, 10, 11, 12]. The strategy developed in the current
paper aims at building a thin band surrounding the final boundary between the object and the
background. It shares this property with the other band-based methods (see [13, 10, 7, 9, 8]).

In this paper, we propose not to build any node satisfying a local test. This test is similar to
the ones in [14, 13]. The nodes that fail to comply with the test are built in the reduced graph.
The difference with the results stated in [14, 13] is that the test has been slightly modified in
order to obtain a formal statement guaranteeing that the value of the max-flow in the reduced
graph is equal to the value of the max-flow in the initial graph. As a consequence, any max-flow
in the reduced graph is also a max-flow in the initial graph and the cut defined by this flow
is a min-cut in the initial graph. In other words, despite the graph reduction, the max-flow
algorithm still permits to build a minimizer of E.

The proof of the result presented in this paper as well as experiments are provided in [15]
and will also be submitted for publication in a long version of the current paper.

2. Definition of the graph
The graph constructed in [1] has the form described below. This constitute the main motivation
for considering this graph structure.

We consider two terminal nodes s and t and the set of nodes

V = P ∪ {s, t}.

We consider a set of directed edges E ⊂ (V ×V) such that (V, E) is a simple directed graph. We
also assume that for every p ∈ P,

(p, s) 6∈ E and (t, p) 6∈ E .

We denote the neighbors of any nodes p ∈ V by

σE(p) = {q ∈ V, (p, q) ∈ E or (q, p) ∈ E}.

We define the capacities as a mapping c : (V × V) → R+ and denote the capacity of any edge
(p, q) ∈ (V × V) by

cp,q ≥ 0.



Notice that usually, the capacities are only defined over E . We extend their definition to (V ×V)
in order to simplify notations. This extension is performed by setting

cp,q = 0, whenever (p, q) 6∈ E . (4)

We assume, without loss of generality (see [2, 1]), that capacities are such that for every
p ∈ P

cs,p 6= 0 ⇒ cp,t = 0.

We therefore sum up the capacities of the edges linked to the terminal nodes and set for all
p ∈ P

cp = cs,p − cp,t.

For any S ⊂ P, we denote by valG (S) the value of the s-t cut

(S ∪ {s}, (P \ S) ∪ {t}) ,

in G.
We also define flows in the graph as any mapping f : (V × V) → R+ satisfying both the

capacity constraints
0 ≤ fp,q ≤ cp,q , for all (p, q) ∈ (V × V), (5)

and the flow conservation ∑
q∈σE(p)

fq,p =
∑

q∈σE(p)

fp,q, for all p ∈ P. (6)

As usual, the value of the flow f in G is defined by

valG (f) =
∑

p∈σE(s)

fs,p. (7)

Notice that we use the same notation for the value of a flow and the value of a s-t cut in G.
This abuse of notation will never be ambiguous, once in context.

We call max-flow any solution f∗ of the linear program{
maxf valG (f) ,
subject to (5) and (6).

In the sequel, we also consider a subset B ⊂ Zd and assume that B and G are such that

∀p ∈ P, (σE(p) ∩ P) ⊂ Bp, (8)

where
Bp = {p+ q, q ∈ B}. (9)

In practice, we typically think of B as a ball centered at the origin. In such a case, (8) means
that neighbors in the graph G are close to each other in Zd.



3. Main result of the paper
Theorem 1 Let G be a graph as defined in Section 2, let B satisfy (8) and let us assume that
p ∈ P satisfies {

either ∀q ∈ Bp, cq ≥
∑

q′ 6∈Bp
cq,q′ ,

or ∀q ∈ Bp, cq ≤ −
∑

q′ 6∈Bp
cq′,q.

(10)

Then, there exists a max-flow f in G such that

∀q ∈ σE(p), fp,q = fq,p = 0.

As a consequence, removing the node p from the graph G does not modify its max-flow value.

Algorithmically, the above theorem guarantees that we can test every node, during the graph
construction, before it is added to the graph. If the node satisfies (10), it is not useful to
the max-flow evaluation. It can therefore be removed from the graph G without modifying its
max-flow value.

Let us describe the meaning of the test corresponding to the upper line of (10). For every
node q in Bp

• either q is in the interior of Bp in which case, for all q′ 6∈ Bp, cq,q′ = 0 and the test simply
becomes cq ≥ 0.

• or q is on the border of Bp and then the test takes the form cq ≥
∑

q′ 6∈Bp
cq,q′ ≥ 0 and is

generally more difficult to satisfy.

Notice also that a similar theorem with the test{
either ∀q ∈ Bp, cq ≥

∑
q′∈σE(q) cq,q′ ,

or ∀q ∈ Bp, cq ≤ −
∑

q′∈σE(q) cq′,q,

is easy to obtain. The two results should not be confused.
Let us now describe how to build the minimizer of (1), once the minimum cut(

S ∪ {s} ,
(
(P \ {p}) \ S

)
∪ {t}

)
,

where S ⊂ (P \{p}), has been computed in the graph from which the node p satisfying (10) has
been removed. The minimizer u∗ ∈ {0, 1}P of (1) is defined by

u∗r =


1 , if r = p and ∀q ∈ Bp, cq ≥

∑
q′ 6∈Bp

cq,q′ ,

0 , if r = p and ∀q ∈ Bp, cq ≤ −
∑

q′ 6∈Bp
cq′,q,

1 , if r 6= p and r ∈ S,
0 , if r 6= p and r 6∈ S.

The proof of the above theorem as well as some experiments illustrating the situations in
which it can successfully be applied are provided in [16].

References
[1] Kolmogorov V and Zabih R 2004 IEEE Transactions on Pattern Analysis and Machine Intelligence 26

147–159
[2] Picard J and Ratliff H 1975 Networks 5 357–370
[3] Boykov Y and Kolmogorov V 2004 IEEE Transactions on Pattern Analysis and Machine Intelligence 26

1124–1137
[4] Hochbaum D S 2008 Operation research 56 992–1009
[5] Delong A and Boykov Y 2008 CVPR pp 1–8



[6] Strandmark P and Kahl F 2010 CVPR pp 2085–2092
[7] Lempitsky V and Boykov Y 2007 CVPR pp 1–8
[8] Lombaert H, Sun Y, Grady L and Xu C 2005 ICCV vol 1 pp 259–265
[9] Sinop A and Grady L 2006 MICCAI vol 2 pp 896–903

[10] Kohli P, Lempitsky V and Rother C 2010 DAGM pp 242–251
[11] Li Y, Sun J, Tang C and Shum H 2004 ACM Transactions on Graphics 23 303–308
[12] Stawiaski J, Decencière E and Bidault F 2007 ISMM pp 349–360
[13] Lermé N and Malgouyres F 2011 A reduction method for graph cut optimization Tech. Rep. hal-00606921

CCSD
[14] Lermé N, Malgouyres F and Létocart L 2010 ICIP pp 3045–3048
[15] Lermé N 2011 Réduction de graphes et application la segmentation de tumeurs pulmonaires Ph.D. thesis

Université Paris 13
[16] Malgouyres F and lermé N 2012 A non-heuristic reduction method for graph cut optimization Tech. Rep.

hal-00692464 CCSD preprint


