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ABSTRACT
The goal of this paper is to report on experiments where we
use Gabor dictionaries in a TV − l∞ model for denoising.
This allows many possible choices. Our conclusions are that
the choice of the dictionary mostly impact the restoration of
textures. Moreover, for most images, better results are ob-
tained when the Gaussian term of the Gabor filters is close to
isotropic.

1. INTRODUCTION

By image denoising we mean the recovery of a datum u ∈
RN2 from a measurement v = u + b, where b ∈ RN2 is a
Gaussian white noise of standard deviation σ.

For few years, some authors have been investigating the
solution provided by the following model :

{
minimize TV (w)
under the constraint ‖w − v‖D,∞ ≤ τ (1)

where ‖.‖D,∞ is defined by

‖u‖D,∞ = sup
ψ∈D
|〈u, ψ〉|,

for a finite dictionary D ⊂ RN2 and a discretization of the
total variation (see references below for details).

This model has, at least, been studied in [1, 2, 3, 4]. (Those
references are listed in the chronological order of disclosure,
the content of these papers is summarized in the introduc-
tion of [4].) Notice that (1) can be used for image restoration
(when u also undergo a linear distortion). Though, for sim-
plicity and clarity, we do not consider this situation in this
paper.

The purpose of the current paper is to understand how to
chose the dictionary, in order to improve the results of (1).
In this regard, the authors of [2] tried a curvelet dictionary
and conjectured it is the best possible choice. The authors of
[1, 3, 4] tried a wavelet packet dictionary.

In order to make experiments for several kinds of dictio-
nary, we tried dictionaries made of Gabor functions. The mo-
tivations for this choice are of two natures. First, as is de-
scribed in the next section, they allow many possibilities for

frequencial and spacial localization. Secondly, they are often
used to describe texture and we believe that D should have
this property.

The reason for this belief is that the Kuhn-Tucker equation
satisfied by the solution u∗ to (1) is

∇TV (u∗) =
∑

Ψ∈D
λΨΨ

for some real numbers (λΨ)Ψ∈D. Moreover, if an element Ψ
is such that λΨ 6= 0, we know that 〈w − v,Ψ〉 = τ . This
means that, in order to solve (1), we had to erase, as much
as possible, the information modelled by Ψ (which is bad).
So, for a good dictionary there should exists a sparse repre-
sentation of ∇TV (u∗) in D. When interpreted in the context
of BV ([0, N ]2) (the space of bounded variation, see, for in-
stance [5]), this means that the dictionary should give a good
description of the dual of BV . The latter is often considered
for texture modeling (see [5] and [6] and references therein).

Notice the above heuristic is confirmed by the experimen-
tal results described in Section 5 : While we tested 12 differ-
ent dictionaries, they all provide similar results on homoge-
neous zones and in the vicinity of edges. The only differences
occur in textured zones.

Moreover, we found that, for Gabor dictionaries, the shape
of the elements of the dictionary (σ and σ′, in (3)) should not
relate to their frequency location (f , in (3)). This is, at least,
true for images in which the texture patterns are not related to
the shape of the region where the texture lives.

2. THE DICTIONARY

2.1. From features to dictionary

In order to build the dictionary, we first consider a finite set

F = {ψk}1≤k≤r

of elements of RN2 . In the remaining of the paper, we refer
to these elements as ”features”.

For any k ∈ {1, . . . , r} and any indexes (i, j) ∈ {0, . . . , N−
1}2, we denote

Ψk,i,j
m,n , Ψk

m−i,n−j , (2)



where (m,n) ∈ {0, . . . , N − 1}2, the translation of Ψk. (No-
tice the images and features are periodized out of {0, . . . , N−
1}2.)

We then consider the dictionary

D = {Ψk,i,j , for 1 ≤ k ≤ r and 0 ≤ i, j < N}.

The dictionaryD is obviously translation invariant. More-
over, depending on the features it can also be rotation invari-
ant, scale invariant,...

3. THE FEATURES

Again, the considered features are Gabor filters, they are of
the form

gf,θm,n = Ce−
x2

σ −
y2

σ′ cos(2π
f x

N
), (3)

where f and θ ∈ R, σ and σ′ need to be chosen, x = m cos θ+
n sin θ, y = −m sin θ+n cos θ andC is such that the l2 norm
of the features equal 1.

Knowing the features take the form (3), we still need to
determine the frequency and angular locations of these ele-
ments.

Except for the features described in section 3.4, we con-
sider a finite set of frequencies {ffl}0≤fl≤F . We then split
the frequency band characterized by ffl (or fl) inAfl angular
sections. For this band, we obtain Afl features

gffl ,θa (4)

where θa = 2πa
Afl

, for a ∈ {0, . . . , Afl − 1}.
Once these locations are fixed, σ and σ′ are chosen so

that the Fourier transforms of the features cover the whole
disk of center 0 and radius N

2 . (Of course, we would gain
in covering the whole Fourier domain.) Moreover, σ and σ ′
are fixed automatically so that the Fourier transforms of any
two features do not too much overlap. Notice that, given (4),
there is no need to adapt the variances σ and σ′ to the angular
direction. We therefore have a bench of (σfl , σ

′
fl

)0≤fl≤F .
The sum of the Fourier transforms of the features described

below are represented on Figure 1.

3.1. Features of type Gabor I

We call Gabor I features those build according to (4) where,
for non-negative integersF andA, we take, for fl ∈ {0, . . . , F},

{
ffl = 0 and Afl = 1 , if fl = 0,
ffl = 3

82fl−F and Afl = A , otherwise.

We then take, for fl ∈ {0, . . . , F},

(σfl , σ
′
fl

) =





(
C( 2F

N )2, C( 2F

N )2
)

, if fl = 0(
(C( 42F

N2fl
)2, C(

Afl
2πffl

)2
)

, otherwise,
(5)

Fig. 1. Sum of the Fourier transforms of the : Up-left : Gabor
1 features; Up-Right : features with curvelet scaling; Bottom-
Left : Gabor 3 features; Bottom-Right : Gabor 2 features.

with C = 4N2log(a−1)
π2 , with a is a constant, in our experi-

ments, we let a = 0.15. (The value of C is such that, once
normalized, the Fourier transform of e−

x2

C(x′)−2 = a at the
frequency x′.)

3.2. Features of type Gabor II

For non-negative integersF andA, we take, for fl ∈ {0, . . . , F},
{
ffl = 0 and Afl = 1 , if fl = 0,
ffl = fl

N
2F+1 and Afl = flA , otherwise.

The variances (σfl , σ
′
fl

) equal

(σfl , σ
′
fl

) =

{
(C( 2F+1

N )2, C( 2F+1
N )2) , if fl = 0

(C( 2F+1
N )2, C(A(1F+1)

2πN )2) , otherwise,

where C is as in (5).

3.3. Features with a curvelet scaling

For details on the curvelet scaling, see [2] and references
therein. For non-negative integers F and A, we take, for
fl ∈ {0, . . . , F},
{

ffl = 0 and Afl = 1 , if fl = 0,

ffl = 3N
8 2fl−F and Afl = rd

(
A2

fl−F
2

)
, otherwise,

where rd(t) is the closest integer to t.
The variances (σfl , σ

′
fl

) are determined according to (5).



3.4. Features of Gabor type III

This cosine dictionary, is similar to fully decomposed wavelet
packet basis of a given depth. It has the advantage of being
translation invariant.

For F ∈ N, we consider the set of frequency locations

F ′ =

{(
i
N

2F
, j
N

2F

)
, with i ∈ {0, . . . , F},

j ∈ {−F, . . . , F} and i2 + j2 ≤ N2

4

}

The set of features is then of the form

F =

{
e−

n2+m2

σ cos(2π(fxm+ fyn)), for (fx, fy) ∈ F ′
}
,

for σ = C( 2F+1
N )2, whereC is as in (5). (Notice the elements

corresponding to i = 0 appear twice, in F . This should be
fixed before (1) is actually solved.)

4. NUMERICAL ASPECTS

We use a penalty method, in order to solve (1). More pre-
cisely, we minimize the unconstrained energy

TV (w) + λ
∑

Ψ∈D
ϕτ (〈w − v,Ψ〉), (6)

with
ϕτ (t) = (sup(|t| − τ, 0))2,

and for a large number λ.
This optimization problem is solved by a steepest descent

algorithm. In order to get such an algorithm, the main diffi-
culty id to compute the gradient of (6). It takes the form

∇TV (w) + λ
∑

Ψ∈D
ϕ′τ (〈w − v,Ψ〉)Ψ,

where ϕ′τ denotes the derivative of ϕτ .
We do not detail how to compute ∇TV (w). It can easily

be found in the literature. In order to compute the gradient of
the data fidelity term we need to compute the decomposition
in D and a recomposition. These two operations are detailed
in the next two sections.

4.1. The decomposition

The decomposition of u ∈ RN2 provides the set of values

(〈u,Ψk,i,j〉)0≤i,j<N and 1≤k≤#F .

Notice that, using (2), we have, for any u ∈ RN2 and any
feature Ψk,i,j ∈ F ,

〈u,Ψk,i,j〉 =
N−1∑

m,n=0

um,nΨk
m−i,n−j .

type/size small medium large
Gabor I, (F,A) = (3,8) (3,16) (3,48)
Gabor II, (F,A) = (3,4) (5,4) (8,4)
curvelet, (F,A) = (3,6) (3,10) (3,32)
Gabor III, F = 7 11 18

Table 1. Parameters for the dictionary definitions. The fea-
tures of small dictionaries are displayed on 1.

So the set of values (〈u,Ψk,i,j〉)1≤i,j<N , is just u∗Ψk, where
∗ stands for the convolution product and Ψk

m,n = Ψk
−m,−n

(remember the images are periodized).
The decomposition can therefore be computed with one

Fourier transform and #F inverse Fourier transform, if we
memorize the Fourier transforms of the features.

4.2. The recomposition

Denoting Λ = (λki,j)0≤i,j<N and 1≤k≤#F and m = #FN2,
the recomposition takes the following form

T : Λ ∈ Rm →
#F∑

k=1

N−1∑

i,j=0

λki,jΨ
k,i,j ∈ Rn.

Using (2), we get

T (Λ) =

#F∑

k=1

λk ∗Ψk

This can be computed with #F Fourier transforms and one
inverse Fourier transform.

5. EXPERIMENTS

We report on denoising experiments of the image ”Barbara”.
The noise variance is σ = 20. The twelve dictionaries de-
scribed in Table 1 have been tested. For each dictionary, we
tuned the parameter τ (in (1)) in order to obtain good visual
results. The images can be found on

http : //www.math.univ − paris13.fr/ ∼ zeng/gabor/

In this paper we focus on three regions of the images.
They corresponds to the white zones on Figure 2. The zones
are represented on Figure 3.

Zone 1 contains an edge. All the dictionaries give about
the same kind of results (see Table 2).

Zone 2 contains a texture whose orientation is not related
to the shape of region where it lives. Gabor II features, whose
spacial localization is almost isotropic, give the best results.
Features with a curvelet scaling, whose spacial localization



Fig. 2. Barbara image. The most interesting zones are in
white.

Fig. 3. Left : zone 1; Center : zone 2; Right : zone 3.

type/size small medium large
Gabor I 27.2375 27.1484 27.1073
Gabor II 27.2617 27.1569 26.8859
curvelet 27.2239 27.1711 27. 0189
Gabor III 27.2449 27.1612 26.8798

Table 2. PSNR for zone 1.

Fig. 4. Left : Noisy zone 2; center : result for the medium
”curvelet scaling” dictionary, PSNR = 21.7; Left : result
for the medium Gabor II dictionary, PSNR = 23.4.

type/size small medium large
Gabor I 19.4346 9 19.113 21.0173
Gabor II 20.6871 20.0332 21.8354
curvelet 18.7523 21.0859 21.0625
Gabor III 20.4984 17.0148 20.4302

Table 3. PSNR for zone 3.

is strongly anisotropic and fits the texture patterns, give the
worst.

Zone 3 contains a texture supported on an elongated re-
gion. Moreover, the pattern of the texture fits the shape of
the region where it lives. Features with a curvelet scaling or
gabor II give better results than the other features. Our belief
is that this region might be rare in natural images. Moreover,
we can barely see the difference between the images.
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