Total Variation Based Interpolation.
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ABSTRACT

We propose a reversible interpolation method for signals
or images, in the sense that the original image can be
deduced from its interpolation by a sub-sampling. This
imposes some constraints on the Fourier coefficients of
the interpolated image. Now, there still exist many pos-
sible interpolations that satisfy these constraints. The
zero-padding method is one of them, but gives very os-
cillatory images.

We propose to choose among all possibilities, the one
which is the most “regular”. We justify the total vari-
ation of the image as a good candidate as measure of
regularity. This yields to minimise a regularisation func-
tional defined in space domain, with a constraint defined
in the frequency domain.

1 Introduction.

Many different approaches have been designed to per-
form image interpolation. Most of them assume that the
observed image is a quantised version of a continuous im-
age expressed in a given base of functions. These func-
tions can be defined on the pixel or on a fix set of pixels
such as spline interpolation methods ( see [5, 13] and
references within), oriented interpolation methods (see
[12, 2, 4]), or globally as frequencies based method (e.g.
zero padding, frequencies extrapolation, ...) [9, 3, 1, 7].
At last, some have tried a regularisation approach of the
interpolation using quadratic regularisation functionals
[6].

Frequency based methods are very efficient to catch
large scale behaviour such as lines. However, gener-
ally stated with linear operations, these methods are of-
ten rejected due to their difficulties to balance between
blurring and aliasing effects especially at boundaries,
[12]. As we shall see, we believe that a frequency based
method is justified by a reversibility condition. Sec-
ondly, we prove that within this condition, it is possible
to perform such a balance. We propose to do so by min-
imising total variation norm, which is considered as a
good (perceptually related) regularity measure [10].

In order to simplify the statements, we consider 1D
functions. All the propositions can be extended without

difficulties in dimension 2. We consider also a signal (or
an image) sometimes as a function, and sometimes as
a set of values. The signal, as a function, is supposed
to be defined on [0, 1], and periodic. The correspond-
ing signal of size N is linked to the function by setting
u; = u(i/N). The Fourier transform of u, @ is also of
size N. Frequencies are going from —N/2 + 1 to N/2
integer-wise. We will note these ranges | — N/2, N/2] for
commodity. Note that the Fourier transform u is also
periodic of period N, so that one can also consider the
frequencies to be in [0, N[. But, one has to be careful,
that the frequency N for a signal of size N corresponds
to the frequency 0, whereas it is not true anymore for a
signal of larger size (e.g. interpolated signal) since the
periodicity is different.

In addition, we will consider here only the interpola-
tion of factor 2, but once again all the propositions can
be extended in the case of other integer factors. We al-
ways denote by u the original signal of size N, and by
w a two times larger interpolation.

2 Reversibility condition of the interpolation.

We want the interpolation method to be reversible, so
u shall be deduced from w by a sub-sampling. We are
looking for a w such that

u=QS(w) (1)

Where S is a translation invariant linear smoothing, and
@ is a sub-sampling operation. That is that Q(v) is
deduced from v by taking one point every two (Q(v); =
vgi). As it is well-known, @ introduces aliasing [9], so
one has :

Proposition 1 Let u and w be two signals, of size re-
spectively N and 2N, linked by the reversibility condition
that is by the relation (1), then one has

2U; = $;W; + Si4 NWi4N (2)

where u, w and § are the Fourier transforms of u, w,
and of the convolution kernel of S.



The relation (2) constrains the possible functions w,
and in the same way indicates where is the freedom in
the choice of the interpolation. For each frequency of
u : ug, we can choose its repartition within two fre-
quencies of w : Wy and Wg4ny. Shannon’s theorem [11],
gives the exact inverse of the quantisation in the case
of an original signal w having a Fourier transform sup-
ported inside | — N/2, N/2[ (the aliased term is zero).
This yields to a particular choice of repartition : the
zero-padding; which makes the choice to distribute ev-
erything on the lowest frequency. It is defined by the
following relations : @; = 2;/5,Vi €] — N/2,N/2],
Wyy/2 = W_n/2 = uny2, and, w; = 0 otherwise. Now in
the general case, as shown in the experiments section,
this method yields oscillatory images due to Gibbs effect
(see figure 3). At this point, there is no mathematical
consideration that can say how this repartition has to
be done.

Let us call W, ; the set of functions w that satisfies
the constraint (2). It is easy to see that this is an affine
subspace. (Vwi,ws in W, 4, one has (1 — a)w; + aw; €
W s).

We propose to choose, among functions of W, s, the
one which is the most “regular”. Of course, we then
have to precise what we mean by “regular”...

3 Choice of a measure of regularity of the im-
ages.

We propose to define such a measure among norms L%,
a > 0 of the gradient. A particular o will be chosen
later. We define, for a periodic signal of size N

N-1

Eo(w) = N1 Y (lwigr — wie|) (3)

It is the Riemann approximation of fol |[Vw|® in the case
of a w defined on the continuous domain [0,1[. The
normalisation by N®~1 of the energy makes comparable
the energy of a signal and its zoomed versions. Let us
now state our aim.

P. Given a signal u of size N, we are looking for a signal
w or size 2N such that it minimises Eo(w), among the
functions of Wy ;.

We assume that the function § is known or cho-
sen. In general case, in order to avoid excessive de-
blurring, we will assume that s is normalised such that
Zﬁ\;_NH s(i) = 1, and that 3(d) is not null for all
i €] — N/2,N/2]. Under these conditions, we are sure
that there always exists at least one function w that
satisfies the constraint, that is W, , # 0.

Before investigating different power «, let us first con-
sider the classical H! norm, that is o = 2.

Proposition 2 With a = 2, the function that achieves
the minimum of the energy (3) up to the constraint (2)
1s unique, and is given by :

Figure 1: The dot signal has a lower H! norm than the continu-
ous one, and they are both sub-sampled in a heavy-side function,
in the case where S is a mean on two pixels. H! is not a good
measure of regularity.
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Figure 2: These three signals differ by the way they go from 1
to 0. From Left to Right, the maximum of the gradient (slope) of
the signal increase. The norm E, with o larger than 1, will prefer
the left signal. With o lower than 1, it will prefer the right one.
And, all of them are equivalent with o = 1.

for k€] — N/2,N/2]\ {0}, and t € {0, 1}
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Proposition 3 If one has for all |k| > N/2, 5, = 0,
and sny/3 = 5_ny2 # 0, then with a = 2, the function
that achieves the minimum of the energy (3) up to the
constraint (2} corresponds to the zero-paddings.

These propositions show that we can directly derive
the solution of the problem stated with the quadratic
norm of the gradient (o = 2). Surprisingly, in the in-
troduction we have criticised the zero-padding method
because it yields toward Gibbs effects and irregular im-
ages. And here we show that the zero-padding interpo-
lation sometimes minimises the quadratic norm of the
gradient. Moreover, looking at the proposition 2 one
can see that we just duplicate the spectra (modulo a
weight), and that we can not recover lost frequencies
(where § = 0)(see figure 4). Therefore, we conclude
that this norm is not a good measure of regularity, (see
figure 1). We are led to choose another power a.

In order to understand the differences between the
possible powers, let us consider an example. Let u be a
function from IR into IR such that u(z) = 1 for z < 0,
u(z) = 0 for > 1. For « between 0 and 1, we will con-
sider different shapes (see figure 2 for u;’s definitions).



Eo(u1)  Eo(uz) Eo(us)

a>1 1 >1 +0o0
a=1 1 1 1
a<l1 1 >0 0

The preceding tabular indicates that a minimisation
of E, will yield different shapes of functions depending
on whether « is larger, equal, or lower than 1. A « larger
than 1 yields a function as flat as possible. Conversely a
a lower than 1 prefers a function as straight as possible.
At last, with @ = 1, any monotone way to go from 1 to
0 gives the same value. Therefore, the minimisation of
FE; will not decide on the shape of the signal.

With respect to the zoom problem, we believe that
we do not have to decide whether or not a signal (or an
image) has to be smooth or unsmooth. This should be
driven somehow by the existing low frequencies, and not
by an a-priori norm. According to us, this justifies by
itself the choice of @ = 1, that is the total variation of
the image. With such a norm, we do not enforce a par-
ticular shape on the signal (smooth or unsmooth). We
minimise in fact the amount of variation of the signal,
that is its oscillations [10]. In other words, we prefer a
monotonous signal to oscillating one.

We also remark that all the functions w that satisfy
the reversibility condition have a total variation larger
than the function u. Indeed,

Proposition 4 For any o > 1, and any signal u.
Eo(u) < |s|[fminvew, . La(w)
with ||s||1 the I* norm of the filter s.

We believe this proposition justifies our approach of the
interpolation (seen as a regularisation problem). More-
over, this means that the quantisation process smoothes
a signal (in the sense that it makes F, decrease), which
is an argument in favour of E, for a > 1.

Now, despite the convexity of the total variation, in
general the problem does not have a unique solution.
However, there is no local-minima, and the set of so-
lutions is convex. And in addition, as shown by the
following proposition, solutions are not far from each
others.

Proposition 5 Let wy and wy achieving the minimum
of E1 under the constraint, then wi(k + 1) — w1 (k) and
wa(k + 1) —wa(k) (resp. Vwy and Vwsy) have the same
sign (in 1-D), (resp. direction (in N-D)) .

4 Minimising the total variation in the spatial
domain with a reversibility condition in fre-
quency domain.

In this section we propose a simple schemes to compute a
solution at the problem P which is now stated as follow :

min Vw|, under the constraint that w € W, ,
>Vl 7

Figure 3: Up-left : Part of Lenna image zoomed x8 by duplica-
tion. Up-Right : Zoom by the zero-padding method. Down-left :
Zoom yields by the minimisation of the H! semi-norm. Down-
right : Zoom yields by the minimisation of the total variation of
the image.

We begin with a function wg of W, 5, e.g. the zero-
padding interpolation of u. We then define a “con-
strained” gradient descent, by projecting the gradient
of the energy on the space W ;.

The gradient of the total variation is given by the
function k(w) = div(Dw/|Dwl|). Since, Wy ; is a vecto-
rial subspace, we can consider the orthogonal projection

Py, , on this subspace. The “constrained” gradient de-
scent is then given by :
ow Dw
— =P div(—— 5
5= P (din(p) 6)

So, given w,, we compute ag’t", and then compute the

optimal step s such that 3~ | V(w, + s2£=) | is mini-

dwy
at

and iterate.

mum. We then compute w,41 = wp+s

5 Experiments.

We display in figure 3 different zooms of factor 8 of a
part of the famous Lenna image. We choose for the lin-
ear smoothing s, the average on the square 8x8 pixels
corresponding to one pixel of the original image. More-
over we compute the gradient using a simple finite differ-
ence, but the result presented here also holds for other
kinds of schemes. Since the average does not satisfy fully
the condition of Proposition 3, the zero-padding inter-
polation differs from the ' norm minimisation. In the
Up-right image, we see that the zero-padding yields a
very oscillatory image. Due to the chosen smoothing



Figure 4: Spectre of images in figure 3 which are zoom x8 by:
Up-left : duplication. Up-Right : Zero-padding method. Down-
left : H! minimisation. Down-right : Total variation minimisa-

tion.

the H' norm gives a more acceptable image, in spite
of remaining oscillations and “staircase effect” close to
strong edges. At last, the zoom based on total variation
(Down-right) does not have Gibbs effect, and removes
as well the “staircase effect” on non vertical or horizon-
tal boundaries. Moreover, one can see on figure 4, the
modulus of images spectra of figure 3(the contrast is en-
hanced). One can notice that they all have particular
shapes which do not seam natural except the one con-
cerning the total variation. This one tends to prolong
spectre’s shape. This is a consequence of the way the
total variation deals with edges.

6 Conclusion.

As shown in the experiment section, we have defined
a frequency interpolation method that does not create
Gibbs effect on the image. However, the minimisation of
the total variation under the interpolation reversibility
constraint does not define a unique interpolation. And,
the implemented minimisation process chooses among
the possible one’s. That means also, that there still
exists a freedom that could be used to “ask” something
more for the interpolated image, as we have done for the
regularity.

Another issue, is the choice of the measure of “regu-
larity”. Here, we have chosen the total variation norm,
because it measures the amount of oscillation of the
gray-level. In 2D, that is for images, the total varia-
tion measures also an other kind of oscillation. Indeed,

TV is exactly equal to the sum of the length of the level
lines of the image. Its minimisation yields the removal of
some level lines (reduction of the gray-level oscillation),
but also to the minimisation of their length. This means
that we minimise also the oscillation of shapes bound-
aries. And for example, a circle is consider as far more
regular than a square. In the same way that we choose
the total variation norm because it does not decide be-
tween different shapes of monotonous signal, we should
reject it because it chooses between convex shapes...
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