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Abstract

After some recollections on compression of images using a projection
onto a polyhedral set (which generalizes the compression by coordinate
quantization), we express, in this framework, the probability that an im-
age is coded with K coefficients as an explicit function of the approxima-
tion error.

1 Introduction

In the past twenty years, many image processing tasks have been approached
using two distinct mathematical tools: image decomposition in a basis and
optimization.

The first mathematical approach has proved very useful and is supported by
solid theoretical foundations: these guarantee its efficiency, as long as the basis
captures the information contained in images. Modelling the image content by
appropriate function spaces (of infinite dimension), the mathematical theory
tells us how the coordinates of an image, in a given basis, behave. For example,
it is possible to characterize Besov spaces (see [12]) and the space of bounded
variation (which is “almost characterized” in [3]) with wavelet coefficients. As
a consequence of these characterizations, one can obtain performance estimates
for practical algorithms (see Th 9.6, pp. 386, in [11] and [5, 4] for some analyses
in more complex situations). Image compression and restoration are the typical
applications where such analyses are meaningful.

The optimization methods which have been applied to solve those practical
problems have also proved very efficient (see [14], for a very famous example).
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However, the theory is not able to assess how well they perform, given an image
model.

Interestingly, many in the community who were primarily involved in the
image decomposition approach are now focusing on optimization models (see,
for instance, the work on Basis Pursuit [2] or compressed sensing [6]). The main
reason for this is probably that optimization provides a more general framework
([1, 7, 8]).

The framework which seems to allow both a good flexibility for practical
applications (see [2] and other papers on Basis Pursuit) and good properties for
theoretical analysis is the method of projection onto polyhedra or polytopes.
For theoretical studies, it shares simple geometrical properties with the usual
image decomposition models (see [10]); this should allow the derivation of ap-
proximation results.

The aim of this paper is to state a theorem1 which relates, asymptotically
as the precision grows, the approximation error and the number of coefficients
which are coded (which we abusively call codelength, for simplicity). More
precisely, when the initial datum is assumed random in a convex set, we give
the probability for the datum to be coded by K coefficients, as a function of the
approximation error (see Theorem 3.1 for details).

This result is given in a framework which generalizes the usual coding of
the quantized coefficients (“non-linear approximation”), as usually performed
by compression standards (for instance, JPEG and JPEG2000).

2 Recollection on variational compression

Here and throughout the paper N is a positive integer, I = {1, . . . , N} and
B = (ψi)i∈I is a basis of R

N . We will also denote, for τ > 0 (throughout the
paper τ stands for a positive real number) and for all k ∈ Z, τk = τ(k − 1

2 ).
For any (ki)i∈I ∈ Z

N , we set

C ((ki)i∈I ) =

{

∑

i∈I

uiψi, ∀i ∈ I, τki
≤ ui ≤ τki+1

}

. (1)

We then consider the optimization problem

(P̃ ) ((ki)i∈I ) :

{

minimize f(v)
under the constraint v ∈ C ((ki)i∈I ) ,

where f is a norm which is continuously differentiable away from 0 and has
strictly convex level sets. In order to state Theorem 3.1, we also need f to
be curved. This means that the inverse of the homeomorphism h below2 is

1The theorem concerning compression in [10] is incorrect. The situation turns out to be
more complex than we thought at the time that [10] was written.

2We prove in [10] that, under the above hypotheses, h actually is an homeomorphism.
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Lipschitz.

h : {u ∈ R
N , f(u) = 1} → {g ∈ R

N , ‖g‖2 = 1}

u 7→ ∇f(u)
‖∇f(u)‖2

.

(The notation ‖.‖2 refers to the euclidean norm in R
N .)

We denote, for any (ki)i∈I ∈ Z
N ,

J̃ ((ki)i∈I) = {i ∈ I, u∗i = τki
or u∗i = τki+1},

where u∗ =
∑

i∈I u
∗
iψi is the solution to (P̃ ) ((ki)i∈I).

The interest in these optimization problems comes from the fact that, as
explained in [8], we can recover (ki)i∈I from the knowledge of (J̃ , (u∗i )j∈J̃ ) (where

J̃ = J̃ ((ki)i∈I)).
The problem (P̃ ) can therefore be used for compression. Given a datum

u =
∑

i∈I uiψi ∈ R
N , we consider the unique (ki(u))i∈I ∈ Z

N such that (for
instance)

∀i ∈ I, τki(u) ≤ ui < τki(u)+1. (2)

The information (J̃ , (u∗i )j∈J̃ ), where J̃ = J̃ ((ki(u))i∈I), is then used to encode
u. In the following, we denote the set of indexes that need to be coded to
describe u by J̃(u) = J̃ ((ki(u))i∈I).

Notice that we can also show (see [8]) that the coding performed by the
standard image processing compression algorithms (JPEG and JPEG2000) cor-
responds to the above model when, for instance,

f(
∑

i∈I

uiψi) =

(

∑

i∈I

|ui|
2

)
1
2

.

Observe that the above compression scheme works for any quantization table
(see [8]); we restrict to the uniform quantization because Theorem 3.1 only
applies in this context. However, several levels of generalization are possible,
if one wants to generalize it to more general quantization tables. Notice that,
in the theorem, we assume that the data belong to a given level set, denoted
Lfd

(τ ′), of a norm fd. Therefore, the code attributed to each coefficient need
not to be infinite.

3 The estimate

Theorem 3.1 Let τ ′ > 0 and U be a random variable whose low is uniform
in Lfd

(τ ′), for a norm fd. Assume f satisfies the hypotheses given in Section
2. For any norm ‖.‖ and any K ∈ {1, . . .N} there exists DK such that for all
ε > 0, there exists T > 0 such that for all τ < T

P

(

#J̃ (U) = K
)

≤ DKE
N−K
N+1 + ε,
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where E is the approximation error3:

E = E

(

‖U − τ
∑

i∈I

ki(U)ψi‖

)

.

Moreover, if f(
∑

i∈I uiψi) =
(
∑

i∈I |ui|
2
)

1
2 , we also have4

P

(

#J̃ (U) = K
)

≥ DKE
N−K
N+1 − ε.

The proof of the above theorem is given in [9]. Its two main steps are: the
characterization of all the (ki)i∈I ∈ Lfd

(τ ′) which are coded with K coefficients,
for any given K ∈ {1, . . .N}; the census, for each K, of (ki)i∈I obtained at the
first step.

When the above theorem differs from the results evoked in Section 1 in
several ways.

First, it concerns variational models which are more general than the model
for which the results of Section 1 are usually stated. This is probably the main
interest of the current result. For instance, by a reasoning similar to the one
used in the proof of Theorem 3.1, it is probably possible to obtain approximation
results for redundant transforms.

Secondly, it expresses the distribution of the number of coefficients as a
function of the approximation error, whereas earlier results do the opposite.
Typically, they bound the approximation error (quantified by the L2 norm)
by a function of the number of coefficients that are coded. The advantages and
drawbacks of the different kinds of statements is not very clear. In the framework
of Theorem 3.1, the larger DK (for K small), the better the model compresses
the data. However, it is clear that, as the approximation error goes to 0, it is
more and more likely to obtain a code of size N . In this respect, the constant
DN−1 seems to play an important role, since it dominates (asymptotically as τ
goes to 0) the probability not to obtain a code of length N .

Thirdly, the theorem is stated for data leaving in a finite dimension vector
space and, as a consequence, it does not impose a priori links between the data
distribution (the function fd) and the model (the function f and the basis B).
The ability of the model to represent the data is always assessed by the CK . Of
course, an analogue of Theorem 3.1 for data leaving in infinite dimension space
would be interesting.
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[12] Y. Meyer. Ondelettes et opérateurs, volume 1. Hermann Ed., 1990.

[13] R.T. Rockafellar. Convex analysis. Princeton University Press, 1970.

[14] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60:259–268, 1992.

5



4 Proof of Theorem 3.1

4.1 First properties and recollection

4.1.1 Rewriting (P̃ )

For any u ∈ R
N , (P )(u) denotes the optimization problem

(P ) (u) :

{

minimize f(v − u)
under the constraint v ∈ C (0) ,

where 0 denotes the origin in Z
N and C(.) is defined by (1).

We then denote, for any u =
∑

i∈I uiψi ∈ C (0),

J(u) = {i ∈ I, ui =
τ

2
or ui = −

τ

2
}.

With this notation, the set of active constraints of the solution u∗ to (P ) (u) is
simply J(u∗).

Proposition 4.1 For any (ki)i∈I ∈ Z
N

J̃ ((ki)i∈I ) = J(u∗),

where u∗ is the solution to (P )
(

τ
∑

i∈I kiψi
)

.

Proof. Denoting ũ∗ the solution of (P̃ ) ((ki)i∈I ) and u∗ the solution to (P )
(

τ
∑

i∈I kiψi
)

,
we have

ũ∗ = u∗ + τ
∑

i∈I

kiψi. (3)

This can be seen from the fact that (P )
(
∑

i∈I kiψi
)

is exactly (P̃ ) ((ki)i∈I ),
modulo a ”global translation” by τ

∑

i∈I kiψi. (The rigorous proof of (3) can
easily be established using Kuhn-Tucker conditions, see [13], Th 28.3, pp. 281.)

The proposition is then obtained by identifying the coordinates of ũ∗ and u∗

in the basis B. �

4.1.2 On projection onto polytopes

We can now adapt the definitions and notations of [10] to the problems (P )(.).
Beside Proposition 4.6, all the results stated in this section are proved in [10].

We consider a norm fd (which will be used latter on to define the data
distribution law) and define for any C ⊂ R

N and any A ⊂ R

SAC =
{

u ∈ R
N , ∃u∗ ∈ C, u∗ is solution to (P )(u) and fd(u− u∗) ∈ A

}

.

This corresponds to all the optimization problems whose solution is in C (we
also control the distance between u and the result of (P )(u)). Notice that SAC
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depends on τ . We do not make this dependence explicit since it does not create
any confusion, in practice.

We also define the equivalence relationship over C(0)

u ∼ v ⇐⇒ J(u) = J(v).

For any u ∈ C(0), we denote u the equivalence class of u.
In the context of this paper, we obviously have for all u =

∑

i∈I uiψi ∈ C(0)

u =







uc + τ
∑

j 6∈J(u)

βjψj , ∀j 6∈ J(u),−
1

2
< βj <

1

2







, (4)

where
uc =

∑

j∈J(u)

ujψj .

(Here and all along the paper the notation j 6∈ J stands for j ∈ I \ J .)
Let us give some descriptions of S .. .

Proposition 4.2 For any u∗ ∈ ∂C(0) and any v ∈ u∗,

S1
v = (v − u∗) + S1

u∗ .

In words, S1
v is a translation of S1

u∗ .

Proposition 4.3 For any u∗ ∈ ∂C(0), any v ∈ S
]0,+∞[
u∗ and any λ > 0

u∗ + λ(v − u∗) ∈ S
]0,+∞[
u∗ .

Theorem 4.4 For any u∗ ∈ ∂C(0) and any τ ′ > 0,

S
]0,τ ′]

u∗ =
{

v + λ(u− u∗), for v ∈ u∗, λ ∈]0, τ ′] and u ∈ S1
u∗

}

We also have (see [10])

Proposition 4.5 If f satisfies the hypotheses given in Section 2, for any u∗ ∈
∂C(0), S1

u∗ is a non-empty, compact Lipschitz manifold of dimension #J(u∗)−1.

Another useful result for the purpose of this paper is the following.

Proposition 4.6 If f satisfies the hypotheses given in Section 2, for any u∗ ∈

∂C(0) and any τ ′ > 0, S
]0,τ ′]
u∗ is a non-empty, bounded Lipschitz manifold of

dimension #J(u∗).

Proof. In order to prove the proposition, we consider u∗ =
∑

i∈I u
∗
iψi ∈ ∂C(0)

and uc =
∑

i∈J(u∗) u
∗
iψi. We are going to prove the proposition in the particular

case where uc = u∗. Proposition 4.2 and 4.3 permit indeed to generalize the

latter result obtained to any S
]0,τ ′]
u∗ , for u∗ ∈ uc. (They indeed guarantee that

S
]0,τ ′]
u∗ is obtained by translating S

]0,τ ′]
uc .)
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In order to prove that S
]0,τ ′]
uc is a bounded Lipschitz manifold of dimension

#J(u∗), we prove that the mapping h′ defined below is a Lipschitz homeomor-
phism.

h′ : S1
uc×]0, τ ′] −→ S

]0,τ ′]
uc

(u, λ) 7−→ uc + λ(u− uc).
(5)

The conclusion then directly follows from Proposition 4.5.
Notice first that we can deduce from Proposition 4.3, that h′ is properly

defined.
Let us prove that h′ is invertible. For this purpose, we consider λ1 and λ2

in ]0, τ ′] and u1 and u2 in S1
uc such that

uc + λ1(u1 − uc) = uc + λ2(u2 − uc). (6)

We have

λ1 = fd(λ1(u1 − uc))

= fd(λ2(u2 − uc))

= λ2.

Using (6), we also obtain u1 = u2 and h′ is invertible.
Finally, h′ is Lipschitz since, for any λ1 and λ2 in ]0, τ ′] and any u1 and u2

in S1
uc ,

‖λ1(u1 − uc) − λ2(u2 − uc)‖2 = ‖λ1(u1 − u2) + (λ1 − λ2)(u2 − uc)‖2,

≤ τ ′‖u1 − u2‖2 + C|λ1 − λ2|,

where C is such that for all u ∈ S1
uc ,

‖u− uc‖2 ≤ C.

(Remember S1
uc is compact, see Proposition 4.5.) �

4.2 The estimate

We denote the discrete grid by

D = {τ
∑

i∈I

kiψi, (ki)i∈I ∈ Z
N},

and, for u∗ ∈ ∂C(0) and (kj)j∈J(u∗) ∈ Z
J(u∗),

D
(

(kj)j∈J(u∗)

)

= {τ
∑

j∈J(u∗)

kjψj+τ
∑

i6∈J(u∗)

kiψi, where (ki)i6∈J(u∗) ∈ Z
I\J(u∗)}.

The set D
(

(kj)j∈J(u∗)

)

is a slice in D.
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Proposition 4.7 Let τ ′ > 0, u∗ ∈ ∂C(0) and (kj)j∈J(u∗) ∈ Z
J(u∗),

#
(

S
]0,τ ′]

u∗ ∩ D
(

(kj)j∈J(u∗)

)

)

≤ 1.

Proof. Taking the notations of the proposition and assuming S
]0,τ ′]

u∗ ∩D
(

(kj)j∈J(u∗)

)

6=

∅, we consider (k1
i )i∈I and (k2

i )i∈I such that

τ
∑

i∈I

k1
i ψi ∈ S

]0,τ ′]

u∗ ∩ D
(

(kj)j∈J(u∗)

)

and
τ
∑

i∈I

k2
i ψi ∈ S

]0,τ ′]

u∗ ∩ D
(

(kj)j∈J(u∗)

)

.

Theorem 4.4 guarantees there exist v1 and v2 in u∗, λ1 and λ2 in ]0, τ ′] and u1

and u2 in S1
u∗ such that

τ
∑

i∈I

k1
i ψi = v1 + λ1(u1 − u∗)

and
τ
∑

i∈I

k2
i ψi = v2 + λ2(u2 − u∗).

So
v1 + λ1(u1 − u∗) = v2 + λ2(u2 − u∗) + τ

∑

i6∈J(u∗)

(k1
i − k2

i )ψi.

Using (4), we know there exists (β1
i )i6∈J(u∗) and (β2

i )i6∈J(u∗) such that

∀i 6∈ J(u∗),−
1

2
< β1

i <
1

2
and −

1

2
< β2

i <
1

2
,

v1 = uc + τ
∑

i6∈J(u∗)

β1
i ψi

and
v2 = uc + τ

∑

i6∈J(u∗)

β2
i ψi,

with uc =
∑

j∈J(u∗) u
∗
jψj , where u∗ =

∑

i∈I u
∗
iψi.

So, letting for all i 6∈ J(u∗), αi = k1
i − k2

i + β2
i − β1

i , we finally have

λ1(u1 − u∗) = λ2(u2 − u∗) + τ
∑

i6∈J(u∗)

αiψi. (7)

Let us assume
max
i6∈J(u∗)

|αi| > 0, (8)
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and consider 0 < λ ≤ 1 such that

λ <
1

2 maxi6∈J(u∗) |αi|
. (9)

We have, using (7),

uc + λλ1[(u1 − u∗ + uc) − uc] = uc + λλ1(u1 − u∗)

= uc + λτ
∑

i6∈J(u∗)

αiψi + λλ2(u2 − u∗)

= v + λλ2[(u2 − u∗ + v) − v],

where v = uc + λτ
∑

i6∈J(u∗) αiψi. Moreover, using (4) and (9), we know that

v ∈ uc. Using Proposition 4.2, we know that

u1 − u∗ + uc ∈ S1
uc and u2 − u∗ + v ∈ S1

v .

Finally, applying Theorem 4.4, we obtain

uc + λλ1(u1 − u∗) ∈ S
]0,τ ′]
uc ∩ S ]0,τ ′]

v .

Since the solution to (P )(uc+λλ1(u1−u∗)) is unique, we necessarily have uc = v

and therefore maxi6∈J(u∗) |αi| = 0. This contradicts (8) and guarantees that

max
i6∈J(u∗)

|αi| = 0.

Using the definition of αi, we obtain, for all i 6∈ J(u∗),

|k1
i − k2

i | = |β1
i − β2

i | < 1.

This implies k1
i = k2

i , for all i ∈ I . �

Let us denote, for u∗ ∈ ∂C(0), the projection onto Span (ψj , j ∈ J(u∗)) by

p : R
N −→ Span (ψj , j ∈ J(u∗))

∑

i∈I αiψi 7−→
∑

j∈J(u∗) αjψj .

It is not difficult to see that, for any τ ′ > 0, u∗ ∈ ∂C(0) and (kj)j∈J(u∗) ∈ Z
J(u∗),

#
(

S
]0,τ ′]

u∗ ∩ D
(

(kj)j∈J(u∗)

)

)

= 1 =⇒ τ
∑

j∈J(u∗)

kjψj ∈ p
(

S
]0,τ ′]

u∗

)

. (10)

Remark 1 Notice that the converse implication does not hold in general. It is in-

deed possible to build counter examples where S
]0,τ ′]

u∗ passes between the points of
the discrete grid D. However, it is not difficult to see that, if τ

∑

j∈J(u∗) kjψj ∈

p
(

S
]0,τ ′]

u∗

)

and S
]0,τ ′]

u∗ ∩D
(

(kj)j∈J(u∗)

)

= ∅, we can build (ki)i6∈J(u∗) ∈ Z
J\J(u∗)

such that

τ
∑

j∈J(u∗)

kjψj + τ
∑

i6∈J(u∗)

(ki +
1

2
)ψi ∈ S

]0,τ ′]
uc ,
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where
uc =

∑

j∈J(u∗)

u∗jψj .(u
∗
j are the coordinates of u∗)

This means that the set S
]0,τ ′]
uc , which is a manifold of dimension #J(uc) living

in R
N , intersects a discrete grid. This is obviously a very rare event. Typically,

adding to the basis B some kind of randomness (for instance adding a very small
Gaussian noise to every ψi) would make it an event of probability 0.

Notice, with this regard, that when f(
∑

i∈I uiψi) =
∑

i∈I |ui|
2, we trivially

have the equivalence in (10).

A simple consequence of (10) is that

#
(

S
]0,τ ′]

u∗ ∩ D
)

≤ #



p
(

S
]0,τ ′]

u∗

)

∩







τ
∑

j∈J(u∗)

kjψj , (kj)j∈J(u∗) ∈ Z
J(u∗)









 .

(11)
Notice finally that, for u∗ =

∑

i∈I u
∗
iψi ∈ ∂C(0), Proposition 4.2 and Equation

(4) guarantees that
p
(

S1
uc

)

= p
(

S1
u∗

)

,

for uc =
∑

j∈J(u∗) u
∗
jψj .

We therefore have, using also Theorem 4.4, Proposition 4.3 and Equation
(4),

p
(

S
]0,τ ′]

u∗

)

= {p(v) + λ(p(u) − p(u∗)), for v ∈ u∗, λ ∈]0, τ ′] and u ∈ S1
u∗},

= {uc + λ(p(u) − uc), for λ ∈]0, τ ′] and u ∈ S1
uc},

= p
(

S
]0,τ ′]
uc

)

.

Finally,

#
(

S
]0,τ ′]

u∗ ∩ D
)

≤ #



p
(

S
]0,τ ′]
uc

)

∩







τ
∑

j∈J(uc)

kjψj , (kj)j∈J(uc) ∈ Z
J(uc)









 .

(12)

Proposition 4.8 If f satisfies the hypotheses given in Section 2 then, for any

u∗ =
∑

i∈I u
∗
iψi ∈ ∂C(0), p

(

S
]0,τ ′]
uc

)

(where uc =
∑

j∈J(u∗) u
∗
jψj) is a non-

empty, bounded Lipschitz manifold of dimension #J(u∗).

Proof. Thanks to Proposition 4.6, it suffices to establish that the restriction of
p :

p′ : S
]0,τ ′]
uc −→ p

(

S
]0,τ ′]
uc

)

u 7−→ p(u).

is a Lipschitz homeomorphism. This latter result is immediate once we have
established that p′ is invertible.

11



This proof is similar to the one of Proposition 4.7. Taking the notations of

the proposition, we assume that there exist u1 and u2 in S
]0,τ ′]
uc and (αi)i6∈J(u∗) ∈

R
J(u∗) satisfying

u1 = u2 + τ
∑

i6∈J(u∗)

αiψi.

If we assume maxi6∈J(u∗) |αi| 6= 0, we have for 0 < λ < min(1, 1
2maxi6∈J(u∗) |αi|

),

uc + λ(u1 − uc) = uc + τ
∑

i6∈J(u∗)

λαiψi + λ(u2 − uc)

= v + λ



u2 + τ
∑

i6∈J(u∗)

λαiψi − v





for v = uc+τ
∑

i6∈J(u∗) λαiψi. Since v ∈ uc (see (4)), Proposition 4.2 guarantees

that u2 + τ
∑

i6∈J(u∗) λαiψi = u2 + v − uc ∈ S
]0,τ ]
v . As a consequence, applying

Proposition 4.3, we know that

uc + λ(u1 − uc) ∈ Sλuc ∩ S ]0,+∞[
v .

Since (P )(uc + λ(u1 − uc)) has a unique solution, we obtain a contradiction
and can conclude that for all i 6∈ J(u∗), maxi6∈J(u∗) |αi| = 0.

As a consequence, p′ is invertible. It is then obviously a Lipschitz homeo-
morphism. �

Proposition 4.8 guarantees that p
(

S
]0,τ ′]
uc

)

is Lebesgue measurable in R
#J(u∗).

Moreover, its Lebesgue measure in R
#J(u∗) (denoted L#J(u∗)

(

p
(

S
]0,τ ′]
uc

))

) is

finite and strictly positive :

0 < L#J(u∗)

(

p
(

S
]0,τ ′]
uc

))

<∞.

Another consequence takes the form of the following proposition.

Proposition 4.9 Let τ ′ > 0 and u∗ ∈ ∂C(0)

lim
τ→0

τK#
(

S
]0,τ ′]

u∗ ∩ D
)

≤ LK

(

p
(

S
]0,τ ′]
uc

))

where K = #J(u∗).
Moreover, if the equality holds in (11) (or equivalently : the equality holds

in (12))

lim
τ→0

τK#
(

S
]0,τ ′]

u∗ ∩ D
)

= LK

(

p
(

S
]0,τ ′]
uc

))

.

12



Proof. In order to prove the proposition, we are going to prove that, denoting
K = #J(uc),

lim
τ→0

τK#



p
(

S
]0,τ ′]
uc

)

∩







τ
∑

j∈J(uc)

kjψj , (kj)j∈J(uc) ∈ Z
J(uc)









 = LK

(

p
(

S
]0,τ ′]
uc

))

(13)
The conclusion follows from (12).

Let us first remark that, unlike S
]0,τ ′]
uc , the set

A = p
(

S
]0,τ ′]
uc

)

− uc

does not depend on τ . This is due to Proposition 95, in [10]. Notice also that,

because of Proposition 4.8, both A and p
(

S
]0,τ ′]
uc

)

are Lebesgue measurable (in

R
K) and that

LK (A) = LK

(

p
(

S
]0,τ ′]
uc

))

.

In order to prove the upper bound in (13), we consider the sequence of
functions, defined over R

K

fn(u) = max

(

0, 1 − n inf
v∈A

‖u− v‖2

)

.

This is a sequence of functions which are both Lebesgue and Riemann inte-
grable and the sequence converges in L1(RK) to 11A (the indicator function of
the set A). So, for any ε > 0, there exists n ∈ N such that

∫

fn ≤

∫

11A + ε.

Moreover, we have, for all u ∈ R
K and all n ∈ N,

11A(u) ≤ fn(u).

So, denoting Vτ =
{

τ
∑

j∈J(uc) kjψj − uc, (kj)j∈J(uc) ∈ Z
J(uc)

}

,

lim
τ→0

τK#



p
(

S
]0,τ ′]
uc

)

∩







τ
∑

j∈J(uc)

kjψj , (kj)j∈J(uc) ∈ Z
J(uc)









 = lim
τ→0

τK
∑

v∈Vτ

11A(v)

≤ lim
τ→0

τK
∑

v∈Vτ

fn(v)

≤

∫

fn

≤

∫

11A + ε

≤ LK

(

p
(

S
]0,τ ′]
uc

))

+ ε.

5The definition of SA

C
given in the current paper does not allow the rewriting of the

proposition 9 of [10]. This is why we have not adapted it in Section 4.1.2.
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So,

lim
τ→0

τK#



p
(

S
]0,τ ′]
uc

)

∩







τ
∑

j∈J(uc)

kjψj , (kj)j∈J(uc) ∈ Z
J(uc)









 ≤ LK

(

p
(

S
]0,τ ′]
uc

))

The lower bound in (13) is obtained in a similar way, by considering an ap-
proximation of 11A by a function smaller than 11A which is Riemann integrable.
(For instance : fn(u) = 1 − max (0, 1− n infv 6∈A ‖u− v‖2)).) �

From now on , we will denote for all K ∈ {1, . . . , N}

CK =







τ
∑

j∈J

ujψj , where J ⊂ I,#J = K and ∀j ∈ J, uj = −
1

2
or uj =

1

2







The set CK contains all the ”centers” of the equivalence classes of codimension
K.

Similarly, we denote

ClK = {u∗ ∈ ∂C(0),#J(u∗) = K} .

We obviously have, for all K ∈ {1, . . . , N},

ClK = ∪uc∈CK
uc.

Since, for all K ∈ {1, . . . , N}, CK is finite, it is clear from Proposition 4.9
that, for any τ ′ > 0,

lim
τ→0

τK#
(

S
]0,τ ′]
ClK

∩ D
)

≤
∑

uc∈CK

LK

(

p
(

S
]0,τ ′]
uc

))

< +∞

Moreover, we have an equality between the above two terms, as soon as the
equality holds in (11).

We can finally express the following estimate.

Proposition 4.10 Let τ ′ > 0

lim
τ→0

τK#
(

S
]0,∞[
ClK

∩ Lfd
(τ ′) ∩ D

)

≤
∑

uc∈CK

LK

(

p
(

S
]0,τ ′]
uc

))

where K = #J(u∗).
Moreover, if the equality holds in (11) for all uc ∈ CK (or equivalently : the

equality holds in (12))

lim
τ→0

τK#
(

S
]0,∞[
ClK

∩ Lfd
(τ ′) ∩ D

)

=
∑

uc∈CK

LK

(

p
(

S
]0,τ ′]
uc

))

.
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Proof. We consider

M = sup
{u=

P

i∈I
uiψi,∀i∈I,|ui|≤

1
2}

fd(u)

We have, for all u∗ ∈ ∂C(0),
fd(u

∗) ≤Mτ. (14)

We therefore have for all u ∈ Lfd
(τ ′) and for u∗ the solution to (P )(u),

fd(u− u∗) ≤ fd(u) + fd(u
∗)

≤ τ ′ +Mτ.

So
S

]0,∞[
ClK

∩ Lfd
(τ ′) ⊂ S

]0,τ ′+Mτ ]
ClK

.

Moreover, it is not difficult to see that (remember h′ defined by (5) is an home-
omorphism)

lim
τ→0

∑

uc∈CK

LK

(

p
(

S
]0,τ ′+Mτ ]
uc

))

=
∑

uc∈CK

LK

(

p
(

S
]0,τ ′]
uc

))

.

We can therefore deduce (from Proposition 4.9) that

lim
τ→0

τK#
(

S
]0,∞[
ClK

∪ Lfd
(τ ′) ∩ D

)

≤
∑

uc∈CK

LK

(

p
(

S
]0,τ ′]
uc

))

In order to prove the last statement of the proposition, we consider u∗ ∈

∂C(0) and u ∈ S
]0,τ ′]
u∗ , we know that

fd(u) ≤ fd(u− u∗) + fd(u
∗)

≤ τ ′ +Mτ

So
S

]0,τ ′−Mτ ]
ClK

⊂ S
]0,∞[
ClK

∩ Lfd
(τ ′) .

Since (again)

lim
τ→0

∑

uc∈CK

LK

(

p
(

S
]0,τ ′−Mτ ]
uc

))

=
∑

uc∈CK

LK

(

p
(

S
]0,τ ′]
uc

))

,

we know that the second statement of the proposition holds. �

Another immediate result is useful to state the final theorem. Notice first
that we have, for any (ki)i∈I ∈ Z

N and any norm ‖.‖,
∫

v∈C((ki)i∈I )

‖v − τ
∑

i∈I

kiψi‖dv = CτN+1,
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where

C =

∫

{v=
P

i∈I
viψi,∀i∈I,|vi|≤

1
2 }

‖v‖dv

only depends on the particular norm ‖.‖ and the basis (ψi)i∈I .
So, denoting U a random variable whose law is uniform in Lfd

(τ ′) and
(ki(U))i∈I the discrete point defined by (2), we have

lim
τ→0

E
(

‖U − τ
∑

i∈I ki(U)ψi‖
)

τN+1
= C. (15)

This follows from the fact that the number of points (ki)i∈I such that
C((ki)i∈I) intersects both Lfd

(τ ′) and its complement in R
N becomes negligible

with regard to the number of points (ki)i∈I such that C((ki)i∈I) is included in
Lfd

(τ ′), when τ goes to 0.
We can now state the final result.

Theorem 4.11 Let τ ′ > 0 and U be a random variable whose low is uniform in
Lfd

(τ ′), for a norm fd. For any norm ‖.‖, any K ∈ {1, . . .N} and any ε > 0,
there exists T > 0 such that for all τ < T

P

(

#J̃ (U) = K
)

≤ DKE
N−K
N+1 + ε,

where E is the approximation error6 :

E = E

(

‖U − τ
∑

i∈I

ki(U)ψi‖

)

,

Moreover, if the equality holds in (11) (or equivalently : the equality holds
in (12)) for all uc ∈ CK , then we also have

P

(

#J̃ (U) = K
)

≥ DKE
N−K
N+1 − ε.

The constant DK is given by

DK =
AK

BC
N−K
N+1

,

with
AK =

∑

uc∈CK

LK

(

p
(

S
]0,τ ′]
uc

))

,

B =
LN (Lfd

(τ ′))

LN

(

{v =
∑

i∈I viψi, ∀i ∈ I, |vi| ≤
1
2}
)

and

C =

∫

{v=
P

i∈I
viψi,∀i∈I,|vi|≤

1
2}

‖v‖dv.

6When computing the approximation error, we consider the center of C ((ki)i∈I ) has been
chosen to represent all the elements coded by (P̃ ) ((ki)i∈I ).
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Proof. Remark first that, for any (ki)i∈I ∈ Z
N , the probability that

τki
≤ Ui ≤ τki+1,

when U =
∑

i∈I Uiψi follows a uniform law in Lfd
(τ ′), is

LN (C((ki)i∈I) ∩ Lfd
(τ ′))

LN (Lfd
(τ ′))

.

Therefore, taking the notation of the theorem

P

(

#J̃(U) = K
)

=
∑

(ki)i∈I∈ZN

11
τ

P

i∈I
kiψi∈S

[0,+∞[
ClK

LN (C((ki)i∈I) ∩ Lfd
(τ ′))

LN (Lfd
(τ ′))

.

If (ki)i∈I is such that LN (C((ki)i∈I ) ∩ Lfd
(τ ′)) 6= 0, there exists v ∈ C(0)

such that v + τ
∑

i∈I kiψi ∈ Lfd
(τ ′). So, we have

fd(τ
∑

i∈I

kiψi) ≤ τ ′ + fd(v)

≤ τ ′ +Mτ,

where M is given by (14).
We therefore have

P

(

#J̃(U) = K
)

≤
LN (C(0))

LN (Lfd
(τ ′))

#
(

S
]0,+∞[
ClK

∩ Lfd
(τ ′ +Mτ) ∩ D

)

.

The lower bound is obtained with a similar estimation and we obtain

P

(

#J̃(U) = K
)

≥
LN (C(0))

LN (Lfd
(τ ′))

#
(

S
]0,+∞[
ClK

∩ Lfd
(τ ′ −Mτ) ∩ D

)

.

Notice finally that

lim
τ→0

#
(

S
]0,+∞[
ClK

∩ Lfd
(τ ′) ∩ D

)

#
(

S
]0,+∞[
ClK

∩ Lfd
(τ ′ ±Mτ) ∩ D

) = 1.

The proof is now a straightforward consequence of Proposition 4.10 and (15).
More precisely, taking the notations of the theorem and ε > 0, we know that
there exists T > 0 such that, for all τ < T ,

τK#
(

S
]0,∞[
ClK

∪ Lfd
(τ ′ +Mτ ) ∩ D

)

≤ AK + ε,

and
E

1
N+1

C
1

N+1

≥ τ − ε.
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So

P

(

#J̃ ((Ki)i∈I ) = K
)

≤
τN

B

AK + ε

τK

≤
AK + ε

B

(

(

E

C

)
1

N+1

+ ε

)N−K

≤
AK

BC
N−K
N+1

E
N−K
N+1 + o(1),

where o(1) is a function of ε which goes to 0, when ε goes to 0. The first
inequality of the theorem follows.

The proof of the second inequality of the theorem is similar to one above. �
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