Minimizing the total variation under a general
convex constraint for image restoration
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Abstract— In this paper, we present a general framework
for image restoration; despite its simplicity, certain vari-
ational and certain wavelet approaches can be formulated
within this framework. This permits the construction of
a natural model, with only one parameter, which has the
advantages of both approaches. We give a mathematical
analysis of this model, describe our algorithm and illustrate
this by some experiments.
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I. INTRODUCTION

This paper is concerned with image and signal restora-
tion; more precisely, we consider two classical methods (the
wavelet thresholding and the Rudin-Osher-Fatemi (ROF)
method) in a unified framework. In this framework, it ap-
pears that wavelet methods focus mainly upon the data fi-
delity term, while variational methods are more concerned
with the regularity criterion. This leads us to propose a
new method which combines the advantages of both.

In the following, we will understand “restoration” as
methods whose aim is to recover an image (similarly a sig-
nal) u € L?(T), from data

v=H(u)+b,

where T is the torus (the periodization of [0,1[%), H is a
continuous linear operator which goes from L?(T) into itself
and b is a Gaussian noise of standard deviation o.

There is a large number of papers which consider this
problem. Among these papers there are two opposing
“families”: the wavelet and the variational approaches.
Among the variational approaches, those based on the min-
imization of the total variation, as introduced in [1], are
often considered as being the most efficient (see [2], [3], [4],
[5], [6], [7])- On the other hand, wavelet soft thresholding
methods were introduced by Donoho and Johnstone and
have been studied and extended in several papers (see [8],
[9], [10], [11], [12], [13]).

The paper is organized as follows:

o In section II, we describe the unified framework and pro-
pose the model.

¢ In section III, we state the mathematical results which
guarantee that the proposed model has a computable solu-
tion.
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o In section IV, we describe the algorithm used to compute
a solution.

¢ In section V, we illustrate the algorithm by some exper-
iments.

II. A UNIFIED FRAMEWORK

We describe here a framework into which many restora-
tion methods fit. Amongst these are Maximum A Pos-
teriori methods (such as the ROF method) and wavelet
approaches (such as the wavelet soft-thresholding). The
model is very simple and describes a method in terms of
the minimization of an energy E(w) under a convex con-
straint. The constraint forces the residual (H(w) — v) to
belong to a set N'p , defined by

N’D,T = {U] S L2(T);V‘IJ S Da |<’U},\IJ)| S T}7

for a dictionary D C L?(T).

The proposed constraint is simply a convex constraint
(defined by its envelope); several data fidelity terms used
in image restoration can be expressed under this form (for
instance, some of those proposed in [14]). The result de-
pends strongly upon both the definition of the energy and
the content of the dictionary D. Let us explain this through
two examples: the wavelet soft-thresholding and the ROF
model.

The wavelet soft-thresholding method:

For simplicity, we consider only the case of denoising in a
wavelet basis; one can refer to [12], [11] for the deblurring
case. The usual wavelet soft-thresholding W (v) (see [9])
can be rewritten in the above framework by letting D =
{¥;}, an orthonormal wavelet basis, and by minimizing any
energy of the kind!

E(w) =Y fi (|(w, ©)]) (1)
l

for increasing functions f;.

This is indeed clear since the latter problem is equiva-
lent to independently solving, for all I (the wavelet basis is
orthonormal),

Minimize f; ([(w, ¥;)]),
under the constraint (v, ¥;) — 7 < (w, ¥;) < (v,¥;) + 75

the solutions of which are the soft-thresholded wavelet co-
efficients.

IThis has already been observed in [15], in the case of an 2 con-
straint.



We see from (1) that this wavelet method does not pay
too much attention to the energy but focuses on the dic-
tionary; although, among such energies, for an appropri-
ate wavelet basis, are some Besov norms (see [16]). We
also remark that, following the same reasoning, a soft-
thresholding of the coordinates of an image in any or-
thonormal basis (for instance: for deconvolution, a wavelet
packet basis) can always be expressed as the minimization
of an energy of the form (1).

A major drawback of wavelet soft-thresholding methods
is that they are local in the wavelet domain ((W (v), ¥;)
only depends on (v, ¥;)). This drawback is of importance
in the case of image deblurring when some information is
lost during the degradation. In this case, we could ex-
pect to restore (W (v), ¥;) according to some information
contained in other coordinates of v. (That is one of the
advantages of the next method.) Another drawback of the
method is that the constraint, (W (v) —v) € Np,, only
constrains the movement along some orthogonal directions,
while we could expect to constrain it in other directions
(typically, we would like to use a real dictionary instead of
a single basis).

Finally, a good choice of D yields a small threshold; for
instance, in the case of finite dimensional images of size
N x N, 7 = ov4In N is considered (see [9]) an optimal
choice for the threshold.

The ROF model:

The ROF restoration method uses the total variation as
a regularity criterion. The total variation is usually defined
by duality (see [17]), for certain functions of L'(T). How-
ever, the total variation of any continuously differentiable
functions of the torus w is simply

/le|.
T

For simplicity, we will abuse of this notation throughout
the paper. Moreover, we will write

BV (T)={we€ LI(T),/ |[Vw| < oo}.
T

The ROF restoration method takes several equivalent
forms. One of those (see [2]) is the constrained minimiza-
tion problem:

Minimize, / |Vw|,
T

among functions w satisfying

1) o <o,

This method can be expressed in the presented framework
since

{weﬁmpéwwrwﬁs#}
={we L2(']I‘),H(w) —v€ND,}

with
D = {¥ € L*(T), || ¥, = 1}.

The main advantage of this method is that it recon-
structs some lost information (see [5], [6]).

However, when presented this way, it is clear that the
constraint could be improved. Indeed, it restricts changes
along directions which are not autocorrelated (such as the
direction of the noise W') Therefore, the parameter 7,
for ROF method, has to be much larger than in the previ-
ous case. For instance, in the case of the restoration of a
discrete image of size N x N, if we want b € Np, to be
likely, we must take 7 = oN. This corresponds to a bound

of the expectation
b
E( s |0,0)]) = E(I60)
@ )la=1 1B
= E([[bll2)

< VE([Ibl3) = oN.

Once again, this has to be compared to

E< sup |(b,‘Ill)|> <oV4lnN
le{1,...,N2}

(see [18]) when using a single basis (for instance, in the
case of soft-thresholding).
An hybrid model:

This leads us to a model where we minimize the total
variation under a constraint defined by a dictionary smaller
than that used in the ROF method. Moreover, since, for
such a model, we do not use any reconstruction formula
(such as in the case of the wavelet thresholding), we can
use a dictionary containing more than one basis. This leads
us to
(2)

Minimize,

Jr IVw]
under the constraint (H(w) —v) € Np -

for a dictionary D and a parameter 7 > 0. Such a model
has recently and independently been evoked in [19] for the
purpose of de-quantization and [13] for the purpose of de-
noising. The design of the dictionary is of course now the
key problem. It has to be understood as the set of all the
“structures” which we do not want to erase. Therefore, it
seems important to have very different types of elements
such as wavelet, ridgelet, textures,... However, in the case
of the deconvolution (or the inversion of an operator H),
we want to control the noise in some particular directions,
along which the noise is enhanced during the inversion of
H. For instance for the deconvolution problem it is advis-
able to have some wavelet packet or Fourier bases in the
dictionary.

It might be possible to apply the proposed modification
of the data fidelity term, to other fields of image processing
(such as segmentation, inpainting, ...). This should work
as soon as the method is variational and contains a convex
data fidelity term.



I1I. MATHEMATICAL ANALYSIS OF THE MODEL

In this section, we show that the proposed model has a
solution and that we can compute an approximation to this
solution. Sketches of the proofs of the theorems are given
in the appendix and the complete proofs are available in
[20].

Theorem 1: Let v € L*(T) and H be a continuous linear
operator from L?(T) into itself. Let D C L?(T) and 7 > 0.
Assume that BV (T) N {w € L*(T),H(w) —v € Np+} # 0
and that there exists C' > 0 such that, for any w € {w €
L*(T),H(w) —v € Np+}, | [pw] < C. Then (2) admits a,
solution ue, € BV(T) N {w € L*(T), H(w) —v € Np_; }.

The hypothesis on the mean of the elements of {w €
L*(T), H(w)—v € Np,.} is obviously satisfied when dealing
with discrete functions and D contains a basis. Moreover,
when H is a convolution with a kernel h whose Fourier
transform satisfies h(0,0) # 0, putting 17 in D is sufficient.

We can unfortunately not guarantee the uniqueness of a
solution to this model; indeed, neither {w € L*(T), H (w) —
v E /\/'D,T} nor the total variation are strictly convex. How-
ever, we can obtain some results similar to those given in
[2] and [4].

In order to find a solution to (2), we approximate (2) by
a model, whose solution yields an approximate solution to
(2); this is done by penalization. We will see, however, that
in some cases we have difficulties in actually computing
solutions to the approximating model. This is explained in
the next section and will lead us to some restrictions on D.

Theorem 2: Let v € L?(T) and H be a continuous lin-
ear operator from L2(T) into itself. Let D C L?(T) be
a countable set and 7 > 0. Assume that BV(T) N {w €
L*(T),H(w)—v € Np,} #0, for a 7" < 7, and that there
exists C' > 0 such that, for any w € {w € L*(T), H(w)—v €
Np+}, | Jyw] < C. Then, for any € > 0,

Ee(w) Z/T|VU)|
+2 3 (sup ((H @) 0, 0] ~7,0)) ()

TeD
has a solution w. € BV (T) N L?(T). Moreover, we can
extract a sequence (we, )nen (With lim, . €, = 0) that
converges in L'(T) and converges weakly in L?(T) to a
function wg € BV(T) N {w € L*(T),H(w) —v € Np,}.
Moreover, for any such sub-sequence, its limit is a solution
to (2).

IV. NUMERICAL ALGORITHM

In order to minimize (3), we apply a steepest descent
algorithm. Let us describe this algorithm; let us denote

N—-1
> [Vl

,3=0

Ew) =

a discrete version of (3), where

2

Jw(w) = sup ({H(w) — v, T)| —7,0)".

We also denote by (¢;);=1,..,n2 a basis of ]R{N2, consist-
ing of Dirac delta functions. Given w® = v the initial
image, we need to compute, at each iteration and for all
led{l,.., N2},

OE(w™) 0TV (w™)
Oy Oy

1 n
iy 9Jw(w™)
€iep 9o

We then let

We then compute (with a dichotomy algorithm) the opti-
mal step

s" = argminger E (" — tVE(w™)).
Finally, we set
w"t = w" — s"VE(w").

We remark that it is important here to compute the optimal
step s™, since, when ¢ is very small (which should be the
case), we would otherwise have to choose a very small step
to ensure convergence.

The computation of az’gigu") has been studied widely; for
instance, such computations are considered in [3] and [7].
Moreover, in practice, we approximate the total variation
by Eﬁ[j;lo Ve? + |Vw; ;|?, for a small ¢ € R This com-
mon approximation, which was introduced and discussed
in [21], permits the minimization of a differentiable energy.
It is clear that this energy satisfies sufficient hypotheses for
the convergence of the steepest descent algorithm (see, for
instance, page 29 of [22]).

We remark also that, even if we use only one orthonormal
basis (¢1)i=1,..., N2 to express the gradient, we can of course
switch from one basis to another basis. For instance, when
D contains an orthonormal basis (¢},)r=1,.. n2 (which is
always the case in our experiments), in order to compute

8,1 (w™
%, we use
n N? n
By, (") _ 5 BT (w™) o0,
dp1 = 9 7
BJLP;C (w")

This means that we can compute <T) from
I=1,...,N?

8J¢/ (w") .
—a with a fast transform.
*/=1,.,N2
. J 1 (w . . .
onsider —2-——; a simple calculation yields
Consid o le calculat 1d
J

0, (w™)

=0
oy} ’



it |(H(w™) —v,¢},)| < 7, and otherwise

0Jyr (w™)

ag, 2sign ((H (w™) — v, ¢4)) (H(¥}), ¢k)

((H@W™) = v,0)[ =7) (4)

where sign(t) =1, if ¢ > 0, and —1 otherwise.

In (4), all the terms except (H(¢}), )} are, in practice,
easy to compute and store. Indeed, H(w™) is known (for
instance a convolution) and the scalar products (H (w™) —
v, ¢},) are computed with fast transforms depending on the
chosen dictionary. (In our experiments, we take wavelet
packet bases and transforms.)

We observe also that, when H is the identity (the de-
noising case), we have

9y (w") .
Tk T — 0’
Ay,
if |<,wn - U;‘P;c)l < T,
oy .
22 = 2sign (W™ — v, ¢}) (" — v, ¢4) = 7),
0y,
if [(w™ — v, })| > 7, and
9y, (jﬂn) -0
&pj

. N2 0 (w™)
for j # k. Therefore, all the } 3~ —4-—, for | €

{1,..., N?}, are easily computed as the inverse transform
) 8J, (w™)
of the coefficients | —Z-— .
Pl
k=1,...,N2

For a general H, it becomes difficult to compute and
store all the (H(y}),¢}). In some particular cases, this
could probably be achieved with the help of a wavelet-
vaguelet kind of decomposition (see [8]). However, in gen-
eral, too much computation and memory are required. This
leads to a constraint on the elements of the dictionary.

We seek a dictionary made of orthonormal bases B whose
elements “almost” diagonalize H. That is, there exists
Arw € R, such that

H(lI;) ~ )‘H,\IllIla

for every ¥ € B. For instance, for convolutions this can be
achieved by a dictionary made of Fourier and/or wavelet
packet bases (see [10], [11]). Using such a dictionary, we
know (H(g}),¢)) approximately. So, we have approxi-
mately

6‘]%(“)”) .
opl, 7
if [(H(w") —v,¢))| <7,
0o (W) _ oy, sign (L (wr '
Tagn T e SN (Hw™) = v, ¢k)

((H (™) = v, @) = 7)

if |[(H(w™) —v,¢})| > 7, and

0J 1 (w™)
e L,
op;
. . N2 OJ, (w™)
for all j # k. Once again, all the > ,_, %’“Ta for

I € {1,...,N?} , are then computed easily as the inverse
transform of the coefficients (wgkfyv)) .
* k=1,...,N?
We will see in the experiments of Section V-B that the
approximation H(p},) = Am,y/ ¢}, seems reasonable.
Moreover, in practice, we choose a small value for €, we
fix it at a small value (say 0.001); with this value, after
convergence, we obtain actually |(H (wg) — v, ¥)| < 7. The
algorithm speed could probably be improved, by starting
from a larger € and letting it decrease during the process.

V. EXPERIMENTAL RESULTS

All the wavelet packet bases used in this section are based
on the cubic spline wavelet; their trees are always of max-
imum depth 3. For image deblurring, we use the mirror
tree which is described in [10]. To be fair, it should be
remarked that, all the methods to be compared have only
one parameter. This parameter has always been chosen
empirically, in order to have good results. Of course, we
could add new parameters to improve the results further.

A. Ezperiments on denoising

All the experiments of this section are made with the
data displayed in Figure 1. In this figure, the image on the
right is obtained by adding a Gaussian noise, of standard
deviation 20, to the image on the left. This corresponds to
a signal to noise ratio (SNR) of 8.12.

We display the results of several denoising methods in
Figure 2. Here is the description of the methods:

o Top: ROF method?, with A = 0.01.

o Middle-Left: The wavelet soft-thresholding, with a pa-
rameter 7 = 70.

o Middle-Right: The restoration, using (2), with dictio-
nary consisting of a single wavelet basis and a parameter
T ="70.

o Bottom-Left: The noise selection approach, with a
wavelet packet dictionary consisting of fully decomposed
wavelet packet bases of depth 1, 2 and 3 and a parameter
7 = 70. (The idea is just to “compose” restorations in all
the wavelet packet bases (see [23]). We would like to say
that, since we wrote [23], we have discovered that identical
ideas had been published in [24] and [25]).

« Bottom-Right: The restoration, using (2), with dictio-
nary consisting of 4 translations of a wavelet packet dictio-
nary (consisting of fully decomposed wavelet packets bases
of depth 1, 2 and 3), for a parameter 7 = 120.

2Here, we consider the ROF method as the minimization of

/T|W\+A/T\H(w)—u|2.



Fig. 1. Left: Original image; Right: Noisy image.

First we remark that, either with a wavelet basis or a
wavelet packet dictionary, the introduction of the total
variation compared to the thresholding (or noise selection)
yields sharper edges. We also remark that they do not
present Gibbs phenomena in the vicinity of these edges.
This is due to the fact that (2) allows the reconstruction of
some small coeflicients, which are canceled by the thresh-
olding.

Moreover, if we compare the images of the middle with
those at the bottom of Figure 2, we see clearly that we gain
in putting a larger dictionary. Indeed, the texture of the
pans can be represented by few large wavelet packet coeffi-
cients (well localized in the Fourier domain) or a lot of small
correlated wavelet coefficients. This explains why they are
preserved with the larger dictionary. However, we do not
claim that the wavelet packet dictionary is particularly ap-
propriate and it is even likely that, in general, a dictionary
made of very different kind of elements (wavelets, ridgelets,
textures, ...) would be more efficient.

Finally, the texture is better preserved in the image
on the bottom right than in the one denoised with ROF
method. This is due to the fact that we restrict the evolu-
tion of the result in the direction of the texture much more
in the case of (2) than with the usual ROF model. This
shows that the dictionary should not be too large.

B. Experiments on deblurring

We present here some experiments on image deconvolu-
tion. Therefore, we want to recover u, given

v=hx*xu+b.

Since we do not want to consider the aliasing in the cre-

ation of the image and we want to demonstrate the ability

of the method to avoid Gibbs phenomena, we take, for h,

a function whose Fourier transform cancels all the frequen-
™ m T

cies outside [-F, 7] x [=F, §]. More precisely, the Fourier

transform of h is given by

e = () (TRr). o

—T

Fig. 3. Profile of the Fourier transform of h (see (5)). The hatch-
ing represents the frequencies which are, in practice, lost during the
degradation.

for £ and n € [-7F, 5] and 0 otherwise (see Figure 3). We
add a Gaussian noise of standard deviation 2. This cor-
responds to a SNR (between the convolved and the noisy
convolved images) of 27.4. Remark that this degradation
model is particularly ill-adapted to wavelet packet meth-
ods since it cancels a wide band of frequencies (see Figure
3). In fact, we know that, because of their ability to recon-
struct some lost frequencies (see [4]), variational methods
are better suited to this kind of degradation model.

We display in Figure 4:
o Top: the reference image.
o Middle-Left: the degraded image.
¢ Middle-Right: The noise selection approach, with a sub-
dictionary of the wavelet packet dictionary (see [23]) and a
parameter 7 = 12. The idea is just to compose the restora-
tion in all the wavelet packet bases which are more decom-
posed than the mirror basis (see [10]) and whose maximum
depth is 3. We also average the results of the algorithm over
4 translations.
o Bottom-Left: The restoration with ROF method, with a
parameter A = 0.1.
o Bottom-Right: The restoration, with (2), for a parame-
ter 7 = 12 and dictionary comprising all the wavelet packet
bases which are more decomposed than the mirror basis
and whose maximum depth is 3 (as well as 4 of its trans-
lations).

On this latter image, we do not see artifacts similar to
aliasing, Gibbs phenomena or blurring. Since they are typi-



Fig. 2. Restoration with: Top: Rudin-Osher-Fatemi method; Middle-Left: wavelet soft-thresholding; Middle-Right: solution to (2), with
a single wavelet basis; Bottom-Left: noise selection with a wavelet packet dictionary; Bottom-Right: solution to (2), with a wavelet packet
dictionary.

cal artifacts of the approximation H(®) = Ag,w ¥, we think APPENDIX

this approximation (see [11]) is acceptable in our case. Once again, all the details of the proofs are given in [20].

Moreover, it is clear that compared to ROF method, the Sketch of the proof of theorem 1: The proof breaks down
new model preserves the texture better, since this latter is as follows:
more constrained by the data fidelity term. Compared to e Build a minimizing sequence (up)nen-
the wavelet packet method, we have a similar constraint e Show that (u,)nen is bounded in L?(T) and BV (T).
but, since our model permits the extrapolation of the lost e« Extract a sub-sequence of (un)neny which converges in
frequencies, we do not have any Gibbs phenomena. Thisis L!(T) and converges weakly in L?(T) to a limit 4.
of course also the case with ROF method. o Show that u is solution to (2).



Fig. 4.

All the images have been sharpened for the display. Top: Original image; Middle-Left: Degraded image; Middle-Right: Noise

selection in a sub-dictionary of the wavelet packet dictionary; Bottom-Left: Rudin-Osher-Fatemi method; Bottom-Right: solution to (2),

with a sub-dictionary of the wavelet packet dictionary.

Sketch of the proof of theorem 2: The proof breaks down
as follows:

o Show that, for any € > 0, there exists w, minimizing (3).
This proof follows the same sketch as the proof of Theorem
1. Tt is, however, a little more technical.

o Prove that (w)eso is bounded in L?(T) and BV (T).

o Conclude that there exists wo € L2?(T) and a sub-
sequence (we, JneN Of (We)eer (with lim, o €, = 0), such

that the sub-sequence converges in L'(T) and converges
weakly in L?(T) to wo.

o Show that wo € {w € L*(T),H(w) —v € Np . }.

o Prove that wg is a solution to (2).
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