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Abstract

We showtwo waysto combinewaveletpadetsandtotal
variation baseddeblurring methods.For this purpose we
firstrecall thatit is possibleto approximatea corvolution
by meanof an opertor diagonalin a waveletpadet basis.
Thenweshowtwo possibilitieswhich usethis property for
combiningwaveletpadetsandtotal variation approaches.
We thenshowon experimentghat, doingthis we canexpect
to havethe advantayesof both approadeswhile avoiding
their drawbads.

1. Intr oduction

This paperis mainly concernedwith imagedeblurring
andwith the applicationof a propertyof operatordiagonal
in wavelet-paclet basedor this purpose .More precisely it
hasbeenshavn in [11] thatthe averageover translationof
an operatorwhich is diagonalin a wavelet paclket basisis
a cornvolution. We will investigatetwo variationalapplica-
tionsof this propertyto theissueof imagedeblurring.

The deblurringproblemunderour scopeis to restorea
cornvolvedandnoisyimageu, giventhe data

Ug=8*xu-+n,

wheres is a low-passfilter andn is a noise. Expressing
thisin the Fourier Domain(we recallthatthe Fourier basis
diagonalizeshe convolution operator) we obtain
U =84+1,

wherewe notewith a hatthe Fourier transformof a func-
tion. We clearly seeherethat, sinces canbe very smallor
evenbezero,this problemis ill-posed.
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The first reasonwhy peoplehave usedthe framavork
of waveletpaclet for imagedeblurringis thatit permitsto
have both a sparserepresentatiomf an image(andthere-
fore to separatehe informationandthe noise)anda good
frequenciallocalization. This hasfirst beennoticedby B.
Rouge andhasalreadybeenusedundervariousways (see
[7, 9,11, 15]). The methoddescribedn thesearticlesare
basednashrinkageof thewaveletpacletcoeficientssimi-
lar to thewaveletshrinkageapproachfor thepurposeof de-
noising,of DonohoandJohnstonésee[6]). Thesemethods
have recentlybeenformalizedin awaywhich permitsto en-
visageto combinewaveletpaclet andvariationalmethods.
This paperinvestigateswo possibilitiesfor sucha combi-
nation.

Thereis analundantiteratureonimagedeblurring.The
readeris referredto [1] for mostof the linearmethodsand
to [5, 8] for overviewsonthesubject.In few words,thefirst
approacltonsistsn enhancingmageswithoutregardto the
convolution kernel[10]. The other methodsare basedon
regularizationapproachesf the problem: using statistical
properties(Wiener and Kalmanfilters) or regularity mea-
surementf the imagessuchasthe entrogy (see[5] and
referenceshere),the total variation(see[16]) or the char
acterizationof Beso/ spacesdy waveletscoeficients (see
3. 6)).

In Section2, we make somerecallson wavelet paclet
basesand statethe result sayingthat it is possibleto ap-
proximatea corvolution operatoiby averagingovertransla-
tionsanoperatordiagonalin awaveletpaclket basis. Then,
in Section3, we proposea first applicationof this result
which combinesthe total variationandthe wavelet paclet
approach. This approach,comparedto the usual Rudin-
OsherFatemimethod(see[16]), canbe interpretedasthe
adaptatiorof the parameten\ (see(6) wherewe recallthe
form of the Rudin-OshetFatemifunctional)accordingto a
criteriononthewaveletpacketdecompositiorof theimage.
In Section4, we study a secondapproachwherethe role
of wavelet paclet is moreimportant. Indeed,in this case
for A\ = oo theresultof the methodis very similar to the



resultof the FCNR (see[9, 15]) andas) decreasethein-

fluenceof thetotal variationappearsTheadvantagehereis

thatthe total variationpermitsto remove theringing which

canappeawith the FCNR.At last,in Section5, we display
someexperimentswhich shav to evidencethe role of the
parameterin the considerednethods Moreover, we com-
parethe methodsntroducedin this paperto bothawavelet
paclet and Rudin-OshetFatemimethodsand obtain satis-
factory results. One of the methodpermitsto simultane-
ouslyavoid ringing andpresere textures.

2. Approximation of the convolution in a
wavelet packet basis

As we saidin the introduction,it hasalreadybeendis-
cussedn [11] thatit is possibleto approximatea convolu-
tion by meanof theaverageovertranslationof anoperator
diagonalin a wavelet paclet basis. Let us make somere-
calls on this propertyandintroducethe notationswe will
usefor thewaveletpacketdecomposition.

For simplicity, we only describewaveletpacletbasesn
the caseof functionsof R, higherdimensionalcasesand
wavelet paclet baseson aninterval can be deducedfrom
this oneby respectrely taking tensorproductsand (for in-
stance)periodizingfunctionsout of the interval (see[12)).
For moredetailsthereadertis referredto [4] or to Section8
of [12].

In thefollowing, we will denoteby (h, g) a pair of con-
jugatemirror filters relatedwith a multi-resolutionanalysis
(for instanceg,, = (—1)'~"h;_,) andby ¢ the associated
scalingfunction. Letting+y)J = ¢, we candefinerecursiely,

for j € Nandp € {0, ...,27 — 1}

¢ () Z hnt? (z — 2/n), (1)
and

P (@) = i gnt? (x — 27m). ©)

Thereforejf wenotey?, (z) = ¢f(x — 2/n) andW¥ the
vectorialsubspacef L2( R) generated)y {¥%,, n € Z},
we know that {+/¥,, n € Z}is an orthonormalbasisof
W?. Moreover, we have
W?TI_I ® WJ+1 - Wp

We also know that for ary admissibletree (seeSection8
of [12]) (p1, ji)r<i<r, {¥% . }nez,1<i<L, isanorthonormal
basisof WJ.

In the following, we will identify any (u,)nez € 12(7Z)
with @ = (3 ,czun?,) € WJ. Therefore,noting

uf = (a,9},) and(u}), = u},, we candeducefrom
(1) and(2) thatfor ary adm|SS|bIetree(pl,J,)1<l<L, there
emstssomekernelsH”ll suchthat
U?,l,n = Hﬁ’ *u(2n) .
We cannow statethe following proposition(which has
alreadybeenintroducedn [11]).

Proposition1 Let (¢%' )

basis. Let D be a linear continuousoperator from 12(Z)
into I2(Z), diagonal in the bass(z/;m nnez,i<i<r. As-
sumemoreover that the eigervalues(A J,,n)nez 1<i<r (re-
spectivelyassociatedo the eigervector{y%  }nez,1<i<r)
do notdependonn. Then,theoperator D definedfor any
u € 12(Z),by

nez,1<i<r be a waveletpadet

D(u) =277 Z 7k o DoTy(u), 3)

whee J = max; <<z, ji and 7, representghe translation
operator of k € 7, is a convolution continuousfrom1%(7Z)
into I2(Z). Moreover, the Fourier transformof the corvolu-
tion kernel§ definingD is given,for £ € [—x, 7], by

&)I2
ZA — ()

wheee we note for anyl € {1,...,
)\Pz

Ji,m

L} andn € Z, N} =

Once again, the proof of this result and someexperi-
mentsshaving that(4) canbeusedto properlyapproximate
aconvolutionaregivenin [11].

Thereforewe canusea waveletpacletbasisasaninter-
mediatestepfor the Fourierbasis.Of coursetheadvantage
of this intermediatestepis to have the possibility to decor
relatethe noiseandtheinformation,which is of a greatin-
terestfor the issueof imagedeblurring. In orderto do so,
we needto choosea tree(we will only usethe cubicspline
wavelet(see[12])) andthevaluesof )\’.’; . For simplicity, we
will alwaystakethe“besttree”introducedn [9]. Moreover,
wewill estimatethe \%' by

A= (sl O ), (5)

which permitsto minimize||S — D||», whereS(u) = s % u
andD is givenin Propositionl. Of courseall thesechoices
canbeimprovedby using(4) to designthe approximation.

The first applicationof this resultis, of courseto rede-
fine the FCNR which hasalreadybeenstudiedin [9, 15].
In thefollowing, we will investigatehe possibility of using
this resultin the framework of variationmethods.



3. First combination of wavelet packet and to-
tal variation methods

We are now going to introduce a variational applica-
tion of theapproximatiorof the convolutionto the problem
of decowolution. This consistsin introducing a wavelet
paclettermin the methodintroducedby Rudin, Osherand
Fatemiin [16]. In orderto have a well definedvariational
problem,we boil down to thefinite dimensionatasewhere
the signalsareassumedo be of size N € N. Let usfirst
malke somerecallson this latter method.

Rudin, Osherand Fatemiintroducedthe total variation
basedlecowolutionmethod which consistan minimizing,
for N € N andadatag € R", thefunctional

TV (u) + Mls *u — g|l3, (6)

amongu € RY, where) canbeinterpretedasa Lagrange
multiplier (se€[2]) andthetotal variationis definedby

N-1
TV(u) = [umi1 = tml -
m=0

Themainadwantageof this methodis that,sincethetotal
variationdoesnot expecttoo muchsmoothnessat edgesit
permitsto avoid ringing artifactsat their vicinity.

One of the possibleimprovementof this methodis to
adaptthe value of the parameten to the region of theim-
agewe areconsidering(this hasbeeninvestigatedn [17]).
Indeeddeally, we would preferto havea A largeronregion
with anda A smalleronsmoothregionwheretheimagecon-
tainsalmostno information. However, the segmentatiorof
the imageis not a simple problem. Indeed,the segmen-
tation needsto be adaptedo the local spatialbehaior of
theimage(for instancejf it is a texturedor smoothregion
or anedge)andto local frequencialinformation (typically,
a texture which hasa “local frequeng” belongingto are-
gion wherethe Fouriertransformof the kernels is “large”
shouldbepreseredandthosecorrespondingo a“local fre-
queng” belongingto aregion wherethe Fouriertransform
of thekernels is “small” or zeroshouldbeerasedincethey
correspondo aringing artifact). This hasled usto usethe
waveletpaclettransformto “segment”ourimage.

More precisely we do not really “segment” the image
in arigoroussensebut make A dependon the valueof the
waveletpaclet coeficient of thedata.Let usexplainthisin
details.

First, we remarkthatin the Rudin-Oshefatemimodel
is hiddenthefactthat A is adaptedo the frequencialocal-
ization. This hasfirst beenremarledin [7] andis simply
dueto thefactthat,for instancewhenthe corvolutionwith
s is invertiblewe canrewrite thefunctional

N-1
u) + Y Mgellak — grl?
k=0

wheregr,, = 9’° for k € {0,-, N — 1}. Therefore Rudin-
OsheFFatemlfunc'uonaI canbe interpretedas a denoising
(of aroughlydeblurredversionof g) with avalue\ varying
with the frequeng localization. We canrewrite this func-
tionalundertheform

V(w) + I(Vs) * (u — gnl3 - (7)

We remarkherethatwe canusePropositionl to modify
andadaptthe convolutionin theright handsideterm of (7)
in orderto includesomeinformationonthe spatialbehaior
of theimage. Therefore,noting A = (Aﬁj)lgsz a setof
eigervaluepermittingto approximatethe convolution with
s, andJ = max;<;<y, ji, we canmodify thisfunctionaland
minimize

27 -1
TV(U) + ” Z T—k © S)\,Tkg,o,\/k_h\/g ° Tk(u - gl)”% )
k=0

(8)
where SA,g,a,WF is defined by its coordinates,
(Sx.g.0.va1.v/35 (0): 03 ), Which areequalto

\/E/\Zl (o, 0% ) if g, % ) > o,
VAL AT (v, ), otherwise.

Heuristically andwith comparisorto the Rudin-Osher
Fatemifunctional (6), we simply take A = \; wherewe
considemwe do not have informationand\ = A, wherewe
considerthereareinformations(beit atextureor anedge).

Note thatwe know thereexists a minimum of the func-
tional (8) sincethis latter is corvex. As usual,we cannot
guarantythe uniquenessf theresultsincethe functionalis
not necessarilystrictly corvex. However, we could state,
aboutthisissue resultssimilar to theonegivenin [2, 7].

We presentin Section 5 some experimentson this
method. In our opinion, theseexperimentsarevery stimu-
lating. However, we feel thattherearealot of possibleim-
provementdor this kind of method.Oneof the mostobvi-
ousis probablythe“segmentation’whichis currentlydone
with regardto thesizeof (g, ¢}’ ). This doesnotdiscrimi-
natetexturesandedgeswhile we maylik e to have different
valuesof A for thesetwo kindsof structuresAnotherpossi-
bleimprovement(atleastin casesvheretheapproximation
with s is not satishctoryenough)could be to do the exact
convolutionwith s andto modify S, , , 7./, in sucha
way thatit doesnot take this corvolution into account.In-
deedwe only do the corvolution with an approximationof
sin(9) (the)\il) in orderto gainin algorithmiccompleity.

(9)

4. Secondcombination of wavelet packet and
total variation methods

Oneof thething we did not mentionin therecallon the
Rudin-OsheiFatemimethodof theprecedingsectionis that



the mainknown drawbackof this methodis to createstair
casingartifacts. This meansthat it tendsto createlarge
homogeneougzonesand thereforeto erasesometextures.
This hasbeenstudiedby several authorsamongwhich we
cancite[13, 14]. If welookin detailattheargumentsyiven
in [14], we seethatoneof the key propertieswvhich causes
this staircasings thefactthatwe cannothave a“reasonable
local” solutionto the equation

Sx(sxu—g)=0, (10)

where(5), = (s)_,. Thisis, in generalthe casesince
g containsnoiseand s is regular (for instancea low-pass
filter).

Theseconsiderationgeadsus to modify the functional
in orderto have a datafidelity term whosederivative (the
left termin (10)) canbe null. With thatin mind, in (6),
we changethe corvolution operatorin ||s * u — g||3 by
an “adaptatve cornvolution”, using Propositionl. More
precisely given a wavelet paclet basis of the interval
(W% )1<i<p0<n<a-un « WE COMpuUtesomeeigervalues
A= (/\é?,T)lglgL (for instancewith (5)) in orderto approx-
imatethe convolution with s by an operatorD (definedin
Propositiond).

Givenadatag € RV, we candefinean adaptatie con-
volution by averaging,over translationsof u, the operator
Sg,x,0,6 Which is definedby the coordinatesof its image

(Sgx0,8(u), Y% ) andareequalto

(7 = o) + 80 I (9070 >0
5<ua¢jl,n> Jif o> (ga ]‘,,n) > —o,
A ((u, 9% ) +0) = b0 if —a > (g, 9% ),

foro > 0ands > 0,if AJ) # 0, ando, if AY) = 0. We call

2791

_o-J s
Sy o5 =2 E T_k ©Sg,2,0,6 © Tk »
k=0

whereJ = max; j;.

Notethat, in orderto definea corvex datafidelity term
[1S4.2,0,5(w) — g3, thecriterionwhich determinesvhether
we do the corvolution or not dealswith {(g,%' ) andnot
(u, % ), whichwould appeamorenatural.Indeedn this
othercase||Ax ,.5(u) — g||3 is not corvex assoonasone
of the )\é’l’ is lower than1, which is, in generalthe case.

Therefore,we proposeto minimize, amongu € RV, the
functional

TV (u) + M| Sg,x,0,6(u) = glI3 - (11)

1w. Ring wrote his paperin the continuousframevork of an openset
Q C R(insteadf {1, ..., N}). Thereforehecanassumehattheequation
5% (s xu — g) = 0 doesnot have ary solutionon ary opensubsebf Q.
Theheuristictranslatiorof this hypothesisn our discreteframewnork could
bethata solutionof (10) doesnot containtoo muchnoise.

Note that Sy x -5 is affine andthat (11) is corvex and
admitsaminimum. Moreover, we canmake concerninghe
uniquenessf thisminimumthesameconclusiorasfor (8).

Oneof theadvantage®f thisfunctionalis that,thistime,
thereexistsareasonablysmoothsolutionu, to

S;,A,a,&(SQ,AJa&(u) - g) =0 ’ (12)

whereS, , , ; isthederivatve of Sy x 5. This solutionis
closeto the solution of the wavelet shrinkagemethodde-
scribedin [15, 11]2.

Therefore therole of the parametel\, ¢ andé is clear:
o andé areusedto controlthenoiseand) is usedto control
theringing artifacts. It is alsoa pointwhich is satishctory
Indeed,in Rudin-OshetFatemimethod whenletting A asa
parameterwe, in practice fix it in orderto have a reason-
ably low amountof noisein homogeneousegions (where
the noiseis the mostvisible). Though,we know that the
mainadwantagdn the useof thetotal variationis its ability
to remove Gibbseffects(se€e[7]).

Moreover, with regardto the causesf the staircasing
givenin [14], theexistenceof u, cancelshereasorof the
staircasingWe will seein the experimentghattheimages
restorecby meansof (11) areindeedfree of staircasing.

5. Numerical results
5.1 Description of the data and notations

The experimentsare basedon two realisticdegradation
models(the sameasthe onespresentedn [7]) which are
derivedfrom satelliteimaging. They correspondo two dif-
ferentsatellites.

In both casesthe Fourier transformof the impulsere-
sponsds supportedver [—m, 7] X [—m,w]. Moreover, we
will assumethe noise Gaussiangven if the real noiseis
the sumof threenoiseshaving differentstructuresThe as-
sumedstandardieviation of this Gaussiamoiseis, in both
casesyealisticand givesrise to the samedifficulty asthe
realnoise.

e Thecornvolutionkernelof thefirst modelis givenby

5(€.m) = e-2elél—2lal (%@)

(Si,;(sn)> (siT;(n))’ (13)

for &,m € [r,n], wherevye = 0.479, ~, = 0.450 and
the standarddeviation of the noiseis o; = 2.4 (see
Figurel).

2|n fact, if, in (12), we take §g,>\,,,,5, insteadof Sy » o5, Uco is the
resultof the FCNR for a particularsetof parametewhich dependn A,
o andd.
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Figure 1. Profile of the Fourier transform of s;
(see (13)). The hatching represents the fre-
quencies whic h are, in practice , lost during
the degradation.
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Figure 2. Profile of the Fourier transform of s
(see (14)). The hatching represents the fre-
quencies whic h are, in practice , lost during
the degradation.

e The corvolution kernel of the secondmodelis given
by

5(€6,m) = e~ 27el€1=27m 0|
sin(4€) [ sin(4n)
(“3%) (5") e

for £&,n € [m,n], with the samevaluesfor v¢ and~,,.
The standarddeviation of the noiseis oo = 0.5 (see
Figure?2).

We have alreadyshaown to evidencein [7] thatthe main
differencebetweenthesetwo corvolution kernelsis thatin
thefirst caseheFouriertransformof thecorvolutionkernel
only vanishesvhenoneof the Fouriercoordinatess in the
vicinity of —m or = while in the secondcasewe alsomiss
someintermediatefrequencieqseethe hatchedzoneson
Figurel and2).

We also shawved in this paperthat variationalmethods
arebettersuitedto this seconddegradationmodel (dueto
thereability to retrievelostfrequenciesgvenif they tendto
erasesometextures.

We will comparethe resultsof the methodsin front of
the referencamage,which is the bestsampledimage,we
canexpectto recover, given the initial landscapeand the
samplingrate. (Onceagain,seeits definitionin [7].) We
displaysomepartsof this referencan the upperright cor-
nersof Figures7, 8.

PSfragreplacemenis

Figure 3. Restoration of an image degraded
by (13) when minimizing (8) for 0 =3, Ay =0
and (from up to down) Ay =5,y =10, A2 = 60
and A = 1000. (On left and right are displa yed
two extracted parts of the same image.)

In thefollowing sectionswe will shov experimentsus-
ing a wavelet paclet basis. This basisis alwaysdefinedby
themirror tree(se€[9]), or its adaptatiorio s,, with aspline
wavelet(se€[12], pp. 236).

5.2 Roleof the parametersin the proposedmethods

We display on Figure 3 and 4 the result of the method
proposedn Section3 whentrying to restoretheimageob-
tainedby thefirst modelof degradation(see(13)). We have
alwayslet A; = 0 to simplify the study of the role of the
otherparametersNotethat,in practice,jt couldbeinterest-
ing to tunethis parametecorrectly However, with A\; = 0,
the bestsetof parametersywe have found,is A = 10 and
o=3.

In orderto illustratetherole of theseparametersye dis-
play on Figure3, restoratiorfor avalueof o = 3 for differ-
entvaluesof As. More preciselywe shaw:

e on left andright; two differentpartsof the samere-
storedimage;

e from up to down: theresultwhenl, = 5, A» = 10,
A2 =60 and/\g = 1000.
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Figure 4. Restoration of an image degraded
by (13) when minimizing (8)for Ay =0, Ay = 10
and for (from up to down) 0 =0,0 =3,0 =7
and o = 15.

We seeherethat Ay hasa role similar to the one X is
playingin Rudin-OsheiFatemimethod.Thelargeris A, the
morewe canseenoise.However, thedifferences thathere
thenoisedoesnotcompletelyblowsup sincewaveletpaclet
coeficientsof theblurredimagewhosemodulusaresmaller
thano have notbeendecormvolved(they nolongerappeain
(8), sinceA; = 0). Indeed,for A» largeand; = 0, the
minimization of (8) yields a kind of hard thresholdingof
thewaveletpaclet coeficients.

On Figure 4, we representa part of the restoredim-
agefor the sameparameter\, = 10, but for, from up to
dowvn,oc = 0,0 = 3,0 = 7Tando = 15. We clearly
seeherethe fact that ¢ permitsto “segment” the image
andto chosewhatwe wantto decowolve. For ao small,
we obtaina resultsimilar to the one obtainedby the mini-
mizationof Rudin-OsheiFatemifunctional(exceptthefact
that the corvolution is approximatedoy an 5). Wheno
increasesyve seemore the effect of the total variationin
regionswherethe spatial/frequencialocalizationcontains

Figure 5. Restoration of an image degraded
by (13) when minimizing (11) for ¢ = 2 and
A =1000. (On left and right are displa yed two
extracted parts of the same image.)

only noise while texturesandedgesarealmostnot affected
by this change.Of course wheng is too large, The result
is similar to the onewe would have obtainedwith Rudin-
OshetrFatemimethodfor A = A; = 0 whichis in practice
toosmall.

We canmalke for the methodintroducedn Sectiond the
sameexperimentsas for the oneintroducedin Section3.
Moreover, we would have almostthe samecommentsand
resultswhenletting o change. However, we illustrate the
role of theparameten in (11) on Figures6 and>5.

IndeedonFigure6, we displayseveralrestoratiorof the
imageblurredby the seconddegradationrmodel(see(14)).
All theseimagesarecomputedor the sameparametet =
1, but for differentvaluesof A. More preciselywe display

e On left andright: two differentpartsof the samere-
storedimage.

e Fromup to down: therestorationfor A = 2, A = 8§,
A = 30 and\ = 1000.

We clearlyseethatfor A = 1000 theresulthasthe same
characteristicsas the result of a restorationby a wavelet
paclet methodsuchasthe onedescribedn [15, 9]. (These
latter are basically somesoft thresholdingof the wavelet
paclet coeficient.) It retrieves the texture and contains
ringingartifact. When\ decreasesye seethatthetextureis
still presered but the ringing artifact vanishes.Of course,
for avalueof A too small (hereA = 2), both the texture
andtheringing areremoved, sincethe total variationterm
contributestoo muchto the functional. However, thereis
aninterval of valuesin which we presere the texture and
removetheringing.

We can also understanchere a differencebetweenthe
minimizationof (8) and(11) by comparingthe lowestrow
of imageson Figure 3 andimagesof Figure5. Theselat-
ter imagesare extractedfrom a restorationof an image
blurred with (13) by minimizing (11) with ¢ = 2 and
A = 1000. (This ¢ is the oneof the bestsetof parameters
(with A = 10).) Theresultis morenoisyfor the minimiza-
tion of (8). This correspondo the intuitive interpretation
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Figure 6. Restoration of an image degraded
by (14) when minimizing (11) for ¢ = 1 and
(from up to down) A = 2, A = 8§, A = 30 and
A =1000. (On left and right are displa yed two

PSfragreplacemen

extracted parts of the same image.)

of (8) and(11). Indeed,for A\, large (in (8)), we compute

an “inversefilter” wherewe have information, while for a
A large in the minimizationof (11) we have a resultclose

to a wavelet paclet soft thresholding(which containslegsSfragreplacemen

noise).

5.3 Comparison of the proposed methods with

Rudin-Osher-Fatemi and classical wavelet
packet methods

We displayon Figures7 and8 restorationf animage
degradedwith (14). Onceagain,on Figure7 and8 (Figure
8 hasbeensharpenedare two differentextractedpartsof
imageswhichare:

Up-Left: theblurredimage.
Up-Right: thereference.

Middle-Left: restorationby meanof a wavelet paclet
witho = 1.

Middle-Right: restoration by minimizing Rudin-
OsherFatemifunctionalwith A = 8.

Down-Left: restoratiorby minimizing (11)with A = 8
ando = 1.

Figure 7. Experiments on the restoration of an
image degraded by (14). Up-Left: the blurred
image. Up-Right: the reference. Middle-Left:
wavelet packet coefficient shrinka ge method.
Middle-Right:  Rudin-Osher -Fatemi method.
Down-Left: minimization of (11). Down-Right:
minimization of (8).

Figure 8. Experiments on the restoration of
an image degraded by (14). (The images have
been sharpened) Up-Left: blurred image. Up-
Right: the reference. Middle-Left: wavelet
packet coefficient shrinka ge method. Middle-
Right: Rudin-Osher -Fatemi method. Down-
Left: minimization of (11). Down-Right: mini-
mization of (8).



e Down-Right: restoratiorby minimizing (8) with A; =
0, A2 =40 ando = 0.7.

Theonly methodwhich permitsto restorehetextureand
avoid ringing is the onewhich consistdn minimizing (11).
Thefactthattheminimizationof (8) yieldsringingis prob-
ably dueto thefactthatthedatafidelity termof (8) tendsto
createmoreringing thantheoneof (11). Indeedfor avalue
of )y large,theminimumof (8) is to a hardthresholdingof
the wavelet paclet coeficientswhat the minimum of (11)
is to a soft thresholdingin wavelet paclet coeficients. It
thereforecontainamoreringing artifacts.However, it could
be interestingto investigatea little more this aspectsince,
theoreticallythis ringing shouldnot be presen{evenif it is
harderto removeit thanin the caseof (11)).

For the same experimentswith the image degraded
by (13), the proposed methods yield better results
than the classical ones (the images are available at
http://www.math.ucla.edutmalgaly). Indeed,they both
arefree of ringing and properlyrestorethe texture, simul-
taneously The maindifferencebetweerntheresultsof these
two methodsis that (8) tendsto yield sharperresult but
presensomestaircasingevenif it is small).

Note also that for both restorationwith (8) and (11),
we take a valuefor A (or A;) larger than for the Rudin-
OsherFatemirestoratioranda valueof ¢ smallerthanfor
the wavelet paclet restoration. We alsotake a valuefor o
larger in the caseof (8) thanin the caseof (11), sincein
(8) the only denoisingn the datafidelity termconcernghe
small coeficient which are not taken into accountif they
aresmallerthano.
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