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Abstract

We showtwo waysto combinewaveletpacketsandtotal
variation baseddeblurring methods.For this purpose, we
first recall that it is possibleto approximatea convolution
bymeanof an operator diagonalin a waveletpacket basis.
Then,weshowtwopossibilities,which usethisproperty, for
combiningwaveletpacketsandtotal variation approaches.
Wethenshowonexperimentsthat,doingthiswecanexpect
to havethe advantagesof bothapproacheswhile avoiding
their drawbacks.

1. Intr oduction

This paperis mainly concernedwith imagedeblurring
andwith theapplicationof a propertyof operatordiagonal
in wavelet-packetbasesfor this purpose.More precisely, it
hasbeenshown in [11] thattheaverageover translationsof
an operatorwhich is diagonalin a wavelet packet basisis
a convolution. We will investigatetwo variationalapplica-
tionsof thispropertyto theissueof imagedeblurring.

The deblurringproblemunderour scopeis to restorea
convolvedandnoisyimage� , giventhedata������� � �
	���
where � is a low-passfilter and � is a noise. Expressing
this in theFourierDomain(we recall that theFourierbasis
diagonalizestheconvolutionoperator),weobtain� � � ��������	����
wherewe notewith a hat the Fourier transformof a func-
tion. We clearlyseeherethat,since � � canbevery smallor
evenbezero,this problemis ill-posed.�
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I would like to thankB. Rouǵe, S. DurandandJ.M. Morel for their en-
couragementsaswell as for all the fruitful discussionswe hadon these
subjects.
The results of the experiments of this paper are available at
http://www.math.ucla.edu/� malgouy

The first reasonwhy peoplehave usedthe framework
of waveletpacket for imagedeblurringis that it permitsto
have both a sparserepresentationof an image(and there-
fore to separatethe informationandthe noise)anda good
frequenciallocalization. This hasfirst beennoticedby B.
Rouǵe andhasalreadybeenusedundervariousways(see
[7, 9, 11, 15]). The methoddescribedin thesearticlesare
basedonashrinkageof thewaveletpacketcoefficientssimi-
lar to thewaveletshrinkageapproach,for thepurposeof de-
noising,of DonohoandJohnstone(see[6]). Thesemethods
haverecentlybeenformalizedin awaywhichpermitsto en-
visageto combinewaveletpacket andvariationalmethods.
This paperinvestigatestwo possibilitiesfor sucha combi-
nation.

Thereis anabundantliteratureon imagedeblurring.The
readeris referredto [1] for mostof the linearmethodsand
to [5, 8] for overviewsonthesubject.In few words,thefirst
approachconsistsin enhancingimageswithoutregardto the
convolution kernel [10]. The othermethodsarebasedon
regularizationapproachesof the problem: usingstatistical
properties(WienerandKalmanfilters) or regularity mea-
surementsof the imagessuchas the entropy (see[5] and
referencesthere),the total variation(see[16]) or the char-
acterizationof Besov spacesby waveletscoefficients(see
[3, 6]).

In Section2, we make somerecallson wavelet packet
basesand statethe result sayingthat it is possibleto ap-
proximateaconvolutionoperatorby averagingovertransla-
tionsanoperatordiagonalin a waveletpacket basis.Then,
in Section3, we proposea first applicationof this result
which combinesthe total variationandthe wavelet packet
approach. This approach,comparedto the usualRudin-
Osher-Fatemimethod(see[16]), canbe interpretedasthe
adaptationof the parameter� (see(6) wherewe recall the
form of theRudin-Osher-Fatemifunctional)accordingto a
criteriononthewaveletpacketdecompositionof theimage.
In Section4, we study a secondapproachwherethe role
of wavelet packet is more important. Indeed,in this case
for ����� the resultof the methodis very similar to the



resultof theFCNR(see[9, 15]) andas � decreasesthe in-
fluenceof thetotalvariationappears.Theadvantagehereis
thatthetotal variationpermitsto removetheringing which
canappearwith theFCNR.At last,in Section5, wedisplay
someexperimentswhich show to evidencethe role of the
parametersin theconsideredmethods.Moreover, we com-
parethemethodsintroducedin this paperto botha wavelet
packet andRudin-Osher-Fatemimethodsandobtainsatis-
factory results. One of the methodpermitsto simultane-
ouslyavoid ringing andpreserve textures.

2. Approximation of the convolution in a
waveletpacket basis

As we said in the introduction,it hasalreadybeendis-
cussedin [11] that it is possibleto approximatea convolu-
tion by meanof theaverageover translationsof anoperator
diagonalin a wavelet packet basis. Let us make somere-
calls on this propertyand introducethe notationswe will
usefor thewaveletpacketdecomposition.

For simplicity, we only describewaveletpacketbasesin
the caseof functionsof � , higher dimensionalcasesand
wavelet packet baseson an interval can be deducedfrom
this oneby respectively takingtensorproductsand(for in-
stance)periodizingfunctionsout of the interval (see[12]).
For moredetailsthereaderis referredto [4] or to Section8
of [12].

In thefollowing, we will denoteby ��� "!$# a pair of con-
jugatemirror filters relatedwith a multi-resolutionanalysis
(for instance!&%'�(�*),+-#/.10 % � .20 % ) andby 3 theassociated
scalingfunction.Letting 4 �� �53 , wecandefinerecursively,
for 687'9 and:'7<;-=>@?A?B?A/CEDF)�+HG4JI"KDMLN. �POQ#R� ST%HU 0 S � % 4VKD �POW)XC D � #Y (1)

and 4JI"K LZ.DMLZ. �POQ#J� ST%HU 0 S !&%[4VKD �\O])^C D � #Y? (2)

Therefore,if we note 4_KDM` % �\OQ#a�b4_KD �PO])�CED2� # and cdKD the
vectorialsubspaceof e I �P�V# generatedby ;-4VKD/` % R�f7�g�G ,
we know that ;h4VKDM` % i�(7jg,G is an orthonormalbasisofc KD . Moreover, wehaveckIlK LZ.DMLZ.nm ckI"KDMLZ. �fcdKD ?
We also know that for any admissibletree (seeSection8
of [12]) �o:>plq6hp�# .2r p rYs , ;h4 KhtD t ` % G %vuHw ` .2r p rQs , is anorthonormal
basisof c �� .

In thefollowing, we will identify any �\� % # %[uHw 7yx I ��g�#
with z�{� |q} %[uHw � % 4 �� ` %$~ 7�c �� . Therefore,noting

�$KD/` % ���@z�ZM4VKDM` %$� and �\�>KD # % ���$KD/` % , we candeducefrom
(1) and(2) that for any admissibletree �o:�p"�6hpP# .1r p rQs , there
existssomekernels��KhtD t suchthat�>K@tD t ` % �f��KhtD t � ����C D t � #Y?

We cannow statethe following proposition(which has
alreadybeenintroducedin [11]).

Proposition1 Let �\4VKhtD t ` % # %[uHw ` .1r p rQs be a waveletpacket

basis. Let �� be a linear continuousoperator from x I �Pg�#
into x I ��g�# , diagonal in the basis �\4_K tD t ` % # %[uHw ` .2r p rYs . As-
sumemoreover that the eigenvalues ���vK tD t ` % # %vuHw ` .2r p rQs (re-
spectivelyassociatedto theeigenvector ;h4 K tD t ` % GE%[uHw ` .1r p rQs )do not dependon � . Then,theoperator

�
defined,for any�'7'x I ��g�# , by� �\��#_��C 0Y� I1� 0�.T� U ��� 0 ��� �� � � � �P�Y#Y (3)

where �����8�H� .2r p rQs 6 p and � � representsthe translation
operator of ��7^g , is a convolutioncontinuousfrom x I �Pg�#
into x I ��g�# . Moreover, theFourier transformof theconvolu-
tion kernel z� defining

�
is given,for ��7^��)a�VM�Y� , by� z���\�&#R� sT p U . �[KhtD t �A �¡K@tD t �\�&# � IC D t  (4)

where we note, for any x
7�;�+&h?B?A?B/eaG and �¢75g , �vK tD t ��[KhtD t ` % .

Once again, the proof of this result and someexperi-
mentsshowing that(4) canbeusedto properlyapproximate
aconvolutionaregivenin [11].

Therefore,wecanuseawaveletpacketbasisasaninter-
mediatestepfor theFourierbasis.Of course,theadvantage
of this intermediatestepis to have thepossibility to decor-
relatethenoiseandtheinformation,which is of a greatin-
terestfor the issueof imagedeblurring. In orderto do so,
we needto choosea tree(we will only usethecubicspline
wavelet(see[12])) andthevaluesof �[KhtD t . For simplicity, we
will alwaystakethe“besttree” introducedin [9]. Moreover,
wewill estimatethe �vK tD t by�vK@tD t ` % ����� � 4VKhtD t ` % M4VKhtD t ` %$�  (5)

whichpermitsto minimize £h¤¥)¦�� £ I , where ¤a�P�Y#_��� � �
and z� is givenin Proposition1. Of course,all thesechoices
canbeimprovedby using(4) to designtheapproximation.

Thefirst applicationof this resultis, of course,to rede-
fine the FCNR which hasalreadybeenstudiedin [9, 15].
In thefollowing, wewill investigatethepossibilityof using
this resultin theframework of variationmethods.



3. First combination of wavelet packet and to-
tal variation methods

We are now going to introducea variational applica-
tion of theapproximationof theconvolutionto theproblem
of deconvolution. This consistsin introducinga wavelet
packet termin themethodintroducedby Rudin,Osherand
Fatemiin [16]. In orderto have a well definedvariational
problem,weboil down to thefinite dimensionalcasewhere
the signalsareassumedto be of size §¨7f9 . Let us first
makesomerecallson this lattermethod.

Rudin, OsherandFatemi introducedthe total variation
baseddeconvolutionmethod,whichconsistsin minimizing,
for §©7�9 andadata!]7¡��ª , thefunctional«�¬ �\��# 	�Z£h� � �W)<!�£ II  (6)

among�7^� ª , where � canbe interpretedasa Lagrange
multiplier (see[2]) andthetotal variationis definedby«�¬ �\��#R� ª�0®.T¯ U � � � ¯ LZ. )�� ¯ � ?

Themainadvantageof thismethodis that,sincethetotal
variationdoesnot expecttoo muchsmoothnessat edges,it
permitsto avoid ringingartifactsat their vicinity.

One of the possibleimprovementof this methodis to
adaptthevalueof the parameter� to the region of the im-
agewe areconsidering(this hasbeeninvestigatedin [17]).
Indeed,ideally, wewouldpreferto havea � largeronregion
with anda � smalleronsmoothregionwheretheimagecon-
tainsalmostno information.However, thesegmentationof
the imageis not a simple problem. Indeed,the segmen-
tation needsto be adaptedto the local spatialbehavior of
the image(for instance,if it is a texturedor smoothregion
or anedge)andto local frequencialinformation(typically,
a texturewhich hasa “local frequency” belongingto a re-
gion wheretheFourier transformof thekernel �� is “large”
shouldbepreservedandthosecorrespondingto a“local fre-
quency” belongingto a region wheretheFourier transform
of thekernel �� is “small” or zeroshouldbeerasedsincethey
correspondto a ringing artifact). This hasled usto usethe
waveletpacket transformto “segment”our image.

More precisely, we do not really “segment” the image
in a rigoroussensebut make � dependon the valueof the
waveletpacketcoefficientof thedata.Let usexplain this in
details.

First, we remarkthat in the Rudin-Osher-Fatemimodel
is hiddenthefact that � is adaptedto thefrequenciallocal-
ization. This hasfirst beenremarked in [7] and is simply
dueto thefactthat,for instance,whentheconvolutionwith� is invertiblewecanrewrite thefunctional«�¬ �P�Y#®	 ª�0�.T� U � � � �� � � I � �� � ) �![° � � I 

where �![° � �²±³/´±µ"´ for �X7¶;E=$h·B/§k)f+&G . Therefore,Rudin-
Osher-Fatemi functionalcanbe interpretedasa denoising
(of aroughlydeblurredversionof ! ) with avalue � varying
with the frequency localization. We canrewrite this func-
tionalundertheform«�¬ �P�Y#Z	�£&��¸ ���E# � �P�W)<!�°¹#@£ II ? (7)

We remarkherethatwe canuseProposition1 to modify
andadapttheconvolution in theright handsidetermof (7)
in orderto includesomeinformationonthespatialbehavior
of the image. Therefore,noting ºj�©���vK@tD t # .1r p rQs a setof
eigenvaluepermittingto approximatethe convolution with� , and �'�¶���H� .1r p rQs 6 p , wecanmodify thisfunctionaland
minimize«�¬ �P�Y#®	5£ I2� 0�.T� U ��� 0 � � ¤�» ` ¼ ´1³ ` ½¾` ¿ À¾Á1` ¿ ÀhÂ � � � �\�W)<![°¹#h£ II 

(8)

where ¤ » ` ³ ` ½H` ¿ ÀEÁ2` ¿ À-Â is defined by its coordinates,��¤ » ` ³ ` ½¾` ¿ À¾Á2` ¿ ÀhÂ �\Ãv#2*4_KhtD t ` %$� , which areequaltoÄ ¸ � I �vKhtD t �PÃ�M4VKhtD t ` %v� , if
� �\!QM4VKhtD t ` %$� �vÅ�Æ ¸ � . �vKhtD t �PÃ�M4VKhtD t ` % � , otherwise.

(9)

Heuristically, andwith comparisonto theRudin-Osher-
Fatemi functional (6), we simply take �Ç�{� . wherewe
considerwe do not have informationand �È�5� I wherewe
considerthereareinformations(beit a textureor anedge).

Note thatwe know thereexistsa minimumof thefunc-
tional (8) sincethis latter is convex. As usual,we cannot
guarantytheuniquenessof theresultsincethefunctionalis
not necessarilystrictly convex. However, we could state,
aboutthis issue,resultssimilar to theonegivenin [2, 7].

We present in Section 5 some experimentson this
method.In our opinion,theseexperimentsarevery stimu-
lating. However, we feel that therearea lot of possibleim-
provementsfor this kind of method.Oneof themostobvi-
ousis probablythe“segmentation”which is currentlydone
with regardto thesizeof �\!QM4VKhtD t ` % � . Thisdoesnotdiscrimi-
natetexturesandedgeswhile we maylike to havedifferent
valuesof � for thesetwo kindsof structures.Anotherpossi-
ble improvement(at leastin caseswheretheapproximation
with � is not satisfactoryenough)couldbe to do the exact
convolution with � andto modify ¤ » ` ³ ` ½H` ¿ À¾Á2` ¿ ÀhÂ in sucha
way that it doesnot take this convolution into account.In-
deedwe only do theconvolution with anapproximationof� in (9) (the �[KhtD t ) in orderto gainin algorithmiccomplexity.

4. Secondcombination of wavelet packet and
total variation methods

Oneof thething we did not mentionin therecallon the
Rudin-Osher-Fatemimethodof theprecedingsectionis that



themainknown drawbackof this methodis to createstair-
casingartifacts. This meansthat it tendsto createlarge
homogeneouszonesand thereforeto erasesometextures.
This hasbeenstudiedby severalauthorsamongwhich we
cancite [13, 14]. If we look in detailat theargumentsgiven
in [14], we seethatoneof thekey propertieswhich causes
thisstaircasingis thefactthatwecannothavea“reasonable
local1” solutionto theequation� � ��� � �])É!$#_�f=� (10)

where � �¾#"%b�²���E# 0 % . This is, in general,the casesince! containsnoiseand � is regular (for instancea low-pass
filter).

Theseconsiderationsleadsus to modify the functional
in order to have a datafidelity term whosederivative (the
left term in (10)) can be null. With that in mind, in (6),
we changethe convolution operatorin £h� � �)5!®£ II by
an “adaptative convolution”, using Proposition1. More
precisely, given a wavelet packet basis of the interval�\4VKhtD t ` % # .2r p rQsY` � r %[Ê IÌËHÍ t ª , we computesomeeigenvaluesº�n���[K tD t # .2r p rYs (for instancewith (5)) in orderto approx-
imatethe convolution with � by an operator

�
(definedin

Proposition1).
Givena data !É7y��ª , we candefineanadaptative con-

volution by averaging,over translationsof � , the operator�¤ ³ ` » ` ½H` Î which is definedby the coordinatesof its image�Ì�¤ ³ ` » ` ½¾` Î �P�Y#Ì*4_K@tD t ` %$� andareequaltoÏÐ Ñ �vK tD t �M�\�N*4_K tD t ` %$� ) Æ # 	�Ò Æ , if �\!QM4VK tD t ` %$� Å�Æ Òv�P�ZM4VKhtD t ` % � , if
Æ�Ó �Ô!Y*4VKhtD t ` % � Å ) Æ �vKhtD t �M�\�N*4_K@tD t ` % � 	 Æ #�)XÒ Æ , if ) ÆÉÓ �Ô!Y*4_K@tD t ` % � 

for
Æ�Ó = and Ò Ó = , if �[KhtD tÖÕ�f= , and = , if �[KhtD t �f= . We call

¤ ³ ` » ` ½¾` Î �5C 0Y� I2� 0�.T� U ��� 0 ��� �¤ ³ ` » ` ½¾` Î � � � 
where �¥�¶�8�¾�[p@6hp .

Note that, in orderto definea convex datafidelity term£@¤ ³ ` » ` ½¾` Î �P�Y#®)¡!�£ II , thecriterionwhichdetermineswhether
we do the convolution or not dealswith �Ô!Y*4VK tD t ` %$� andnot�\�N*4VKhtD t ` % � , whichwouldappearmorenatural.Indeed,in this
othercase £Ì× » ` ½¾` Î �\��#F)!�£ II is not convex assoonasone
of the �[KhtD t is lower than + , which is, in general,the case.
Therefore,we proposeto minimize, among ��7Ç��ª , the
functional «�¬ �P�Y#®	�N£@¤ ³ ` » ` ½¾` Î �P�Y#V)É!®£ II ? (11)

1W. Ring wrotehis paperin thecontinuousframework of anopensetØ�Ù�Ú
(insteadof Û@Ü2ÝMÞßÞßÞßÝ�àiá ). Therefore,hecanassumethattheequationâQãVä¹âYã�å�æÖçhèYéÉê doesnot have any solutionon any opensubsetof

Ø
.

Theheuristictranslationof thishypothesisin ourdiscreteframework could
bethatasolutionof (10)doesnot containtoo muchnoise.

Note that ¤ ³ ` » ` ½H` Î is affine and that (11) is convex and
admitsaminimum.Moreover, wecanmakeconcerningthe
uniquenessof thisminimumthesameconclusionasfor (8).

Oneof theadvantagesof this functionalis that,this time,
thereexistsa reasonablysmoothsolution � S to¤Vë³ ` » ` ½¾` Î ��¤ ³ ` » ` ½¾` Î �P�Y#N)<!v#_��=a (12)

where ¤ ë³ ` » ` ½¾` Î is thederivativeof ¤ ³ ` » ` ½¾` Î . This solutionis
closeto the solutionof the wavelet shrinkagemethodde-
scribedin [15, 11]2.

Therefore,therole of theparameter� ,
Æ

and Ò is clear:Æ
and Ò areusedto controlthenoiseand � is usedto control

theringing artifacts.It is alsoa point which is satisfactory.
Indeed,in Rudin-Osher-Fatemimethod,whenletting � asa
parameter, we, in practice,fix it in orderto have a reason-
ably low amountof noisein homogeneousregions(where
the noiseis the mostvisible). Though,we know that the
mainadvantagein theuseof thetotal variationis its ability
to removeGibbseffects(see[7]).

Moreover, with regard to the causesof the staircasing
givenin [14], theexistenceof � S cancelsthereasonof the
staircasing.We will seein theexperimentsthat theimages
restoredby meansof (11)areindeedfreeof staircasing.

5. Numerical results

5.1. Description of the data and notations

The experimentsarebasedon two realisticdegradation
models(the sameas the onespresentedin [7]) which are
derivedfrom satelliteimaging.They correspondto two dif-
ferentsatellites.

In both cases,the Fourier transformof the impulsere-
sponseis supportedover �B)a�V*�Y�Vìy�B)a�V*�Y� . Moreover, we
will assumethe noiseGaussian,even if the real noise is
thesumof threenoiseshaving differentstructures.Theas-
sumedstandarddeviation of this Gaussiannoiseis, in both
cases,realisticandgivesrise to the samedifficulty as the
realnoise.í Theconvolutionkernelof thefirst modelis givenby�� . �\�vMîv#J�fï 0 IMðÌñ@ò ó-ò 0 IMðÌôHò õHò�ö �h÷��_��C¾�&#C¾� øö �h÷q�_��C¾î$#CHî ø ö �@÷q�_�Pîv#î ø  (13)

for �vMî^7�� �V*�Y� , where ù ó �¦=$? ú[û¾ü , ù õ �n=$? ú�ý&= and
the standarddeviation of the noiseis

Æ . ��Cv? ú (see
Figure1).

2In fact, if, in (12), we take þÿ�� � ��� ��� � , insteadof
ÿ�� � 	�� ��� � , å�
 is the

resultof theFCNRfor a particularsetof parameterwhich dependson � , and � .
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Figure 1. Profile of the Fourier transf orm of � .
(see (13)). The hatc hing represents the fre-
quencies whic h are, in practice , lost during
the degradation.
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Æ I) Æ I)a� �=
+

Figure 2. Profile of the Fourier transf orm of � I(see (14)). The hatc hing represents the fre-
quencies whic h are, in practice , lost during
the degradation.

í The convolution kernelof the secondmodel is given
by �� I �\�v*î$#R�fï 0 IMðÌñ@ò óhò 0 I*ð ô ò õHòö �h÷q�_�\ú �&#ú � ø ö �h÷q�_�\ú îv#ú î ø  (14)

for �vMîy75� �V*�Y� , with the samevaluesfor ù ó and ù õ .
The standarddeviation of the noiseis

Æ I ��=$?ßý (see
Figure2).

We have alreadyshown to evidencein [7] that themain
differencebetweenthesetwo convolution kernelsis that in
thefirst casetheFouriertransformof theconvolutionkernel
only vanisheswhenoneof theFouriercoordinatesis in the
vicinity of )a� or � while in the secondcasewe alsomiss
someintermediatefrequencies(seethe hatchedzoneson
Figure1 and2).

We also showed in this paperthat variationalmethods
arebettersuitedto this seconddegradationmodel (dueto
thereability to retrievelost frequencies)evenif they tendto
erasesometextures.

We will comparethe resultsof the methodsin front of
the referenceimage,which is the bestsampledimage,we
can expect to recover, given the initial landscapeand the
samplingrate. (Onceagain,seeits definition in [7].) We
displaysomepartsof this referencein theupperright cor-
nersof Figures7, 8.

PSfragreplacements

Figure 3. Restoration of an image degraded
by (13) when minimizing (8) for

Æ ��� , � . �Ç=
and (from up to down) � I ��ý , � I ��+h= , � I ���&=and � I �Ç+h= =&= . (On left and right are displa yed
two extracted par ts of the same image.)

In thefollowing sections,we will show experimentsus-
ing a waveletpacket basis.This basisis alwaysdefinedby
themirror tree(see[9]), or its adaptationto � I , with aspline
wavelet(see[12], pp. 236).

5.2.Roleof theparametersin theproposedmethods

We displayon Figure3 and4 the resultof the method
proposedin Section3 whentrying to restoretheimageob-
tainedby thefirst modelof degradation(see(13)). Wehave
alwayslet � . � = to simplify the studyof the role of the
otherparameters.Notethat,in practice,it couldbeinterest-
ing to tunethis parametercorrectly. However, with � . �¶= ,
thebestsetof parameters,we have found, is � I �d+h= andÆ ��� .

In orderto illustratetheroleof theseparameters,wedis-
playonFigure3, restorationfor avalueof

Æ ��� for differ-
entvaluesof � I . More precisely, we show:í on left andright: two differentpartsof the samere-

storedimage;í from up to down: the resultwhen � I � ý , � I �k+h= ,� I ��� = and � I �Ç+-=&= = .
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Figure 4. Restoration of an image degraded
by (13) when minimizing (8) for � . �f= , � I ��+h=
and for (from up to down)

Æ �Ç= , Æ ��� , Æ ��û
and

Æ ��+-ý .
We seeherethat � I hasa role similar to the one � is

playingin Rudin-Osher-Fatemimethod.Thelargeris � I the
morewecanseenoise.However, thedifferenceis thathere
thenoisedoesnotcompletelyblowsupsincewaveletpacket
coefficientsof theblurredimagewhosemodulusaresmaller
than

Æ
havenotbeendeconvolved(they no longerappearin

(8), since � . �d= ). Indeed,for � I large and � . �d= , the
minimization of (8) yields a kind of hard thresholdingof
thewaveletpacketcoefficients.

On Figure 4, we representa part of the restoredim-
agefor the sameparameter� I �{+-= , but for, from up to
down,

Æ ��= , Æ ��� , Æ ��û and
Æ � +Eý . We clearly

seehere the fact that
Æ

permits to “segment” the image
andto chosewhat we want to deconvolve. For a

Æ
small,

we obtaina resultsimilar to the oneobtainedby themini-
mizationof Rudin-Osher-Fatemifunctional(exceptthefact
that the convolution is approximatedby an z� ). When

Æ
increases,we seemore the effect of the total variation in
regionswherethe spatial/frequenciallocalizationcontains
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Figure 5. Restoration of an image degraded
by (13) when minimizing (11) for

Æ � C and�È�¢+h= =&= . (On left and right are displa yed two
extracted par ts of the same image.)

only noise,while texturesandedgesarealmostnotaffected
by this change.Of course,when

Æ
is too large,The result

is similar to the onewe would have obtainedwith Rudin-
Osher-Fatemimethodfor �<�j� . ��= which is in practice
too small.

We canmakefor themethodintroducedin Section4 the
sameexperimentsas for the one introducedin Section3.
Moreover, we would have almostthe samecommentsand
resultswhenletting

Æ
change.However, we illustrate the

role of theparameter� in (11)on Figures6 and5.
Indeed,onFigure6, wedisplayseveralrestorationof the

imageblurredby theseconddegradationmodel(see(14)).
All theseimagesarecomputedfor thesameparameter

Æ �+ , but for differentvaluesof � . Moreprecisely, we displayí On left andright: two differentpartsof the samere-
storedimage.í From up to down: the restorationfor ���dC , ����� ,�]���&= and �È��+h=&= = .

We clearlyseethatfor �¡�Ç+-=&= = theresulthasthesame
characteristicsas the result of a restorationby a wavelet
packet methodsuchastheonedescribedin [15, 9]. (These
latter are basicallysomesoft thresholdingof the wavelet
packet coefficient.) It retrieves the texture and contains
ringingartifact.When � decreases,weseethatthetextureis
still preservedbut the ringing artifact vanishes.Of course,
for a valueof � too small (here �5� C ), both the texture
andthe ringing areremoved,sincethe total variationterm
contributestoo muchto the functional. However, thereis
an interval of valuesin which we preserve the texture and
removetheringing.

We can also understandherea differencebetweenthe
minimizationof (8) and(11) by comparingthe lowestrow
of imageson Figure3 andimagesof Figure5. Theselat-
ter imagesare extractedfrom a restorationof an image
blurred with (13) by minimizing (11) with

Æ � C and��� +-=&=&= . (This
Æ

is theoneof thebestsetof parameters
(with �'�¦+-= ).) Theresultis morenoisyfor theminimiza-
tion of (8). This correspondto the intuitive interpretation
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Figure 6. Restoration of an image degraded
by (14) when minimizing (11) for

Æ � + and
(from up to down) ����C , �¶��� , �¶���&= and���Ç+-=&= = . (On left and right are displa yed two
extracted par ts of the same image.)

of (8) and(11). Indeed,for � I large (in (8)), we compute
an “inversefilter” wherewe have information,while for a� large in the minimizationof (11) we have a resultclose
to a wavelet packet soft thresholding(which containsless
noise).

5.3. Comparison of the proposed methods with
Rudin-Osher-Fatemi and classical wavelet
packet methods

We displayon Figures7 and8 restorationsof an image
degradedwith (14). Onceagain,on Figure7 and8 (Figure
8 hasbeensharpened)are two differentextractedpartsof
imageswhichare:í Up-Left: theblurredimage.í Up-Right: thereference.í Middle-Left: restorationby meanof a waveletpacket

with
Æ ��+ .í Middle-Right: restoration by minimizing Rudin-

Osher-Fatemifunctionalwith �]��� .í Down-Left: restorationby minimizing(11)with �]���
and

Æ � + .

PSfragreplacements

Figure 7. Experiments on the restoration of an
image degraded by (14). Up-Left: the blurred
image. Up-Right: the reference . Middle-Left:
wavelet packet coefficient shrinka ge method.
Middle-Right: Rudin-Osher -Fatemi method.
Down-Left: minimization of (11). Down-Right:
minimization of (8).

PSfragreplacements

Figure 8. Experiments on the restoration of
an image degraded by (14). (The images have
been sharpened.) Up-Left: blurred image. Up-
Right: the reference . Middle-Left: wavelet
packet coefficient shrinka ge method. Middle-
Right: Rudin-Osher -Fatemi method. Down-
Left: minimization of (11). Down-Right: mini-
mization of (8).



í Down-Right: restorationby minimizing (8) with � . �= , � I �fú = and
Æ ��=$?oû .

Theonly methodwhichpermitsto restorethetextureand
avoid ringing is theonewhich consistsin minimizing (11).
Thefactthattheminimizationof (8) yieldsringing is prob-
ablydueto thefactthatthedatafidelity termof (8) tendsto
createmoreringing thantheoneof (11). Indeedfor a value
of � I large,theminimumof (8) is to a hardthresholdingof
the wavelet packet coefficientswhat the minimum of (11)
is to a soft thresholdingin wavelet packet coefficients. It
thereforecontainsmoreringingartifacts.However, it could
be interestingto investigatea little morethis aspectsince,
theoretically, this ringingshouldnotbepresent(evenif it is
harderto removeit thanin thecaseof (11)).

For the same experimentswith the image degraded
by (13), the proposed methods yield better results
than the classical ones (the images are available at
http://www.math.ucla.edu/� malgouy). Indeed, they both
arefree of ringing andproperlyrestorethe texture, simul-
taneously. Themaindifferencebetweentheresultsof these
two methodsis that (8) tendsto yield sharperresult but
presentsomestaircasing(evenif it is small).

Note also that for both restorationwith (8) and (11),
we take a value for � (or � I ) larger than for the Rudin-
Osher-Fatemirestorationanda valueof

Æ
smallerthanfor

the wavelet packet restoration.We alsotake a valuefor
Æ

larger in the caseof (8) than in the caseof (11), sincein
(8) theonly denoisingin thedatafidelity termconcernsthe
small coefficient which are not taken into accountif they
aresmallerthan

Æ
.
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