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Abstract

We show in this paper that the average over translations of an operator diagonal in a wavelet packet basis
is a convolution. We also show that an operator diagonal in a wavelet packet basis can be decomposed into
several operators of the same kind, each of them being better conditioned. We investigate the possibility
of using such a convolution to approximate a given convolution (in practice an image blur). Then we use
these approximations to deblur images. First, we show that this framework permits to redefine existing
deblurring methods. Then, we show that it permits to define a new variational method which combines the
wavelet packet and the total variation approaches. We argue and show on experiments that this permits
to avoid the drawbacks of both approaches which are respectively the ringing and the staircasing.

1 Introduction

This paper is mainly concerned with image deblurring and with the use of wavelet-packet bases for this
purpose. More precisely, we will show that the average over translations of an operator which is diagonal
in a wavelet packet basis is a convolution. We will investigate several applications of this property to the
issue of image deblurring.

The deblurring problem under our scope is to restore a convolved and noisy image wu, given the data

ug =Sy *xu+n, (1)

where s; is a low-pass filter and n is a noise. Expressing this in the Fourier Domain (we recall that the
Fourier basis diagonalizes the convolution operator), we obtain

U =Sid+n, 2)

where we note with a hat the Fourier transform of a function. We clearly see here that, since at some
points §; can can be very small or even take the value zero, this problem is ill-posed. Moreover, due to (2),
we can regularize ug by independently modifying each of its Fourier coefficient in such a way that after
the deconvolution the noise does not blow-up. This is one of the reason why linear filters (such as the
Wiener filter, see [1]) have been so popular. On the other hand, for the purpose of denoising, wavelet style
bases are now very popular because of there ability to yield a “sparse representation” of the information
contained in an image. In order to adapt wavelet style methods to image deblurring, we need to find a
way to express (1) on the coordinates of the image in a wavelet style basis in a way similar to (2). This
is why, due to their good frequencial localization, wavelet packet bases appear to be a natural framework
for image deblurring. Remark however that when the convolution is a high pass filter (such as for the
inversion of the Radon transform) we would use a wavelet basis. In this case our approach is an alternative
to the wavelet/vaguelet decomposition (see [11]).

As far as we know, the possibility to use wavelet packet bases for image deblurring has first been noticed
by B. Rougé. It has then been studied in several articles (see [13, 15, 16, 23]). The methods proposed in
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these articles are based on a shrinkage of the wavelet packet coefficients similar to the wavelet shrinkage
approach of Donoho and Johnstone (see [12]) for the purpose of denoising. A part of this paper gives a
new interpretation of the “wavelet packet based deblurring” and permits a better understanding of some
of the parameters of these methods.

There is an abundant literature on image deblurring. The reader is referred to [1] for most of the linear
methods and to [10, 14] for overviews on the subject. Among these and despite numerous links binding
them (see [6]), we will distinguish two kinds :

e The one based on the decomposition in an appropriate basis. The most famous in this category are
probably the Wiener filter (see [1]), the wavelet shrinkage (see [12]) and its adaptation to deblurring
(see [15, 23)).

e The variational ones : where we can mention some based on the entropy (see [10] and references
there) and more recently the total variation [24].

The paper is organized as follows. (For simplicity, all our results are stated in the case of 1D signals
but they can be generalized to higher dimensions.)

We will give in Section 2 the statement of the main result of the paper which is that the averaging over
translations of an operator diagonal in a wavelet packet basis is a convolution. More precisely, if we note
D an operator which is diagonal in a wavelet packet basis of depth J, we define the operator D by
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D(u) =27 Z T oD or(u), (3)

where u € [?(Z) and 7} represents the translation operator of k € Z. We show that this operator is a
convolution and give the explicit form of its kernel. Note that this proposition is also a new argument in
favor of the cycle spinning introduced in [8]. We also show that an operator which is diagonal in a wavelet
packet basis can be written as the composition of several operators which are diagonal in other wavelet
packet bases. We show that this property permits to justify the multi-level thresholding proposed by B.
Rougé in [13].

In Section 3, we expose two models for image deblurring which are based on the results of Section 2.
The first one is equivalent to the usual wavelet-packet shrinkage. In the second one, we approximate (1)
using an operator of the form (3) to improve the conditioning of the data fidelity term in the method of
Rudin-Osher-Fatemi (ROF). If we present this modification under the point of view of ROF functional,
this permits to avoid staircasing while if we present it under the wavelet packet shrinkage point of view,
this permits to avoid ringing artifacts.

We display in Section 4 several experiments which show to evidence that the approximation of a
convolution by another convolution defined by mean of (3) is often a good approximation and that its
analysis permits a better understanding of the existing wavelet packet shrinkage algorithms. We also show
the importance of the average over translations and the advantage of the multi-level thresholding. We
finish with some comparison between two wavelet packet shrinkage, the ROF model and our modification
of this latter. We also describe the role of the parameters in the modified ROF method.

2 Approximation of the convolution in a wavelet packet basis

2.1 Wavelet packet bases

Let us now define the notations that we will use in order to describe wavelet packet bases. Once again,
for simplicity, we only describe wavelet packet bases in the case of function of R, higher dimensional cases
can be deduced from this one by taking tensor products!. For more details the reader is referred to [9] or
to Section 8 of [18].

1Remark that we could imagine smarter ways to generalize our result to higher dimensions. One can for instance take
ideas from ridgelets (see [2]) or complex wavelet packet transform (see [17]).




In the following, we will denote by (h, g) a pair of conjugate mirror filters related with a multi-resolution
analysis (for instance g, = (—1)'~"hi_,) and by ¢ the associated scaling function. Letting ¥ = ¢, we
can define recursively, for j € N and p € {0, ...,29 — 1}

Uit (@) Z hatf (@ — 27n) (4)
and
G @) = ) gntl(z —27n). (5)

Therefore, if we note @bg’ (z) = ¢f (x—27n) and W¥ the vectorial subspace of L*(R) generated by {¢%,,, n €

Z}, we know that {¢7 , n € Z} is an orthonormal basis of W%. Moreover, we have

2p+1
Wj-pk—il_ © WJ+1 - Wp

We also know that for any admissible tree (see Section 8 of [18]) (i, ji)1<i<r, {¥] ,}nez,1<i<r, is an
orthonormal basis of W{. Since in the following we will mostly use wavelet packet bases associated with
a particular tree and in order to simplify notations, we will denote the leaves of a tree by #; = (p;, j;) and
index the elements of a wavelet packet basis defined by a tree (#;)1<;<z using the notation

Ptin = Jun’

forl e {1,...,L} and n € Z.
In the following, we will identify any sequence u = (un)nez € I?(Z) with @ = (3, .z un¥g,) € WQ.
Therefore, noting v}, = (@, ), we can deduce from (4) and (5) that

) _
uhy = Z P W5 oy = hox uf (2n) (6)
mEZ
where, for any n € Z, h,, = h_,, and
2p+1 _
ujil,n = Z Im u?,Zn—i—m =g* “?(2") (7)
mEZ

where, for any n € Z, g, = g—n.
Therefore, for any admissible tree (p;, ji)1<i<r, we can recursively define a kernel H ; ' such that

D1 — y 4 0o
uy = Hp xug(2'n).

2p+1
i and uihT using

P _ 2p 2p+1
Ujn = E : hn—2m Ujt1,m T E In—2m Uji11,m -

Similarly, we can rebuild v, from u’

mMEZ MEL
In other words, noting
. uz ,if n is even,
Uy = 2 . .
0 , if n is odd,

for any u € I?(Z), we have



2.2 The approximation of a convolution

The first idea is that, due to their frequencial localization, it is possible to approximate the convolution in a
wavelet packet basis. Therefore, for a suitable basis {1, »}necz,1<i<z and suitable eigenvalues (A, )1<i<r,
we can define the linear operator D by

(ﬁ(u)a wtz,n> = )\tl (U, wtz,ﬂ)

for u € I2(Z),1 € {1,...,L} and n € Z. Note that the eigenvalues )\;, do not depend on n since we consider
a uniform blur. However, it could be interesting to study the possibility of using the wavelet packet
framework for deblurring cases where the blurring kernel slowly varies with the location in the image.

One of the very important property we loose, when approximating the convolution by such a D is the
translation invariance. In practice this yields to strong and unacceptable artifacts on textures and in the
vicinity of edges (see Section 4).

The first simple way to solve this drawback is to use the Shannon wavelet (see [18], pp. 245). In
this case, we have h =42 Iz zjand g = V2 1[%’%" | and therefore the wavelet packet analysis itself is
translation invariant. The problem with the Shannon wavelet is that it has a slow decay at infinity and
therefore, in a noisy case, poorly decorrelates information and noise.

Another simple way to turn around this drawback is to average D over some translations of the image.
The following proposition proves that the so defined operator is a convolution and gives the form of its
convolution kernel?.

Proposition 1 Let (t;)i1<i<z = (11, J1)1<i<r be an admissible tree and let (14, n)nez,1<i<1 be o wavelet
packet basis. Let D be a linear operator continuous from 12(Z) into 12(Z), diagonal in the basis (Yty,n)nez 1<i<rL-
Assume moreover that for n € Z and 1l € {1,---,L} the eigenvalue associated with the eigenvector ¢y, n
does mot depend on n (we note it (A, )nez,1<i<r). Then, the operator D defined, for any u € I>(Z), by
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D(u) =27 Z T oD or(u), 9)

k=0

where J = max<i<r, ji and T represents the translation operator of k € Z, is a continuous convolution
from 12(Z) into 1?(Z). Moreover, the Fourier transform of the convolution kernel § defining D is given,

for € € [-m, 7], by

Hy,(
ZA,J téﬁ : (10)

The proof of this proposition is given in appendix.

Proposition 1 ensure that we can use a wavelet packet basis as an intermediate step for the Fourier
basis. Of course, the advantage of this intermediate step is to have the possibility to decorrelate the noise
and the information, which is of a great interest for the issue of image deblurring.

The issue which has now to be considered is to find a way to design D in order to achieve a good
approximation of the convolution with a kernel s.

The formula (10) can of course be used to solve this problem. We can for instance imagine an opti-
mization process which would minimize the error between § and s. Note that we can also use (10) in such
a way that the approximated convolution avoids specific artifacts. For instance, when approximating a
kernel which inverts the convolution with a kernel s; and in order to avoid Gibbs phenomena, we could
determine D in such a way that 3 % s; is positive?.

Note that until now people were designing D in an empirical way. The wavelet was chosen in such a
way that it has a good frequencial localization (in practice a cubic spline, see [18], pp. 236). The tree
was either a fully decomposed tree of a sufficiently large depth (see [13]) or the mirror tree (see [15]).

2Remark that the average over translations of any linear operator is a linear and translation invariant operator. Therefore
it is a convolution. The main interests of Proposition 1 is due to the nature of wavelet packet bases (sparse representation of
the image and frequencial localization). Moreover, we only have to average over 27 translations, with J = maxi<i<L Ji-
3Like this the convolution of a Heavyside function with s; and then s does not overshoot.



There have been several attempts to determine for a given basis (¢, n)1<i<rL,nez some good eigenvalues*
(At;)1<i<r- It is for instance easy to check that

Ay, = <3 * "ptz,n:wtz,n) ) (11)

permits to minimize ||S — D||; (where S(u) = s * u is the operator we want to approximate) and can
therefore be considered as a good candidate. Note that these A;, do indeed not depend on n since the
convolution with s is translation invariant.

Figure 4 and 5 represent the Fourier transforms of two convolution kernels and the corresponding
convolution kernel after the approximation by some diagonal operators in different wavelet packet bases.
We see here that, in the case of the Shannon wavelet (the dotted line), the initial kernel is approximated
by a kernel which is constant on dyadic intervals of the Fourier domain (this is also visible on (10) and
gives the intuitive meaning of (Ay,)1<i<r). Therefore, as long as the Fourier transform of the initial kernel
does not vary too much inside these dyadic intervals, the approximation of the convolution in a wavelet
packet basis will yield good results. It seems therefore a good idea to choose the tree which defines the
basis {41, n}nez,ie{0,....L} according to this criterion.

Let us now investigate the issue of the spatial localization of the wavelet packet basis (versus its
frequencial one). Indeed, in the case of the deconvolution (s is the pseudo-inverse of a low pass filter
s1), we usually want the elements of the wavelet packet basis to have: a good frequencial localization,
in order to define a good approximation of the deconvolution; and a good spatial localization, in order
to properly separate information and noise. As far as we know there have been two attempts to cope
with these incompatible properties. The first one consists in finding the “best basis”, that is the basis
which separates the most the information from the deconvolved noise (see [15, 16]). The second one was
introduced in [13] and consists in shrinking the image at different scales.

The following proposition, despite its simplicity, permits to justify and generalize this second approach.
Let us first define a partial order among admissible trees.

Definition 1 Let (t;)i<i<z = (P, J1)1<i<r and (t))1<i<r = (9], J])1<i<r’ be two admissible trees, we say
that

(t)1<i<e > (t)1<i<rr

if and only if there exists a partition of {1, ..., L} into L' subsets (Iy)1<y<r+ such that for anyl' € {1,...,L'},
W;’{l” = @ZEIV W‘I;ll .

This relation simply means that the elements of {¢¢, »}necz,1<i<r correspond to a higher level of de-
composition than the ones of {wt;,n}nezylslg r- Note that if the admissible trees are indexed with regard
to their position in the binary tree (for instance from the left to the right) then the I are of the form
{tllfl, ety — 1} withl =ty < .. <ty <tpy1 <..<tpr=L+1.

Using this definition, we can state,

Proposition 2 Let {ty, n}necz,1<i<1 be a wavelet packet basis and D be an operator linear, continuous
and diagonal in the basis {1y, n tnez,1<1<L, which goes from I>(Z) into itself. If we note Ay, the eigenvalue
of D associated with the eigenvector Y4, n, then for any admissible tree (p), j;)1<i<r’, such that (t;)1<i<r >
(ty)1<v<wr, and any (py, )r1<v<rr € (R {O)™, we have

-5:-510-527

where l~)1 and 52 are linear and continuous from 12(Z) into itself and are such that: for any n € Z and
anyl' € {1,...,L"},

ﬁ1 (d’t;, n) = Mt;, wt',,n ,

1

4One can refer to [13] for examples.
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Figure 1: Heuristically, Proposition 2 permits to deconvolve a few as possible when the basis has a good

localization in Fourier domain. Example with convolution : The convolution with the kernel on top is
equal to the composition of the convolution with the two other kernels.

and for anyn € Z, any l' € {1,...,L'} and anyl € I} (we take here the notations of Definition 1),

The proof of this result is given in appendix.
Remark that in Proposition 1 the A, ,, do not depend on n and that Proposition 2 could be consequently

simplified. N
This proposition proves that, the operator D, diagonal in a wavelet packet basis can be written as a
composition of similar operators D = DyoDyoD3zo---. In practice, it can be used to obtain some D; which

are better conditioned than D. Moreover, in a noisy case, we can apply the 5, and smooth the image
successively. The advantage of this approach is that the operator D;, for small indexes i, separate the
noise from the information very efficiently since they correspond to low decomposition levels and therefore
have a good spatial localization.

We present on Figure 1 a simple case of such a decomposition (with Shannon wavelet). In practice,
we choose to “deconvolve” as few as possible when the frequencial localization of the wavelet packet basis
is good (in which case the wavelet packet basis is similar to a Fourier basis and poorly decorrelates noise
and information). This can in practice be achieved by decomposing D according to the following process.

Let us consider the case of the approximation of a deconvolution using the averaging over translations
of an operator D diagonal in a basis {¢§.’0’n}n6270§p<2m. For simplicity, we assume here that all the
A(p.jo) are positive. We can let uf = X, o) for p € {0,...,27° — 1} and then recursively define pf , =
min(|1 — p2Pt, |1 — p§p|) for p € {0,...,2971 — 1} and for j = jo,jo — 1,---,1 and let uJ = 1 (the

J
u;’s have to be understood as the remaining convolution at the level j). Therefore, we can decompose



2p+1

D=Djo---o0 l~)j0 where the l~)j are diagonal in the basis {¢§?n}n€Z 0<p<2i, With the eigenvalues —%
, D i—1

2p

and “?— - respectively associated with the eigenvectors ¢?2+1 and zbi’;, for p € {0,...,2971 — 1}. This

decomposition permits to deconvolve as few as possible at coarse scales, where the spatial localization is
weak.

3 Application to the issue of image deconvolution

3.1 The Fixed Chosen Noise Restoration

As we said in the introduction, the approximation of the convolution, by mean of the wavelet packet
decomposition of the image, permits to use the ability of these decompositions to yield a sparse represen-
tation of the image. For instance, in the case of the deconvolution, if we define a “pseudo-inverse” (by any
appropriate mean®) r of the convolution kernel s;.

Once we have chosen an appropriate wavelet packet basis {1, n}nez,1<i<z and chosen a sequence
A = (Ay)1<i<r of real numbers which permit to approximate the convolution with r efficiently (or so
that it defines a convolution which is an acceptable “pseudo-inverse”). According to Proposition 1 and
Proposition 2, the convolution r * u is approximated by
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D(u)ZZ_J Z T_koﬁlo---oﬁJoTk,
k=0

where
(51 ©---0 5.](”)7"/’&,”) = )\tl <u7¢tl7ﬂ) 3

for Il € {1,---,L} and n € Z. In practice, we defined here the 51 according to the procedure which was
described at the end of the preceding section.

Remark now that when u contains noise we want to regularize D(u). In order to do so, we improve
the conditioning of all the operators® D;. To avoid notations, we only consider in the next formula the
improvement of D. So we replace it by

~ Au (U Y n) 5 1 [(U, )| 2 000 Ay =0
Ay, 7 L) = 1 15 . B l
< A, (U) ¢t1, ) { <U7wtl,n) , 1f|<u7¢thn)| < o and )\tl 7£ 0

foroc>0,n€Zandle{l,..,L}.

Heuristically, we first segment information and noise according to the size of |{u, 4y, )| and then
convolve (partially since D; is involved instead of D) the information and leave the noise unchanged.
Due to this heuristic we will call “adaptative convolution” a regularized version of D(u) of the kind
described above. Note that according to the usual framework of wavelet denoising, we can for instance
take o0 = opv/21log N where o3 is the standard deviation of the noise. However, in practice we will leave it
as a parameter. _

Of course, it is in general preferable to have a continuous operator, instead of Ay ,. We can moreover
introduce a parameter, 6 € [0,1] by which we multiply the small coefficients (which are mostly noise).
Therefore, noting the soft thresholding function

t+o ,ift<-—0o
fs@®)=<¢ 0 ,if —o<t<go
t—o ,ifo<t,
5By pseudo-inverse, we mean any kernel r such that 7 * s1 is close to the identity (restricted to 12(Z) \ Ker(s1)) which
would by the way satisfy suitable properties (for instance r * s1 > 0 or/and spatial localization), depending on the user’s

expectations.
8This is similar to the multi-level wavelet packet shrinkage which has been described in [13].




we will prefer to X)Ha, an operator of the kind

[0 ,if Ay, =0,
Aroa(u) Yun) = { Ot — ) o ({1, Y11,0)) + 6uty iy ), i Ay, 70, (12)
for u € L*(R), 0 > 0,0 € [0,1], n € Z and | € {1,...,L} (for simplicity of notations, we have only
considered the case A;, > 0). In practice § does not play an important role but allowing d # 0 (in the
usual thresholding § = 0) permits to define an invertible operator. This will be useful in the next section.
We remark that the average over the translations of the usual wavelet thresholding methods (called cycle
spinning, see [8]) falls under the scope of “adaptative convolutions”. This framework therefore provides a
new tool to understand these algorithms.
This “adaptative convolution” is probably the most natural and immediate application of the results
stated in the preceding section. In this case, our work is only a new framework for these methods. However,
we will show in the experiments that this permits to better understand them.

3.2 A modification of Rudin-Osher-Fatemi functional

We are now going to introduce another application of the approximation of the convolution to the problem
of deconvolution. This consists in introducing a wavelet packet term in the method introduced by Rudin,
Osher and Fatemi (ROF) in [24]. In order to have some well defined variational problems, we are forced
to boil down to the finite dimensional case where the signals are assumed to be of size N € N. Let us first
make some recalls on ROF method.

ROF method consists in minimizing, for N € N and a data g € RV, the functional

TV (u) + plls1 *u = gll3, (13)

among u € RV where u can be interpreted as a Lagrange multiplier (see [5]) and the total variation is
defined by

N-1
TV (u) = Z [Ung1 — wp| -
n=0

The main advantage of this method is that, since the total variation does not expect too much smooth-
ness at edges, it permits to avoid ringing artifacts at their vicinity.

On the other hand, its main drawback is that it tends to create staircasing artifacts and therefore to
remove some textures. This has been studied by several authors among which we can cite [21, 22].

If we look in detail at the arguments given in [22], we see that one of the key properties which causes
this staircasing is the fact that we cannot have a “reasonable local solution”” to the equation

sik(s1xu—g) =0, (14)

where (57), = (s1)-n. This is, in general, the case since g contains noise and s; is regular (for instance a
low-pass filter).

These considerations lead us to modify the functional in order to have a data fidelity term whose
derivative (the left term in (14)) can be null. With that in mind, we improve the conditioning of the

"W. Ring wrote his paper in the continuous framework of an open set 2 C R (instead of {1,..., N}). In this framework,
the key argument he gave to explain the staircasing is that if there exists a solution which is differentiable and monotone on
an open subset of 2, then we must have on this subset,

'\’
2uST * (s1xu—g) = — (—> =0
|
Moreover, this is in practice impossible since s *u is smooth and g contains noise. Therefore, he concludes that the absolutely
continuous part with regard to the Lebesgue measure of the derivative of the result of ROF method is always zero.
Note that the fact that the staircasing is related to the existence of noise has also been noticed in [4].
The heuristic translation of the hypothesis that $1 % (s1 *u —g) = 0 is impossible on any open set in our discrete framework
could be that we do not have any “reasonable local solution”.



convolution operator in ||s; x u — g||3 using an “adaptative convolution” similar to the one defined by (12).
(The difference with (12) is that in order to have a convex functional, we segment the information and the
noise with regard to g while applying the convolution to u.) More precisely, given a wavelet packet basis®
(¥t,,n)1<1< 1, 0<n<a- N and some eigenvalues A = (g, )1<1<z such that D (see Proposition 1) approximates
the convolution with s;.

Given a data g € RY | we can define an adaptative convolution by averaging, over translations of u, the
operator Sy a6

0 Jif Ay, =0,
<§ (u) w > — Atz((uawtlm) - 0') + oo y if (g,lptl’n) Z o and )‘tl ;é 0’
oo T 6<u5¢tl,n> y if o > <ga'¢thn) Z —o and )\tl 7£ 07

Atz((“a¢tz,n) + U) —do > if —o> <ga'€btz,n> and )\tz 7£ 0,

for o > 0 and § > 0 (once again, for simplicity of notations, we have only considered the case Ay, > 0).
We call it
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7.] ~
Sgr,e6 =2 E Tk ©8gx,0,6 © Tk,
k=0

where J = max; j;.
Therefore, we propose to minimize, among u € RY, a functional of the kind

TV (u) + #llSg.x00(w) — g3 - (15)

Note that Sy x +,s is affine and that therefore (15) is convex and admits a minimum. As usual, we cannot
guaranty the uniqueness of the result since the functional is not necessarily strictly convex. However, we
could state about this issue results similar to the one given in [5, 13].

One of the advantages of this functional is that, this time, there exists a reasonably smooth solution
Uso to the equation

S x0,5(Sga06(w) —g) =0, (16)

) . —
where S| 5 is the derivative of Sgx,0,5-

Moreover, this solution is close to the solution of the wavelet shrinkage method described in the pre-
ceding section. In fact, if in (16) we take Sy x,0,s instead of Sy x »6, and if § # 0 and A, # 0, for any
le{l,.. L},

L )14 E2
Xy, 1SISEE

(S

is a solution to (16). We will see in the experiments in Section 4.4 that the image restored by means of
(15) are indeed free of staircasing.

Therefore, the role of the parameter u, o and § is clear: ¢ and ¢ are used to control the noise and p
is used to control the ringing artifacts. The role of the parameters is highlighted in Section 4. Note that
the fact that p controls the ringing artifacts is a point which is satisfactory. Indeed, in practice, in ROF
method we fix p in order to have a reasonably low amount of noise in homogeneous regions (where the
noise is the most visible). Though, we know that the main advantage in the use of the total variation is its
ability to remove Gibbs effects (see [13]). That is one of the oddness which is solved by our new approach.

A drawback of this model is of course that it involves two parameters (¢ is easy to tune) which makes it
harder to tune. However, in practice, we tune the two parameters separately (first o then p) which makes.
Moreover, this drawback is not very important when the degradation is known and fixed (for instance in
the case of satellite images). Indeed, in this case, we only have to tune the parameters once.

Remark: We have chosen here to present (15) under a variational point of view. We are conscious
of the fact that (15) can appear redundant to readers who are usually interested in wavelet shrinkage.

8This time we have to take a wavelet packet basis of the interval.



Indeed, in the case of denoising, one can consider the characterization of Besov spaces by semi-norms on
wavelet coefficients to show that wavelet shrinkage algorithms are equivalent to minimization problems
similar to (13)°. However, the drawback of these methods in the case of deblurring is that they cannot
recover lost frequencies (see [13]) (we can however mention the attempt to oversample images by means
of wavelet transforms made in [3]). Therefore, it seems interesting to reintroduce the total variation term
for spatial/frequencial location where the regularity needed by the Besov semi-norm is too important. We
will see in the section devoted to the experiments (Section 4.4) that (15) permits to avoid ringing artifacts
where wavelet packet shrinkage method does not.

In the experiments presented in Section 4.4 we have computed a solution to (15) by mean of a gradient
algorithm with an optimal step. This means that at each iteration we compute the gradient of the functional
and then compute the optimal move in that direction in order to make (15) decrease. We could probably
have a better algorithm by adapting methods such as the ones introduced in [7, 19]

Compared to the usual ROF algorithm, the computational cost increases due to the translations in the
operator Sy i,,,5. Fortunately, in practice, we only need to average over four translations of v to obtain a
sufficiently nice approximation of the convolution.

4 Numerical results

This section is split into four parts. They are organized as follow. The first part describes the data and
notations which permit to understand the experiments of the other sections. In the second part, we display
experiments which show that we can approximate a convolution operator efficiently in a wavelet packet
basis. In the third part, we show the importance of Proposition 2. In the last section, we display some
results on the role of the parameters in the modification of ROF exposed in Section 3.2. We also compare
the result provided by this method with two wavelet packet algorithms and ROF method.

4.1 Description of the data and notations

The experiments of Section 4.2 and 4.4 deal with two degradation models. For simplicity we neglect the
aliasing in the creation of the images and assume that the Fourier transform of the convolution kernel is
supported on [—m, 7] X [—m,7].

e The first convolution kernel is a characteristic function a square of size 2 pixels. Therefore, its Fourier

transform is
S(Em) = (siz@)) (sh;(n)> 7 (17)

for £ and n € [—m,]. For the experiments of Section 4.3 we also add a Gaussian noise of standard
deviation 5.

e The Fourier transform of the second convolution kernel is given by

e = () (), (19)

for £ and n € [-%, 5] and 0O otherwise. For the experiments on restoration of this degradation
model, we also add a Gaussian noise of standard deviation 2. Note that this degradation model is
particularly not adapted to wavelet packet methods since it cancels a wide band of frequencies (see
Figure 2). It fact, we know that, because of their ability to reconstruct some lost frequencies (see
[13]), variational methods are better suited to this kind of degradation model.

9For instance, it is shown in [6] that, in the case of the denoising, the usual wavelet coefficient soft-thresholding is equivalent
to the minimization of

2
llullp1 (1) + nlle —gliz

where B} (L') is a Besov space (see [20]) close to BV.
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Figure 2: Profile of the Fourier transform of s» (see (18)). The hatching represents the frequencies which
are, in practice, lost during the degradation.

Figure 3: The reference image.

We also define some simple “pseudo-inverse” operator to the convolutions presented above by truncating
the inverse of the Fourier transform at the value 30. More precisely, we take

52'(2—,71) 71f|§\z(§an)| > %a

)30 if0<&(En) < &, 1
0 ,lf é\z(é‘an) :0’

for i = 1,2, where s; is defined by either (17) or (18).

All the experiments using images are done using a part of the image called “Barbara” which is displayed
on Figure 3. We chose this particular part because it both contains some textures and a contrasted edge.

Finally, Table 1 summarizes the definition of the wavelet packet bases we will use in the following. We
describe these wavelet packet bases in terms of a tree and a wavelet. We use two trees: the mirror-like
tree of a given depth, which is exactly the mirror tree described in [15] or its adaptation to sa (see (18));
the full tree of a given depth (or pseudo local cosine transform). Concerning wavelets, we use the Shannon
wavelet (see [18], pp. 245) and the cubic spline (see[18], pp. 236).

4.2 Approximation of the convolution

We display in this section two kinds of experiments whose aim is to illustrate Proposition 1. The first one
shows that we can approximate a convolution efficiently when using (9) and the second shows to evidence
the practical importance of the averaging over translations in Proposition 1.

11



Name Tree Wavelet
Basis 1  mirror-like tree of depth 4 cubic spline
Basis 2 full tree of depth 4 cubic spline
Basis 3 full tree of depth 4 Shannon

Table 1: Definition of the wavelet packet bases.

Figure 4: Profile of the Fourier transforms of the convolution kernels derived from different wavelet packets
based approximations (see description on page 12). The actual convolution kernel r; is represented by the
hard line.

In order to highlight the difference between the different kinds of approximation of the kernel, we will
approximate the two “high pass” filters 1 and rs (see (19)).

As we said in Proposition 1, the average over several translations of an operator diagonal in a wavelet
packet basis is a convolution. We compute and display on Figure 4 the Fourier transform of r; (the hard
line) and of several of its approximations. In order to create these signals, we averaged the corresponding
diagonal operator over translations of a Dirac delta function. The displayed signals are the profile (on the
line 5 = 0) of the Fourier transforms of the obtained kernels.

The approximations are done in different bases and for each basis we compute the eigenvalues'®
(’\tt)lﬁlSL with (11).

Here is a commented description of what is displayed on Figure 4:

e The hard line represents 77 .

e The dotted line represents the Fourier transform of the kernel when we approximate the convolution
in Basis 3 (see Table 1). In this case, we approximate 7; by a piecewise constant function (the pieces
corresponding to dyadic intervals). Note that this corresponds to the announced result (see (10)).

e The dashed line represents the Fourier transform of the kernel when we approximate 71 using Basis
2. This kernel is very close to the previous one but is smoother (which is normal with regard to (10)).
Note that both this approximation and the previous one are very close to the initial convolution.

e The dotted and strong line represents the Fourier transform of the kernel when we approximate
71 in Basis 1. This approximation is, of course, less efficient since this time we do not decompose
all the frequencial dyadic intervals as much as possible. However, it decorrelates the noise and the
information more efficiently than the two previous bases.

We display on Figure 5 exactly the same experiments as in the case of the convolution with r2. The
only difference is that this time we replace the mirror tree by a tree adapted to the special case ro (we call

10Note that we have not used (10) to compute the (A;)1<;<z and that we could clearly improve our approximations by
doing so.
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Figure 5: Profile of the Fourier transforms of the convolution kernels derived from different wavelet packets
based approximations (see description on page 12). The actual convolution kernel is 75 and is represented
by the hard line.

it mirror-like tree). This tree is fully decomposed for wavelet packet whose frequencial localization is in
the vicinity of § and —7.

The approximation is less accurate in this case than in the previous one because of the large variation
of 75. This is especially true for the one made in Basis 1 which poorly approximates the real kernel.
Moreover, we partly loose the advantage of the mirror-like tree approach since we must have min; j; = 3
in order to decompose more the intermediate frequencies.

It is visually almost impossible to see the difference between a convolved image and its approximation
using a wavelet packet basis. However, when it is visible, since it is a modification of a convolution kernel
it yields to blurring and/or ringing artifacts.

The next experiment illustrates the importance of the translations. First note that, in our experiments,
three translations (one pixel on the right, down and diagonal) have always been sufficient to obtain a
reasonably good results. However, if we do not average over any translations the result contains aliasing-
like artifacts. With regard to (21) it is clear that these artifacts are due to the aliasing occuring during
the wavelet packet decomposition.

Taking notations of Proposition 1, we display on Figure 6 an extracted part of the result of D (on left)
and D (on right). The hatching along the edge and the change in the orientation of the texture are two
typical aspects of the aliasing.

4.3 Need of spatial localization

We illustrate now the interest of Proposition 2. With that in mind, we have restored using (12) for the
same parameters ¢ = 10 and § = 0.01 the image obtained with the degradation model described by (17).
We display on Figure 7 an extracted parts of three images (remark that all the images are sharpened for
the need of the display).

e Up : Restoration in Basis 2 without the multi-level approach. There is still a lot of noise.

e Down-Left : Restoration in Basis 1 without the multi-level approach. There is less noise than in the
previous image but some wavelet packet coefficients are still noisy and we can in practice see the
shape of the corresponding basis elements.

e Down-Right : Restoration in Basis 2 with the multi-level approach. This time, the information and
the noise have sufficiently been decorrelated and the result does not contain noise.
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Figure 6: Illustration of the need of the averaging over translations. Extracted and sharpened part of:
Left: Approximation of the convolution with r; in Basis 1 with the averaging over several translations.
Right: Same calculus, without any translation.

Figure 7: Tllustration of the importance of Proposition 2. Deconvolution/Shrinkage of the image degraded
with (17) for the same set of parameters in : Up : Basis 2, without multi-level shrinkage. Down-Left :
Basis 1, without multi-level shrinkage. Down-Right : Basis 2, with multi-level shrinkage.
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Figure 8: Role of the parameter ¢ in the modified ROF method (the images are sharpened). Up: o = 0.001;
Down-Left : ¢ = 5; Down-Right : ¢ = 30.

4.4 Modifying the Rudin-Osher-Fatemi variational method

We first display two experiments which illustrate the role of the parameter ¢ and u of the method. For
this purpose, we have computed some restoration of the image degraded with (18) with several sets of
parameter.

On Figure 8, we display some sharpened (sharpening of “xv”) restorations with § = 1, u = 0.1 and
: Up : 0 = 0.001; Down-Left : ¢ = 5; Down-Right : ¢ = 30. We clearly see that for ¢ too small the
staircasing reappears while for o too large some information is no longer constrained by the data fidelity
term and is therefore removed by the total variation.

On Figure 9, we display some sharpened (sharpening of “xv”) restorations with § =1, 0 =5 and : Up
: p = 0.0001; Down-Left : p = 0.1; Down-Right : p = 100. This time, we see that for u too large we
obtain a result very similar to the result of the wavelet packet shrinkage (which is normal, see comments
on page 9). When pu decreases, we remove the remaining noise (we chose 6 = 1) and more importantly
the ringing and some texture and for p too small the texture is completely removed. However, for some
intermediate p the texture is well preserved and the ringing has disappeared.

Finally, we present now a comparison of the modified ROF method with two wavelet packet methods
and ROF method.

First, note that all the images displayed on Figure 10 have been sharpened (sharpening of “xv”). Let
us describe these images in detail.

e Up-Left : A wavelet shrinkage method applied in Basis 1, without multi-level approach, with § = 1
and o = 10.

e Up-Right : A wavelet shrinkage method applied in Basis 2, with the multi-level approach, with 6 = 1
and o = 5.

e Down-Left : The usual ROF method with g = 0.1.
e Down-Right The modified ROF using Basis 1, with 6 =1, 0 =5 and p = 0.1.

It is clear that the two wavelet packet shrinkage permit to better preserve the texture while they suffer
from Gibbs phenomena in the vicinity of the contrasted edge. On the other hand, the two restorations
which use the total variation do not present this Gibbs phenomena. However, on the result of ROF
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Figure 9: Role of the parameter u in the modified ROF method (the images are sharpened). Up :
# = 0.0001; Down-Left : u = 0.1; Down-Right : u = 100.

Figure 10: Comparison of restoration methods (the images are sharpened). Up : two wavelet packet
shrinkage; Down-Left : ROF method; Down-Right : modification of ROF method.
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method we can see some isolated points and flat areas which are due to the staircasing. The texture has
also almost completely been removed. On the modification of ROF method, due to the reconditioning
of the convolution operator, we no longer see the staircasing and this yields a better preservation of the
textures.

Acknowledgments

I would like to thank B. Rougé for all the fruitful discussions we had on this subject and for all his
encouragements. I would also like to thank J.M. Morel and S. Durand for the respective parts they have
in his work.
Appendix A

Proof of Proposition 1
Proof. For simplicity, we will only prove the result in the case J = 1. The proof of the general result is
similar to this latter!!.

Similarly to Section 2.1, we will denote, for any v € I2(Z), j € N and p € {0,...,27 — 1},

P _ 0 D
Yjn = <Z Vm¥0,ms Yjn) -

mEZ

We note to = (0,1) and ¢; = (1,1) the two leaves of the tree we are considering.
Let (un)nez € 12(Z), for any n € Z, using (6) and (7) we know that

(D)3, = Migh * uf(2n)
and
(D(u)i ., = My G *ud(2n),

for n € Z (from now one we will abuse of the notation v instead of u)). Therefore, using (8), we have

(D)3, = [ % Mg (B w)(2))"]n + [9 % My (% 0)(2))V]n (20)

for n € Z.
Of course, we have

(hxu)(2))Y = (h*u) D 6nm

keZ

where § denotes the Dirac delta function (a similar statement holds for ((g * u)(2.))Y).
Therefore, expressing (20) in Fourier domain, we have for £ € [—7, 7]

—

= ~

D@)(©) = Mo (&) [(h ) 3 6 sk)(€) + My 5(6) [@%0) 3 bnsil(©) -

kEZ kEZ

We can simplify this latter, by mean of the Poisson formula ([18], pp. 259), and we obtain

—

= ~

D)(©) = Ay h(e) MU + A€+ mi(€ +m)

2

=0

+ )‘tl g(é-

Tndeed, if J > 1, we can simply define (/\/(;,_J/))o<p<21 such that, for p € {0,...,27 — 1},

ﬁ(’lpg,n) = )‘(P,J) wg,n ’

in order to paraphrase the proof in the case J = 1. However, this yields more complicated notations.
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Which can be written

—

B)(E) = 3O + A (6] 0

+ 3 Dh(OR(E +7) + My 2O + W] (e + 7). (21)
Therefore, since @(f) = e*€ (&), we have, for £ € [—m, 7],
/\ 7 2 N 2
B)(©) = oo 2EOE 5, WO 5,
which achieves the proof. O

Appendix B
Proof of Proposition 2
Proof. This is a simple consequence of the fact that (#;)i1<i<z > (t})i<i<z’. Indeed, let n € Z and
1 €{1,...,L}, there exists I' € {1,..., L'} and (am)mez € I*(Z), such that

¢tz7n = Z Qm "u[’t;, ,m -
mEZ

Therefore,

~ ~ . )‘(tl,n) ~

Do DQ(wttﬂl) - o, Z A D1(¢t;, ,m)

M, mez
= ‘5(¢thn)

So, Dy o Dy and D are continuous and linear over I2(Z). They coincide on a basis of I2(Z). So they are
equal. O
References

[1] H.C. Andrews and B.R. Hunt. Digital signal processing. Technical Englewood Cliffs, NJ: Prentice-Hall,
1977.

[2] E.J. Candes. Ridgelets: Theory and Applications. PhD thesis, Department of Statistics, Stanford
University, 1998.

[3] W.K Carey, D. B. Chuang, and S. S. Hemami. Regularity-preserving image interpolation. In IEEE
international conference on image processing, 1997.

[4] A. Chambolle and P.L. Lions. Restauration de données par minimisation de la variation total et
variantes d’ordre supérieur. In Procedings of GRETSI, September 1995.

[5] A. Chambolle and P.L. Lions. Image recovery via total variation minimisation and related problems.
Numerische Mathematik, 76(2):167-188, 1997.

[6] A.Chambolle, R.A. De Vore, N. Lee, and B.J. Lucier. Nonlinear wavelet image processing: Variational
problems, compression and noise removal through wavelet shrinkage. Technical report, CEREMADE,
1998. short version in: IEEE Trans. Image Processing, Vol. 7, No. 3, pp. 319-335, 1998.

[7] T.F. Chan and P. Mulet. On the convergence of the lagged diffusivity fixed method in total variation
image restoration. STAM Journal of Numerical Analysis, 36(2):354-367, 1999.

18



[8] R.R. Coifman and D.L. Donoho. Translation-invariant de-noising. In A. Antoniadis and G. Oppen-
heim, editors, Wavelets and statistics, pages 125-150. Springer Verlag, NewYork, 1995.

[9] R.R. Coifman, Y. Meyer, and M.V. Wickerhauser. Wavelet analysis and signal processing. In Wauvelets
and their Applications, pages 153-178. Jones and Barlett. B. Ruskai et al. eds, 1992.

[10] G. Demoment. Image reconstruction and restoration: Overview of common estimation structures and
problems. IEEE Transactions on acoustics, speech and signal processing, pages 2024-2036, 1989.

[11] D. Donoho. Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Applied
and Computational Harmonic Analysis, 2:101-126, 1995.

[12] D. Donoho and I.M. Johnstone. Minimax estimation via wavelet shrinkage. Technical report, De-
partement of Stat., Stanford University, 1992.

[13] S. Durand, F. Malgouyres, and B. Rougé. Image de-blurring, spectrum interpolation and application
to satellite imaging. Control, Optimisation and Calculus of Variation, 5(445-475), 2000. A preliminary
version is available at http://www.math.ucla.edu/~malgouy.

[14] T. Kailath. A view of three decades of linear filtering theory. IEEE transaction on information theory,
IT20(2), March 1974.

[15] J. Kalifa. Restauration minimaz et déconvolution dans une base d’ondelettes miroirs. PhD thesis,
Ecole Polytechnique, 1999. Available at http://www.cmap.polytechnique.fr/~kalifa.

[16] J. Kalifa, S. Mallat, and B. Rougé. Image deconvolution in mirror wavelet bases. In IEEE, ICIP,
1998.

[17] N. Kingsbury. Image processing with complex wavelets. Phil. Trans. Roy. Soc. London A, 1999.
[18] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, Boston, 1998.

[19] A. Marquina and S. Osher. Explicit algorithms for a new time dependent model based on level set
motion for nonlinear deblurring and noise removal. STAM, Journal of Sientific Computing, 22(2):387—
405, 2000.

[20] Y. Meyer. Ondelettes et opérateurs. Hermann, 1990.

[21] M. Nikolova. Local strong homogeneity of a regularized estimator. SIAM, Journal of Applied Math-
ematics, 61(2):633-658, 2000.

[22] W. Ring. Structural properties of solutions of total variation regularization problems. Technical
report, University of Graz, Austria, 1999. Available at http://www kfunigraz.ac.at/imawww/ring/.

[23] B. Rougé. Fixed chosen noise restauration (fenr). In IEEE 95 Philadelphia, 1995.

[24] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica
D, 60:259-268, 1992.

19



