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a b s t r a c t

In this paper, we study a variant of the matching pursuit named matching pursuit

shrinkage. Similar to the matching pursuit it seeks for an approximation of a datum

living in a Hilbert space by a sparse linear expansion in a countable set of atoms. The

difference with the usual matching pursuit is that, once an atom has been selected, we

do not erase all the information along the direction of this atom. Doing so, we can

evolve slowly along that direction. The goal is to attenuate the negative impact of bad

atom selections.

We analyze the link between the shrinkage function used by the algorithm and the

fact that the result belongs to l2, l1 and l0 space. Experimental results are also reported

to show the potential application of the proposed algorithm.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Recollection on sparse approximation

Finding a sparse approximation of a datum in a Hilbert
space is a recurrent problem in applied science. The
problem is to approximate a datum v 2 H (H is a Hilbert
space of finite or infinite dimension) by a linear expansion
in a dictionary of known atoms ðciÞi2I:

v�
X
i2I

lici,

where ðliÞi2I 2 R
I . The approximation is needed because v

is usually corrupted by noise. It is sometimes preferable to
search for an approximation which is coarser than the
noise requires. By this we favor desired/expected proper-
ties of the coordinates ðliÞi2I.

Moreover, the dictionary is usually overcomplete. This
offers the freedom to select among all the possible sets of
coordinates one of those agreeing with some prior
ll rights reserved.
knowledge or desired property of the coordinates. The
property receiving most of the attention is sparsity.
Heuristically, we select the set of coordinates offering
the ‘‘simplest’’ explanation of the datum. Rigorously, for a
given accuracy after reconstruction, we want

JðliÞi2IJ0 ¼
def
#fi 2 I,lia0g,

to be as small as possible, where # denotes the cardinality
of a set.

Unfortunately, problems similar to

minimize JðliÞi2IJ0

under the constraint

X
i2I

lici�v

�����
�����rt,

(
ð1Þ

where t40 and J � J is the norm associated with the
scalar product of the considered Hilbert space, are known
to be NP-Hard in general (see [9]).

As a conclusion, solving (1) is both an open and
interesting problem. It receives a lot of attention and it
would be a challenge to list all the contributions to its
resolution. Before describing the most popular techni-
ques, we give in the next section the algorithm studied
in this paper. It will then be simpler to motivate our
proposal.
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Table 1
The matching pursuit shrinkage (MPS).

� Input : A datum v, a dictionary ðciÞi2I , a shrinkage function y and

a 2 ½0,1�

� Output : Coordinates ðsn ,gnÞn2N

� The algorithm

J Initialize R0v¼ v

J Repeat until convergence (loop in n)

1. Select a well correlated atom cgn
such that

j/cgn
,RnvSjZasup

i2I
j/Rnv,ciSj; ð2Þ

2. Evolve along cgn

Rnv¼ sncgn
þRnþ1v, ð3Þ

where
sn ¼ yðMnÞ with Mn ¼/Rnv,cgn

S: ð4Þ
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1.2. The matching pursuit shrinkage

For dictionary composed of atoms with unit-length,
the matching pursuit shrinkage (MPS) is very similar to
the usual matching pursuit (MP) algorithm (see [27]). The
main difference is that it uses a shrinkage1 function y :
R-R . We describe the algorithm in Table 1.

Several convergence criterions might be considered
and for simplicity, we always assume that the algorithm
stops whenever sn¼0.

Whenever the series are convergent, we can construct
coordinates

li ¼
X

n2N:gn ¼ i

sn, 8i 2 I ð5Þ

from the result of the MPS. We also consider (if the series
is convergent)

u¼
X
i2I

lici ¼
Xþ1
n ¼ 0

sncgn
:

Notice that if we sum (3) for n¼ 0 . . .N�1, we obtain

v¼
XN�1

n ¼ 0

sncgn
þRNv: ð6Þ

This explains the name ‘‘residual error’’ for RNv.

1.3. Other algorithms promoting sparsity

One of the oldest and simplest algorithm for building a
sparse approximation is the matching pursuit (MP) [27]
or projection pursuit [13]. It corresponds to the algorithm
of Table 1 when y is the identity (i.e. sn¼Mn).

In finite dimension (see [27]) and in infinite dimension
but under restrictive conditions on the dictionary and the
signal (see [19]), the MP is known to converge exponen-
tially. When no hypotheses are made on the dictionary,
we only know that the MP converges (see [27]). Some
examples show that we cannot expect a ‘‘good’’ conver-
gence rate in the most general settings (see [11]). Yet the
MP and the best k-term approximation have a similar
convergence, when the dictionary is ‘‘quasi-orthogonal’’
(see [33]).

There exists ‘‘fast’’ variants of the MP (see [17]).
Indeed, a real-time implementation of the MP is available
for audio signal processing (see [21]). The improved
performances are obtained by carefully optimizing the
structures, algorithms and their implementation. In par-
ticular, the update of ð/Rnv,ciSÞi2I and the computation
of gn satisfying (2) (in Table 1) are implemented in a very
efficient way. Each iteration of the MP is typically of
complexity Oðlogð#IÞÞ. These optimizations are possible
because only one coordinate is updated. If K coordinates
(as defined in (5)) are modified at each iteration, we
obtain a complexity OðKþ logð#IÞÞ. This might be less
favorable when K is large. Although its approximation
performances are not as good as most modern algorithms
such as CoSaMP [29] and similar algorithms or l1
1 The rigorous definition of shrinkage functions is given in Section 2.
regularization, these accelerations make the MP a useful
algorithm.

The accelerations described in [21] can be applied to
the MPS, as described in Table 1. The potential advantage
of introducing a shrinkage function y is to attenuate the
mistakes in the selection of a coordinate gn (or more
precisely, coefficient of atoms). In the inverse problem
context such as compressed sensing, there is a ‘‘ground
truth’’ representation associated to ‘‘true atoms’’, the term
‘‘bad selection of atoms’’ is then well defined. Let us
underline that avoiding wrong selection of coordinates
is one of the key ingredients of modern variants of the MP
such as CoSaMP [29], subspace pursuit [8] and iterative
hard thresholding [1]. However, especially when the
solution we are looking for is moderately sparse, those
algorithms are more computationally intensive.

Let us go back in time. The most famous variant of the
MP is the orthogonal matching pursuit (OMP) (see [30]). In
Table 1, it replaces the update rule (3) by an orthogonal
projection onto the subspace generated by the selected
atoms. It is known to provide sparser solutions than the
regular MP. From the computational point of view, it has
two drawbacks. Firstly, although several attempts have been
made to optimize it (see [26,7]), the orthogonal projection is
computationally expensive and often requires too much
memory. Secondly, every selected coordinate is modified. As
a consequence, the adaptation of the optimization per-
formed in [21] would only be efficient when the result is
very sparse. Algorithms such as the gradient pursuit (see
[2]) approximately solve the OMP at a cost more similar to
the cost of the MP. However, at each iteration, they typically
update all the selected coordinates. The computational cost
of the gradient pursuit is therefore more important than the
cost of a fast implementation of the MP, when the solution
is moderately sparse.

Finally, the l1 regularization (also named basis pursuit
and basis pursuit denoising, see [5] and the papers citing it)
is a very important sparsity promoting model. It consists in
minimizing

1

2
v�
X
i2I

lici

�����
�����

2

þb
X
i2I

jlij ð7Þ
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and it is very efficient for providing sparse approximations
of v 2 H. However, its resolution remains (and will probably
remain in a near future) a challenge for large scale problems.
A famous (and representative) solver of the l1 regularization
problem is the iterative soft thresholding (see [10]). It
updates all the coordinates at each iteration and often
requires many iterations before it reaches a suitable con-
vergence level. It is interesting to notice that, in this context,
the impact of the choice of the shrinkage function is well
understood (see [6]): Every proximal thresholding function
corresponds to a different objective function.

Inspired by the l1 regularization problem, a ‘‘coordina-
tewise optimization algorithm’’ has been proposed in
[12]. It performs a soft thresholding, sequentially on each
coordinate. The ‘‘greedy coordinate descent’’ proposed in
[34] is similar but selects the coordinates according to a
criteria similar to the MP. Because they update only one
coordinate at each iteration, these algorithms can benefit
from the optimization proposed in [21]. Most recently, we
also have some other related works [23,24,32].

1.4. Notations

The following notations and hypotheses hold all along
the paper.

The datum v belongs to a Hilbert space H. The space H
might be of finite or infinite dimension. For any two
elements u and w in H, their scalar product is denoted by
/u,wS. As usual, the norm of u 2 H is defined by

JuJ¼
def ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/u,uS
p

. The dictionary ðciÞi2I is made of atoms

ci 2 H, such that JciJ¼ 1, for all i 2 I. We sometimes

denote the dictionary by D. For simplicity, we assume that
I is countable. In particular, the supremum in (2) may not
be reached. In such a case, the MPS is only defined for

ao1. For any u 2 H, we denote JuJD ¼
def

supi2Ij/u,ciSj. We

denote

V ¼
def

SpanfDg ð8Þ

the closed linear span of the elements of D. We denote V?

the orthogonal complement of V in H. We denote the

orthogonal projection onto V and V? by PV and PV?

respectively.
The sequences ðsnÞn2N, ðgnÞn2N, ðRnvÞn2N are always

defined according to Table 1. The coordinates ðliÞi2I are
according to (5).

We also use the standard notations: sgnðtÞ ¼ 1, if tZ0
and �1, if to0; the symbol # denotes the cardinal of a
set; the floor function btc denotes the greatest integer less
than or equal to t.

1.5. Overview

The sketch of the paper is as follows. In Section 2, we
define shrinkage, thresholding and gap functions. We also
illustrate these definitions by several examples. Sections 3–
6 are then devoted to some important theoretical analysis of
the MP shrinkage algorithm which integrates the general
shrinkage function with MP. Precisely, in Section 3, we
prove that under mild condition, the MP shrinkage algo-
rithm converges. Indeed, as soon as y is a shrinkage function,
the residual ðRnvÞn2N converges and the series
P

n2Nsncgn
is

convergent. We also prove that ðsnÞn2N is square summable.
In Section 4, we prove that when y is a thresholding function,
ðsnÞn2N is absolutely summable. This implies in particular
that ðliÞi2I exists and is absolutely summable. In Section 5,
we prove that when y is a gap function, the sequence ðsnÞn2N

is finite. Again, this implies that ðliÞi2I exists and is finite. In
Section 6, we evaluate J

P
n2Nsncgn

�PV vJD, when y is a
general shrinkage function. In Section 7, some experimental
results show that in the presence of noise, the new
algorithm does not only outperform the regular MP, but
also behaves better than some other classical Greedy
methods and basis pursuit denoising model when used for
detection. Finally, we give some concluding remarks and
discussions in Section 8.

2. General shrinkage functions

2.1. Definitions
Definition 1. A function yð�Þ : R-R is called a general

shrinkage function if and only if it satisfies:
1.
 yð�Þ is non-decreasing, i.e.

8t,t0 2 R, trt0¼)yðtÞryðt0Þ;
2.
 yð�Þ shrinks the amplitude, i.e.

8t 2 R, jyðtÞjr jtj:
Notice that this implies

yð0Þ ¼ 0,
and

yð�tÞr0ryðtÞ, 8tZ0: ð9Þ

Therefore, for any general shrinkage function yð�Þ and any
t 2 R, we know that

if tZ0, 0ryðtÞrt and 0ryðtÞðt�yðtÞÞ,

if tr0, 0ZyðtÞZt and 0ryðtÞðt�yðtÞÞ:

As a conclusion,

8t 2 R, yðtÞðt�yðtÞÞZ0: ð10Þ

The inequality (9) also guarantees that

8t 2 R, jtjjyðtÞj ¼ tyðtÞ: ð11Þ

Definition 2. Let yð�Þ be a general shrinkage function, we
call
�
 the internal threshold: t� ¼def
inf t:yðtÞa0jtj
�
 the external threshold: tþ ¼def
supt:yðtÞ ¼ 0jtj.
Moreover, we say that yð�Þ is a thresholding function if
and only if: t�40, i.e.

(t40,8x 2 R, jxjrt) yðxÞ ¼ 0; ð12Þ

otherwise, it will be called non-thresholding function.
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Note that in the literature, the standard usage is that
shrinkage and thresholding are almost interchangeable
term. However, throughout our paper, there are impor-
tant distinctions between general shrinkage functions and
more specific thresholding/gap functions.

If yð�Þ is a thresholding function, we trivially have

0ot�rtþ :

The internal and external thresholds are illustrated in
Fig. 1.

Since (10) holds for any general shrinkage function, the
following definition is valid.

Definition 3. The gap of a general shrinkage function yð�Þ
is defined by

gapðyÞ ¼def
inf

t:yðtÞa0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2
ðtÞþ2yðtÞðt�yðtÞÞ

q
: ð13Þ

If gapðyÞ40, we call y a gap function and if gapðyÞ ¼ 0, the
function is called a non-gap function.

The following relation exists between the gap and the
internal threshold of a general shrinkage function. It proves in
particular that any gap function is a thresholding function.

Proposition 1. For any gap function yð�Þ, the following

statements hold.
1.
Fig
and
We have

gapðyÞrt�,

where t� is the internal threshold of yð�Þ.

2.
 We have

inf
t:yðtÞa0

tyðtÞrgapðyÞ2r2 inf
t:yðtÞa0

tyðtÞr2tþ inf
t:yðtÞa0

jyðtÞj:

Proof. The proof is given in Appendix.

For instance, when y is odd we have

inf
t:yðtÞa0

tyðtÞ ¼ tþ inf
t:yðtÞ40

yðtÞ,
t0

y

y = � (t)

y = t

−�+

�−

. 1. Example of a thresholding function y. It is non-gap. Its internal

external thresholds are not equal.
since y is non-decreasing. Geometrically, inf t:yðtÞ40yðtÞ is
simply the amplitude of the vertical discontinuity at the
boundary of the segment ft : yðtÞa0g. It is also clear from
the item 2 of Proposition 1 that when the gap function is
continuous at the boundary of the segment ft : yðtÞa0g,
the function is non-gap. These are the reasons leading to
the name gap.

The motivation for considering the gap comes from its
implication on the convergence of the MPS.
2.2. Examples

Let us illustrate the above definitions through some
examples.
1.
 For t40, the soft thresholding function rtð�Þ defined
by

rtðtÞ ¼ sgnðtÞ �maxðjtj�t,0Þ ð14Þ

is a thresholding function and it is a non-gap function,
i.e. gapðrtÞ ¼ 0.
2.
 For t40, the hard thresholding function defined by

htðtÞ ¼
t if jtj4t,

0 otherwise

�

is a thresholding function and it is a gap shrinkage
function with gap t.
3.
 The identity function defined as

iðtÞ ¼ t, 8t 2 R ð15Þ

is not a thresholding function and it is a non-gap
function.
4.
 For t40, p40, the general non-negative Garrote
threshold function (for the case p¼2, see [15,4])
defined as

dG
t ðtÞ ¼ tmax 0, 1�

jtjp

jtjp

� �� �
, 8t 2 R ð16Þ

is a thresholding function and it is non-gap.

5.
 For 0ot1ot2, the firm shrinkage function (see [16])

defined as

dt1 ,t2
ðtÞ ¼

0 if jtjrt1,

sgnðtÞ
t2ðjtj�t1Þ

t2�t1
if t1o jtjot2,

t if jtjZt2

8>>><
>>>:

ð17Þ

is a thresholding function and it is non-gap.

6.
 For p 2 N, t40, the generalized threshold function

(see [36]) defined as

dp
tðtÞ ¼

0 if jtjrt,

t�
tp

tp�1
ðsgnðtÞpÞ if jtj4t

8<
: ð18Þ

is a thresholding function and it is non-gap.

3. Convergence of the MP shrinkage for a general
shrinkage function

This section is devoted to prove that under mild
condition, the MP shrinkage algorithm converges.
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Proposition 2. Let ðciÞi2I be a normed dictionary, v 2 H and

yð�Þ be a general shrinkage function. For any M40 and any

v 2 H, the quantities defined in Table 1 satisfy

JvJ2
¼
XM�1

n ¼ 0

s2
nþ2snðMn�snÞ

� �
þJRMvJ2: ð19Þ

As a consequence, we have

JvJ2
Z

XM�1

n ¼ 0

s2
nþJRMvJ2, ð20Þ

Xþ1
n ¼ 0

s2
noþ1, ð21Þ

Xþ1
n ¼ 0

jsnjjMnjoþ1, ð22Þ

ðJRnvJÞn2N is non-increasing: ð23Þ

Proof. We can deduce from

Rnþ1v¼ Rnv�sncgn
,

and /cgn
,cgn

S¼ 1 that

JRnþ1vJ2
¼ JRnvJ2

�2sn/Rnv,cgn
Sþs2

n

¼ JRnvJ2
�2snðMn�snÞ�s2

n:

Summing these equalities for all n¼ 0, . . . ,M�1, we
obtain after simplification

JRMvJ2
¼ JR0vJ2

�
XM�1

n ¼ 0

ðs2
nþ2snðMn�snÞÞ:

We then obtain (19) from R0v¼ v.
Using (10), we know that

snðMn�snÞ ¼ yðMnÞðMn�yðMnÞÞZ0:

Together with (19) this leads to (20).
Notice that this also provides (23). Moreover, (20)

guarantees that ð
PM

n ¼ 0 s2
nÞM2N is a bounded increasing

sequence. It converges and (21) holds. We also have

2
XM�1

n ¼ 0

jsnjjMnj ¼ 2
XM�1

n ¼ 0

snMn from ð11Þ

¼ JvJ2
�JRMvJ2

þ
XM�1

n ¼ 0

s2
n from ð19Þ

rJvJ2
þ
Xþ1
n ¼ 0

s2
n:

This ensures that (22) holds. &

Note that Proposition 2 ensures that

Xþ1
n ¼ 0

jsnj
2oþ1: ð24Þ

Now we can prove the convergence of the MPS
algorithm. As pointed out by one of the reviewers,
it is interesting to notice that though MPS algorithm
should be regarded a case of the so-called ‘‘Approximate
Weak Greedy Algorithms ’’ in [18], it seems that the
convergence proofs provided there could not be directly
applied to MPS.

Theorem 1. Let ðciÞi2I be a normed dictionary, v 2 H and

yð�Þ be a general shrinkage function. The sequences defined

in (4) satisfy

ðRnvÞn2N converges:

As a consequence, the limit

Xþ1
n ¼ 0

sncgn
is finite:

We denote the limit of ðRnvÞn2N by Rþ1v and we trivially

have

v¼
Xþ1
n ¼ 0

sncgn
þRþ1v:

Proof. The proof is based on Jones’ proof for the conver-
gence of projection pursuit regressions (see [14]) and the
proof of Theorem 1 in [27].

First notice that the statement of the proposition is
trivial for v¼0. We further assume that va0.

In order to prove the theorem, we prove that the
sequence ðRnvÞn2N is a Cauchy sequence. Before doing
so, let us start with some preliminaries.

Notice first that for all w1,w2 2 H, we have

Jw1�w2J
2
¼ Jw1J

2
�Jw2J

2
�2/w2,w1�w2S

rJw1J
2
�Jw2J

2
þ2j/w2,w1�w2Sj: ð25Þ

Moreover, for N24N1Z0, from (6) we have

RN1 v�RN2 v¼
XN2�1

n ¼ N1

sncgn
: ð26Þ

Finally, for any nZ0 and any mZ0,

j/Rmv,sncgn
Sj ¼ jsnjj/cgn

,RmvSjr jsnjsup
i2I
j/ci,R

mvSj

r
1

a
jsnjjMmj: ð27Þ

Let us now consider N24N1Z0. Using (25)–(27), we
obtain

JRN1 v�RN2 vJ2rJRN1 vJ2
�JRN2 vJ2

þ2 RN2 v
XN2�1

n ¼ N1

sncgn

* +					
					

rJRN1 vJ2
�JRN2 vJ2

þ
2

a
jMN2
j
XN2�1

n ¼ N1

jsnj: ð28Þ

Using (23) of Proposition 2, we know that the sequence
ðJRnvJÞn2N is non-negative and non-increasing. Therefore,
it converges to some value R1 and for any e40, there
exists K40 such that for all m4K ,

R2
1rJRmvJ2rR2

1þe
2:
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As a consequence, for any N24N1ZK ,

JRN1 v�RN2 vJ2re2þ
2

a
jMN2
j
XN2

n ¼ N1

jsnj: ð29Þ

Using (22), we know that
Pþ1

n ¼ 0 jMnjjsnjoþ1. More-
over, 0r jsnjr jMnj for all n 2 N. So Lemma 2 (see Appen-
dix) can be applied with xn � jsnj and yn � jMnj. Two
situations might occur:
�
 The first one is that:
Pþ1

n ¼ 0 jsnjoþ1. In this case, we
know that there is K 040 such that for any N24N1ZK 0

XN2

n ¼ N1

jsnjr
a

2JvJ
e2:

Moreover, from (20) and Cauchy–Schwartz inequality,
we know that

jMN2
j ¼ j/RN2 v,cgN2

SjrJRN2 vJrJvJ:

So (29) becomes for any e40 there are K and K 040
such that for any N24N1ZmaxðK ,K 0Þ

JRN1 v�RN2 vJ2re2þe2:

Hence, in the first case, ðRnvÞn2N is a Cauchy sequence.P

�
 The second one is that: lim infq-þ1jMqj

q
n ¼ 0 jsnj ¼ 0.

In this case, let e40 and let p40 be an integer. We are
going to estimate JRmv�RmþpvJ, for m4K (K is such
that (29) holds).
First, there is q4mþp such that

jMqj
Xq

n ¼ 0

jsnjr
a
2
e2: ð30Þ

Moreover, we can decompose

JRmv�RmþpvJrJRmv�RqvJþJRmþpv�RqvJ:

Applying (29) with N1¼m and N2¼q and using (30) we
obtain

JRmv�RqvJ2re2þe2:

Similarly, applying (29) for N1¼mþp and N2¼q and
using (30) we obtain

JRmþpv�RqvJ2re2þe2:

Hence, we finally obtain

JRmv�RmþpvJr2
ffiffiffi
2
p

e,

which proves that ðRnvÞn2N is a Cauchy sequence in the
second case.

Overall, ðRnvÞn2N converges in both cases. The second
statement directly follows from (6). &

4. l1 norm bounds specific to thresholding functions

In general, whenH is an infinite dimensional space, we
have no guarantee that

Xþ1
n ¼ 0

jsnjoþ1: ð31Þ
A simple counterexample consists in considering ðciÞi2I an
orthonormal or Riesz basis (for definition, see [25]) of H,
v¼

P
i2Isici 2 H such that

P
i2Ijsij diverges and yðtÞ � t.

Below, we prove that (31) exists, whatever v 2 H and
whatever the dictionary, as soon as y is a thresholding
function.

Proposition 3. Let ðciÞi2I be a normed dictionary, v 2 H and

yð�Þ be a thresholding function. The quantities defined in

Table1 satisfy

Xþ1
n ¼ 0

jsnjr
JvJ2
�JRþ1vJ2

t�
r

JvJ2

t�
, ð32Þ

where t�40 denotes the internal threshold as defined in

Definition2.

Proof. Let M 2 N fixed. Using (20), we know that

XM�1

n ¼ 0

s2
nrJvJ2

�JRMvJ2:

Together with (19), this leads to

XM�1

n ¼ 0

snMn ¼
1

2
JvJ2
þ
XM�1

n ¼ 0

s2
n�JRMvJ2

 !
rJvJ2

�JRMvJ2:

Using (11) and the fact that yð�Þ is a thresholding function,
for any n 2N, we have

snMn ¼ jsnjjMnjZt�jsnj,

where the last inequality is obtained after discussing the
two cases: sn¼0 or sna0.

As a conclusion for all M 2 N we have

XM�1

n ¼ 0

jsnjr
JvJ2
�JRMvJ2

t�
: ð33Þ

Letting M go to infinity, we obtain (32). &

Remark 1. The above upper bound does not depend on
the dictionary ðciÞi2I . It holds for any v 2 H. We therefore
do not expect this bound to be tight in any dedicated or
applicative context.

Remark 2. As a side effect, the above proposition guar-
antees that the coordinates li exist for all i 2 I (see (5)).
We even know thatX
i2I

jlijoþ1:

5. l0 bounds specific for gap functions

If yð�Þ is a gap function then the MP shrinkage stops
automatically after a finite number of iterations.

Proposition 4. Let ðciÞi2I be a normed dictionary, v 2 H and

yð�Þ be a gap function (i.e. gapðyÞ40). The sequence ðsnÞn2N

defined in Table1 satisfies

#fnjsna0gr
JvJ2

gapðyÞ2

$ %
:

Proof. Suppose that the sequence ðsnÞn2N contains M non-
zero terms. Observing Definition 3, for each sna0, we
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have

s2
nþ2snðMn�snÞZgapðyÞ2,

where we recall that Mn ¼/Rnv,cgn
S, sn ¼ yðMnÞ.

From (19), we know that

JvJ2
Z

X
n2N:sna0

s2
nþ2snðMn�snÞ

� �
ZM � gapðyÞ2:

Noting that M is integer, we have

Mr
JvJ2

gapðyÞ2

$ %
: &

Remark 3. An interesting consequence of the proposition
is that

#fi 2 I,lia0gr
JvJ2

gapðyÞ2

$ %
:

In other words, v is approximated with less than
bJvJ2=gapðyÞ2c non-zero coordinates.

6. Bound on the residual error

In this section, we are interested in the residual error
norm. The result concerns general shrinkage functions.
Before stating the result, let us give the following lemma:

Lemma 1. Let ðciÞi2I be a normed dictionary, v 2 H and yð�Þ
be a general shrinkage function. The sequence ðMnÞn2N

defined in Eq. (4) satisfies

lim sup
n-þ1

Mnr sup
t:yðtÞ ¼ 0

t ð34Þ

and

inf
t:yðtÞ ¼ 0

tr lim inf
n-þ1

Mn: ð35Þ

Proof. Let us prove the first statement. If supt:yðtÞ ¼ 0

t¼ þ1 the statement is trivial. We therefore focus on
the case supt:yðtÞ ¼ 0toþ1. Let us assume that (34) does
not hold. Then there exists e40 and an increasing
sequence ðknÞn2N 2N

N such that

Mkn
Z sup

t:yðtÞ ¼ 0
tþe40, 8n 2N:

So there exists an increasing sequence ðknÞn2N 2 N
N such

that

skn
¼ yðMkn

ÞZy sup
t:yðtÞ ¼ 0

tþe
 !

40:

This means that

lim sup
n-þ1

sn40:

The latter statement is impossible since, from (21), we
know that limn-þ1sn ¼ 0. This proves (34).

The proof of (35) is similar. &

In particular, if the external threshold of yð�Þ is zero (i.e.
tþ ¼ 0),

lim
n-þ1

Mn ¼ 0,

since supt:yðtÞ ¼ 0t¼ inf t:yðtÞ ¼ 0t¼ 0.
Recall that we have defined the semi-norm on H as

JuJD ¼
def

sup
i2I

j/u,ciSj, 8u 2 H:

Notice that J � JD is a norm as soon as D generates H.
The J � JD is important because it penalizes the error

made in the direction of the elements of the dictionary
much more than in other directions. Geometrically, its
level sets

fu 2 H,JuJDrtg

is a polyhedron, for tZ0. When the elements of the
dictionary correspond to structures that one expects in
the data, by this norm we can have a strong constraint in
the direction of these structures and a small constraint in
other directions (such as noise). Some basic properties for
this semi-norm under discrete settings were given in [35].
We also refer the reader to [3,22,28] for more results
along this direction.

Recall that in (8) we denote V ¼
def

SpanððciÞi2IÞ, the closure
of vector space spanned by the dictionary ðciÞi2I , V? its
orthogonal complement and we denote the orthogonal
projection onto V and V? by PV and PV? respectively.

Proposition 5. Let ðciÞi2I be a normed dictionary, v 2 H and

yð�Þ be a general shrinkage function. The limits defined in

Theorem1 satisfy

Xþ1
n ¼ 0

sncgn
�PV v

�����
�����
D

¼ Rþ1v�PV?v
�� ��

Dr
tþ

a
,

where tþ is the external threshold of yð�Þ, as defined in

Definition 2.

Proof. Let e40, from Lemma 1, we know that for any
kZ0 there is nkZk

inf
t:yðtÞ ¼ 0

t�erMnk
r sup

t:yðtÞ ¼ 0
tþe:

Given the definition of tþ , we therefore know that

�tþ�erMnk
rtþ þe:

We rewrite

jMnk
jrtþ þe:

Moreover, using the property of projection and given
the construction of Mnk

, we know that

jMnk
jZasup

i2I
j/Rnk v,ciSj ¼ asup

i2I
j/Rnk v,PV ðciÞSj ¼ asup

i2I
j/PV ðR

nk vÞ,ciSj:

Therefore, for all i 2 I,

j/PV ðR
nk vÞ,ciSjr

tþ

a
þ
e
a
:

Since ðRnk vÞk2N converges to Rþ1v (see Theorem 1), we
finally have

j/PV ðR
þ1vÞ,ciSjr

tþ

a
þ
e
a

,
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for all i 2 I. Since the above inequalities hold for any e40,
we obtain

PV ðR
þ1vÞ

�� ��
Dr

tþ

a :

Moreover, using Theorem 1, we know that

PV? ðR
þ1vÞ ¼ PV? ðvÞ�PV?

Xþ1
n ¼ 0

sncgn

 !
¼ PV? ðvÞ:

We therefore obtain

JRþ1v�PV?vJD ¼ JPV ðR
þ1vÞJDr

tþ

a :

Using Theorem 1 (again), we also know that

Xþ1
n ¼ 0

sncgn
¼ PV

Xþ1
n ¼ 0

sncgn

 !
¼ PV ðvÞ�PV ðR

þ1vÞ:

Therefore,

Xþ1
n ¼ 0

sncgn
�PV ðvÞ

�����
�����
D

¼ PV ðR
þ1vÞ

�� ��
Dr

tþ

a :

This finishes the proof of the theorem. &

Remark 4. In the above proposition, if the external
threshold tþ is zero (this is the case for the matching
pursuit), we deduce from the proposition thatPþ1

n ¼ 0 sncgn
�PV v 2 V?. Therefore, since

Pþ1
n ¼ 0 sncgn

�

PV v 2 V , we finally obtain that
Pþ1

n ¼ 0 sncgn
¼ PV v. We

might have PV vav. However, when PV vav, we cannot
expect to obtain a better approximation of v sincePþ1

n ¼ 0 sncgn
2 V and PV v minimizes the Euclidean dis-

tance between v and V.
When tþa0, the algorithms generally do not recover v.

The benefit of this approximation is to obtain a decom-
position with less significant coordinates (see Propo-
sitions 3 and 4).

Remark 5. A consequence of the above proposition is
that when the MPS is used with a thresholding function, it
provides a feasible point for the ‘‘Dantzig selector’’ (see
[3]). The ‘‘Dantzig selector’’ consists of the optimization
Fig. 2. Experiments on Pepper with wavelet dictionary. L
problem:

min
ðliÞi2I

X
jlij subject to

X
i2I

lici�PV v

�����
�����
D

r
tþ

a :

From Proposition 3, we know that the MPS provides a set
of coordinates ðliÞi2I (see (5)) such that

min
ðliÞi2I

X
jlij

is finite. Proposition 5 guarantees that the constraint is
satisfied.

7. Experimental results

This section is devoted to the comparison of the MP
shrinkage algorithm with some classical sparse representa-
tion methods: the regular MP, OMP and BPDN. In all the
experiments, the predefined constant a equals 1. For sim-
plicity, the only shrinkage function considered in these
experiments is the soft-thresholding function (see (14)).

7.1. Denoising with a translation invariant wavelet

dictionary

We report the experiments on the Pepper image with
pixel values in [0,255]. The dictionary contains all the
translations of the Daubechies _3 wavelets decomposed at
the level 4. In 2D, this makes 13 convolution kernels. The
original image is contaminated by Gaussian noise of
standard variation s¼ 20. Both the original and noisy
images are displayed in Fig. 2.

In this experiment, we run the MPS (again the shrink-
age function is the soft thresholding function) for
t 2 f0,10,50,100g. We remind that t¼ 0 corresponds to
the usual MP. The iterative process is stopped once one of
the following two conditions is met: (a) the l2-norm of the
residual is smaller than s; (b) the length of the forward
step is negligible: jsnjr10�6.

We display the graph of the sequence n-jsnj on the
left side of Fig. 3. We see on these curves that, as
expected, when t increases jsnj decays to 0 more rapidly.
Hence, numerically we observe that the MP shrinkage
with t rather big converges much faster than MP.
eft: clean image; right: noisy image, PSNR¼ 22:10.
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Fig. 3. The MP shrinkage with the soft thresholding function for t¼ 0 (i.e. MP), t¼ 10, 50 and 100. Left: the curves n-jsnj. Right: the PSNR along the

iterative process.

Fig. 4. The nine letters used to construct the dictionary. Each letter is

extended by zero-padding to reach the size of the noisy image. It is then

translated over the plane.
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This behavior illustrates Proposition 5 since, indeed

Xn�1

i ¼ 0

sicgi
�PV v

�����
�����
D

¼
Xn�1

i ¼ 0

sicgi
�v

�����
�����
D

¼ jMnjr jsnjþt:

The right side of Fig. 3 displays, for the different values
of t, the PSNR between the image obtained at the iteration
n and the original clean image. This quantity is shown for
all the values of n.

During the first iterations (say when no1000) the PSNR
are similar for all the values of t. However, later in the
iterative process (say for n42500), the curves correspond-
ing to t¼ 10 and 50 are above the other curves. Notice also
that, a wisely chosen stopping criterion based on the
residual norm could lead to an earlier stop, with a stronger
denoising effect. Indeed, on the right of Fig. 3, the supreme
of the PSNR curve corresponding to t¼ 0 (i.e. the MP) is
26.45 (for n¼2057). This would correspond to the result
obtained if an oracle had told us when to stop the algorithm.
However, it is still smaller than the PSNR obtained with the
MP shrinkage at convergence, for t¼ 50. The PSNR, in this
case is indeed 27.33. For fairness, let us highlight that the
choice of t could be critical for the MPS.

Overall, we numerically observed that the MP shrink-
age with positive threshold converges faster than MP and
meanwhile returns a better denoised result.

7.2. Detection of letters

We now consider a detection problem in a very noisy
case. The original image and the noisy image are on the
top row of Fig. 5. The values of the pixels of the original
image (Fig. 5(a)) range in [0,255]. On the original image
appears several letters whose shape is known (see Fig. 4).
The noisy image (Fig. 5(b)) is obtained by adding to this
original image a Gaussian noise of standard deviation
s¼ 150.

The purpose of the detection is to recover the
letters. In order to do so, we build a translation
invariant dictionary by translating the letters dis-
played in Fig. 4. Notice that though some couples of
elements of the dictionary are very correlated, this
problem resemble a compressed sensing since it is
an inverse problem (and not just an approximation
problem) with a ground truth representation which
might be recovered exactly. Interestingly, this problem
resembles more some machine learning approaches
where sparsity is exploited, since it implies a deci-
sion/classification problem.

In order to illustrate the difficulty of this problem, we
show in Fig. 5(c) the image obtained when denoising the
noisy image with a soft thresholding in a wavelet dic-
tionary. The letters of the original image cannot be seen in
the denoised image. The purpose of this experiment is to
illustrate that denoising the image with a ‘‘general pur-
pose’’ denoising method before doing the detection is not
likely to work.

In Fig. 5(d) we display the result obtained with the
basis pursuit denoising (BPDN) (see (7) or [5,10,12,34]),
with the dictionary described above. The parameter b (the
weight for the l1 term in (7)) for the BPDN has been
carefully tuned to get better result. The negative coeffi-
cients are not displayed since they cannot represent
letters. This makes some small difference as the white/
negative letters (which are less reasonable in our case) are
removed from the result image.

Some letters which we are looking for appear in
Fig. 5(d). In the point view of component analysis
[31,20], the noisy image v here should be regarded as

v¼ XþBþN,

where X is the clean images formed by letters, B is
the background structure and N is the noise. Hence, the
extremely strong noise level, the interference of the
complex background structure, together with the coher-
ence of the dictionary made the BPDN partially successful
for this task.



Fig. 5. Detecting letters with a coherent dictionary in the presence of a

strong noise (a) clean image; (b) noisy image s¼ 150; (c) wavelet soft

shrinkage (t¼ 400); (d) BPDN (b¼ 400); (e) OMP; (f) MP; (g) denoised

MP; (h) MPS with a soft-thresholding shrinkage function (t¼ 400).
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In Fig. 5(e) and (f), we display the results obtained
with OMP and MP. These algorithms are stopped once the
l2-norm of the residual is less or equal to s. Again, the
negative coefficients are set to 0 for the display. Experi-
mentally, the OMP stops after fewer iterations than MP.
This leads to less coefficients and less noise. Those two
results are however poor. Again, it seems that the noise
level and the coherence of the dictionary are too impor-
tant for these algorithms.
In order to denoise these images, we have tried to soft-
threshold their coordinates. The result of this threshold-
ing (at the threshold 400) on the result of the MP is shown
in Fig. 5(g). Below we refer to this algorithm as denoised
MP. Experimentally we observe that the same scheme
works rather limitedly for OMP and BPDN. In these
experiments, the denoised MP provides better results
than the denoised OMP and denoised BPDN.

Finally, the result of the MP shrinkage is displayed in
Fig. 5(h). Again it is applied with a soft-thresholding
shrinkage function. The image corresponds to the threshold
t¼ 400. Evidently, the choice of t is critical, it is mandato-
rily tuned around 3s to obtain good qualitative result. The
algorithm is stopped once jsnjr10�6 (this leads to about
500 iterations). Again, the negative coordinates are set to 0
for the display. The MPS leads to a better detection than the
other methods. In particular, the word ‘‘donc’’ is recovered
and this was not the case with the other algorithms. The
difference between the denoised MP and MPS results is due
to the impact of the false detection on the remaining
iterations. This impact is better controlled with MPS than
with denoised MP.

On this experiment, another point is that the false
detections are located in the dark area of the original
image. It seems therefore possible to detect these false
detection by a post-processing. The false detection of the
denoised MP are less structured and might be more
difficult to detect.

To summarize, as the observed image is very noisy and
the ideal image is sparse over the dictionary, the MP
shrinkage with positive threshold performances much
better than the MP and other related algorithms.
8. Conclusion and perspectives

In this paper, we investigate a modification of the MP
algorithm. Its main characteristics are:
1.
 Similar to the MP, the results evolves along one
element of the dictionary at a time.
2.
 Similar to the MP, it is greedy: once an element of the
dictionary has been selected, this choice is no longer
questioned.
3.
 Unlike MP and depending on the choice of the shrink-
age function, the evolution in the direction of a selected
atom can be slowed. The benefit of being cautious is to
limit the consequences of bad selections of atoms.

Because it is a simple variant of the MP (and in
particular satisfy the above items 1 and 2), a fast (real
time for audio processing) version can be implemented
(see [21]). However, because of item 3, MPS can present
benefits similar to the algorithms that do not satisfy the
above item 2 (such as CoSaMP [29]).

In the current paper, we propose a segmentation of the
general shrinkage functions in three classes: general
shrinkage functions, thresholding functions and gap func-
tions. For each category we establish convergence guar-
antees for the MPS. Altogether, these results suggest that
the convergence and the decay rate of the coordinate
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(assessed in terms of l2, l1 and l0 norms) mostly depend on
the behavior of the shrinkage function in the vicinity of
ft : yðtÞ ¼ 0g.

Obviously, the behavior of yðtÞ for large values of jtj
impacts the number of iterations needed to converge. If
yðtÞ is small for jtj large, we will generally select an atom
several times in raw before selecting another atom. This
will of course slow the algorithm in proportion of the cost
of an iteration (which is small). The benefit is to limit the
negative impact of false selection as much as this strategy
permits to limit it.

The main perspectives of this work are to
�
 Perform a more complete experimental study on the
impact of the shrinkage function in several contexts
such as denoising, source separation, compressed sen-
sing, approximation, etc. The purpose of this study
should be to better understand how to chose the
shrinkage function.

�
 Perform a theoretical analysis evaluating the perfor-

mance of MPS in a compressed sensing setting. In
particular, the error made on wrongly selected atoms
will be smaller than with the standard MP and OMP.
The limitation of this error limit the risk of false
detection in the remaining iterations.

�
 Perform a theoretical analysis evaluating the perfor-

mance of MPS in the context of approximation. As
mention above, being cautious leads to more itera-
tions. However, it is unclear if these extra iterations
increase the number of selected atoms or not. This
might depend on the shrinkage function and also on
the coherence of the dictionary. Moreover, the choice
of the shrinkage functions, the theoretical guidance of
the parameter will also be very interesting.
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Appendix A

A.1. Proof of Proposition 1

Proof of item1: Let t0 2 R be such that t04 inf t:yðtÞa0jtj.
We cannot simultaneously have yðt0Þ ¼ 0 and yð�t0Þ ¼ 0,
since yð�Þ is non-decreasing. Let us denote

t¼
t0 if yðt0Þa0,

�t0 if yðt0Þ ¼ 0:

(

We have yðtÞa0 and given the definition of the gap, we
know that

gapðyÞ2ryðtÞ2þ2yðtÞðt�yðtÞÞ, ¼ t2�ðt�yðtÞÞ2rt2 ¼ t2
0 :

As a conclusion, for any t0 such that t04 inf t:yðtÞa0jtj, we
have gapðyÞrt0. So

gapðyÞr inf
t:yðtÞa0

jtj:

Proof of item2: Let us first deduce from the definition of
general shrinkage functions and (11) that for all t 2 R

0ryðtÞ2r jtjjyðtÞj ¼ tyðtÞ:

Therefore for all t 2 R:

tyðtÞr2tyðtÞ�yðtÞ2r2tyðtÞ:

We then immediately obtain that

inf
t:yðtÞa0

tyðtÞrgapðyÞ2r2 inf
t:yðtÞa0

tyðtÞ:

In order to prove the last inequality of item 2, let us
first remark that, from the definition of a general shrink-
age function and for t and t0 2 R

if tZt0Z0 then yðtÞZyðt0ÞZ0

and tyðtÞZt0yðt0ÞZ0,

if trt0r0 then yðtÞryðt0Þ
r0 and tyðtÞZt0yðt0ÞZ0:

As a consequence, if we consider e40 and t 2 R

if tZtþ þe then tyðtÞZ ðtþ þeÞyðtþ þeÞZ inf
t: gðtÞa0
jtjr tþ þ e

tyðtÞ

if tr�tþ�e then tyðtÞZ ð�tþ�eÞyð�tþ�eÞZ inf
t: gðtÞa0
jtjr tþ þ e

tyðtÞ

Therefore, for any e40

inf
t:gðtÞa0

tyðtÞ ¼ inf
t: gðtÞa0
jtjr tþ þ e

tyðtÞ:

It is then straightforward that, for t 2 R such that
jtjrtþ þe,

tyðtÞ ¼ jtjjyðtÞjrðtþ þeÞjyðtÞj:

Therefore, for any e40

inf
t:gðtÞa0

tyðtÞrðtþ þeÞ inf
t:gðtÞa0

jyðtÞj:

This immediately leads to the last unproved inequality.

A.2. Lemma used in the proof of Theorem 1

This lemma is a variation on the lemma used for the
proof of Theorem 1 in [27].

Lemma 2. Let ðxkÞk2N and ðykÞk2N be two non-negative

sequences of reals such that

Xþ1
k ¼ 0

xkykoþ1:

One of the following alternatives holds:
�
 either

Xþ1
k ¼ 0

xkoþ1
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or
�
lim inf
j-þ1

yj

Xj

k ¼ 0

xk ¼ 0:
Proof. First, since ðykÞk2N is a sequence of nonnegative
real numbers, its inferior limit always exists. We
�
 either have lim infk-þ1yk40

�
 or lim infk-þ1yk ¼ 0.
Let us first assume that

lim inf
k-þ1

yk40:

There exists e40 and n40 such that for any kZn, one
has ykZe. Therefore, we have

e
Xþ1
k ¼ n

xkr
Xþ1
k ¼ n

xkykoþ1

and finally

Xþ1
k ¼ 0

xkoþ1:

The first alternative holds.
Let us now assume that

lim inf
k-þ1

yk ¼ 0

and consider e40 and mZ0. Since
Pþ1

k ¼ 0 xkykoþ1,
there is nZm such that

Xþ1
k ¼ n

xkyko
e
2
: ð36Þ

Since lim infk-þ1yk ¼ 0, there is pZ0 such that

ynþpo
1

2
Pn�1

k ¼ 0 xk

e: ð37Þ

Let j 2 fn, . . . ,nþpg be such that

yjryk, 8k 2 fn, . . .nþpg: ð38Þ

We have

yj

Xj

k ¼ 0

xk ¼ yj

Xn�1

k ¼ 0

xkþyj

Xj

k ¼ n

xkrynþp

Xn�1

k ¼ 0

xkþyj

Xj

k ¼ n

xk from ð38Þ

o
e
2
þ
Xj

k ¼ n

xkyk from ð37Þ and ð38Þ

oe from ð36Þ:

As a conclusion, for any e40 and any mZ0, there is jZm

such that

yj

Xj

k ¼ 0

xkoe:

This means that the second alternative holds. &
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