
INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS

Inverse Problems 20 (2004) 815–831 PII: S0266-5611(04)66318-0

Solving a variational image restoration model which
involves L∞ constraints

Stéphane Lintner1 and François Malgouyres2

1 ACM, MC 217-50, Caltech, Pasadena, CA 91125, USA
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Abstract
In this paper, we seek a solution to linear inverse problems arising in image
restoration in terms of a recently posed optimization problem which combines
total variation minimization and wavelet-thresholding ideas. The resulting
nonlinear programming task is solved via a dual Uzawa method in its general
form, leading to an efficient and general algorithm which allows for very good
structure-preserving reconstructions. Along with a theoretical study of the
algorithm, the paper details some aspects of the implementation, discusses the
numerical convergence and eventually displays a few images obtained for some
difficult restoration tasks.

1. Introduction

A broad variety of image restoration tasks can be expressed as inverse problems of the following
form:

v = H(u) + b, (1)

where u ∈ R
n is the original image to be recovered from v ∈ R

n, H is a known linear map
from R

n into R
n, and b ∈ R

n is Gaussian noise. Common examples are denoising, deblurring,
linear local contrast changes, image zooming3 and local inpainting. Combinations of these
are also of interest in practice: for instance, one might want to deblur an image while filling
in small missing parts.

1.1. Combining total variation methods and wavelet-like thresholding

In the past decade, many restoration methods have been developed to deal with such problems,
and among them are the two well-known approaches: total variation minimization, which
was initiated in [20], and wavelet-like thresholding, as proposed originally in [7].4 These
3 A study of variational zooming can be found in [18].
4 Detailed references can be found in the other papers cited below.
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approaches have been opposed for quite a while, but current research is increasingly focusing
on combinations of both. In fact, the merging of variational ideas and thresholding techniques,
pioneered by Coifman et al (see [6, 24]), has led recently to various new and promising
algorithms. To our knowledge, it is currently being developed along five directions: in [6]
and [8], a set of wavelet coefficients is interpolated according to a total variation criterion. In
[3, 11] the authors propose to determine the most meaningful wavelet coefficients, also via a
total variation criterion. Yet another algorithm is proposed in [14, 24] where information is
removed from the residual image H(w) − v by using a wavelet analysis, thus allowing for the
composition of wavelet techniques with any other method and, in particular, a variational one.
Further work is also to be found in [15], where it is shown that the conditioning of the inverse
of H can be improved using wavelet packets in the data fidelity term of a variational approach.

Eventually, there is the combined approach with which we will be concerned in this paper,
and which takes the form of the following optimization problem:

(P∗) :

{
min T V (w),

over ‖H(w) − v‖D,∞ � τ,

where the fidelity term is given by the l∞ norm of the scalar products with the elements of a
dictionary of features D, which contains m elements in R

n:

‖u‖D,∞ = sup
�∈D

|〈u,�〉|.

1.2. About (P ∗)

The closest model to (P ∗) was first designed for image decompression and was studied in
[6, 23], while the definition of the constraints (which included the use of a dictionary) appeared
in [13] as an argument for the noise selection. (P∗) by itself, only evoked in [22], was studied
in [17]: there, an existence result in the continuous framework of BV ∩ L2 was given, the
link with soft wavelet thresholding and the Rudin–Osher–Fatemi algorithm discussed and the
penalty method studied to find a solution to (P∗). (Detailed proofs appeared in [16]). Finally,
an attempt to solve (P∗) via an Uzawa algorithm was made in [2], wherein two conjectures on
the asymptotic optimality of its solution were stated for a dictionary made of curvelets.

As a reminder, here are a few important points on (P ∗):

(i) From a variational point of view, the model is mostly a modification of the Rudin–Osher–
Fatemi algorithm: the traditional, rather uninformative L2-norm is replaced by an L∞

norm which carries far more information and reduces the ‘search space’ for the minimum
of the TV norm [17]. A good choice of the dictionary D preserves much more structure
and textures in the restored images, thus reducing the typical ‘washout’ effect of the total
variation minimization.

(ii) From a wavelet point of view, this model takes into account as much information as the
classical thresholding techniques: the restored image belongs to

NH,D,τ = {u, ‖H(u) − v‖D,∞ � τ }.
The difference with (for instance) soft thresholding is that all coefficients preserve a
degree of freedom up to the threshold; it is the total variation minimization which will fix
the value inside this interval of certainty. As a result, the usual Gibbs phenomenon due to
brutal discarding of coefficients is avoided, and the model leads to artefact-free images.
[2, 8, 17].

(iii) The a priori freedom in the choice of D has great potential interest, since it allows the
definition of optimal features � to be recovered, thus performing a redundant analysis.
(Research involving redundancy is quite active, see for instance [4, 10, 14, 19, 24].)
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(iv) (P∗) might find other applications in image processing such as segmentation or
registration. In fact, it could even be proposed for inverse problems outside image
restoration for which the noise is well suited for thresholding (radar speckle, for example,
is not), and for which some features � can be defined to allow a good modelling of the
data to be recovered.

Unfortunately, available algorithms for (P ∗) work for a very restrained class of
applications only, such as denoising (see [2, 17]), image decompression (see [2, 6, 23]) and
some simple deblurring tasks (see [17]). In addition, these early algorithms also suffer from
numerical weaknesses, such as being either very unstable or poorly convergent. Nevertheless,
the images already obtained are of very high quality, and the goal of this paper is to develop
an efficient and robust method for solving (P∗) in its general form.

1.3. A difficult optimization task

(P∗) is clearly not an easy problem to solve: it is high dimensional, the geometry of the
constraints is not trivial, and, as a result, most available optimization techniques are not
adaptable from a practical point of view; projections, for instance, are simply not computable.
In fact, only sequential unconstrained minimization methods seem to provide reasonable
approaches, and among them three families can be distinguished: penalty methods, dual
methods of the Uzawa type and augmented Lagrangian methods.

The penalty method (see [17] for a complete presentation) is in essence quite
straightforward, but it is known for being ill-conditioned as the penalty parameter increases. As
a result, constraints are very quickly enforced, thus allowing very good structure preservation,
while the total variation is hard to minimize thoroughly and requires many iterations, which
is why the images can sometimes have a noisy aspect. Let us add here that the algorithm
proposed in [17] was unable to cope with operators H which were not quasi-diagonal in the
dictionary, and therefore seemed quite limited. We will see later that this was an unnecessary
assumption.

The Uzawa method, on the other hand, is quite infamous for its poor capability to enforce
the constraints accurately, which in a certain way, makes it the opposite of the penalty method:
applied to (P∗), it should remove noise very efficiently, while textures might be harder to retain.
The results in [2] already show that this ‘poor’ convergence is not a problem in practice, and
it is a well-known fact that the Uzawa method provides a neat tool for problems in which
numerical accuracy in the constraints is not necessarily needed (see, for instance, [9, 12]). Of
great interest for (P∗) is also the fact noted in [2] that the Uzawa method takes full advantage
of the linear constraints, thus allowing fast computations. As yet though, the algorithm derived
in [2] only deals with trivial operators H, and suffers from a fundamental instability that leads
to severe blow-ups.

Augmented Lagrangian methods seem to provide a natural compromise: they are, in a
certain way, a mixture of penalty and dual methods, and as a result, they compensate the
defects of both, and are known for being more efficient (which is why we mention them here).
In practice though, their application can be quite cumbersome: they involve more parameters
that need to be tuned, and in addition, constraints typically appear in a quadratic form (as in
the penalty method), which means that they need to be evaluated at each step. In our case,
this corresponds to transforms in D which for large images and dictionaries become extremely
costly in time: we will thus leave the augmented Lagrangian algorithms aside, and focus on
the simpler methods only.
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1.4. About this paper

In this paper, we discuss the Uzawa method, and show how a stable and efficient algorithm
can be derived which solves (P∗) in its general form. Of special interest is the fact that no
particular requirement is made on the degradation operator H, which makes our algorithm
quite straightforward to use: once the dictionary D has been fixed, only the threshold τ needs
to be chosen. (Theoretically, τ only depends on the noise variance and the dictionary D.) In
particular, high-quality results are obtained without ever inverting or approximating H, thus
allowing quite difficult restoration tasks to be dealt with.

The paper is organized as follows. Section 2 briefly reviews duality for convex
programming problems, and explains how to adapt the Uzawa method to (P∗) in a robust
way. Section 3 details some useful numerical aspects. In particular, formulae for the gradients
are given for an arbitrary choice of the operator H and the dictionary D, thus allowing general
and fast computations5. Section 4 discusses the numerical convergence of our algorithm,
comparing in particular the penalty method to the Uzawa method. Section 5 eventually
illustrates the full range of applications of our method, by comparing its results with the
classical Rudin–Osher–Fatemi algorithm: in the simple denoising case, but also for a difficult
deblurring task, and a ‘mixed’ restoration problem.

2. Uzawa method and total variation

Let us review briefly the points of importance in duality theory for minimization problems of
the form

(P ) :

{
min J (u),

over ϕi(u) � 0, i = 1, . . . , m,

where J is a strictly convex, C1 functional over R
n and the functions ϕi are linear6.

2.1. Classical Lagrangian duality

The generalized Lagrangian for (P ) is defined by

L(u, λ) = J (u) +
m∑

i=1

λiϕi(u).

Since J is strictly convex, L(u, λ) is strictly convex in u, for every λ = (λi) ∈ R
m
+ (Rm

+
denotes the set of all the elements of R

m with positive coordinates). If we further assume
that L(u, λ) is coercive in u, then, for any λ ∈ R

m
+ , the generalized Lagrangian has a unique

minimum uλ = minu L(u, λ), which depends continuously on λ. Theory shows that solving
(P) is equivalent to finding saddle points of L(u, λ), which in turn, by defining

G(λ) = L(uλ, λ),

is equivalent to solving the dual problem

(Q) : max
λ∈R

m
+

G(λ).

As is well known, (Q) is a simpler problem since it consists in maximizing a concave
functional over the positive half-space R

m
+ . Recall also that, if λ∗ is a maximizer of G,

then the corresponding uλ∗ is a solution to (P). The latter can computed by an unconstrained
minimization of L(u, λ∗), over u ∈ R

n.
5 This section partly applies to the penalty method, and improves the corresponding section of [17].
6 For a rigorous discussion on duality, see [5, 9] or [12]. Also, the linearity of the constraints is not a theoretical
necessity, but it is the key for fast computations in practice.
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2.2. Ascent method of the Uzawa type

Since L(u, λ) is strictly convex and coercive in u for all λ ∈ R
m
+ ,G can also be shown to be

differentiable, and very appropriately, its gradient is given by

∂G

∂λi

(λ) = ϕi(uλ).

Note that calculation of this gradient requires one unconstrained minimization of L(u, λ) in
u and one evaluation of the constraints at uλ. In principle, maximization of G can therefore
be done by applying any projected gradient-ascent method, and this is precisely what the
Uzawa method is about. The point of importance is of course the following: while the
generated sequence of dual variables (λp)p∈N converges to λ∗, the sequence of primal variables
uλp , because of the continuous dependence, will converge to u∗, the unique solution to (P).
(A precise description of the algorithm is provided in section 2.4.)

2.3. Application to (P∗)

Recall that we are interested in solving

min T V (u),

|〈H(u) − v,�i〉| � τ, �i ∈ D.

To fit the duality statements presented above, we need linear constraints, C1 smoothness and
strict convexity of J , but also coercivity of the Lagrangian:

• Linear constraints are easy to obtain, by splitting |〈H(u) − v,�i〉| � τ into φ±
i (u) � 0,

with

φ±
i (u) = ±〈H(u) − v,�i〉 − τ.

• C1 smoothness and strict convexity of J (u) are also not an issue since in practice, we
use a common smooth, strictly convex and coercive approximate of the total variation
(see [1]):

T Vβ(u) =
∑

ϕβ(|∇u|) + β(〈u, 11〉)2, (2)

where β > 0 and for any t ∈ R, ϕβ(t) =
√

t2 + β2.
• The main problem is that L(u, λ) may not be coercive. Indeed, since T Vβ(u) has a linear

growth at infinity, the set � defined by

� = {
λ ∈ R

m
+ , L(u, λ) is not coercive in u

}
is not empty. Obviously, for any λ in the interior of �, uλ is not even defined, since
L(u, λ) is not bounded from below.

A very simple way to avoid any problem is given by the following remark: let J (u) � 0
for any u ∈ R

n. Then minimizing J (u) over 	, is the same as minimizing J (u)2 over this
same 	.

Moreover, the following property holds.

Proposition 1. Let J : R
n → R be convex and coercive over R

n and, for any M > 0 and
i ∈ {1, . . . ,M}, let ϕi : R

n → R be linear. Then, for any λ ∈ R
M ,

L(u, λ) = J (u)2 +
M∑
i=1

λiϕi(u)

is coercive in u.
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The proof of the proposition is given in the appendix.
As a result, we obtain the following minimization problem:

(P∗∗) :

{
min T Vβ(u)2,

over φε
i (u) � 0, i = 1, . . . , m, ε = ±.

Clearly, the squaring preserves the smoothness and convexity properties of the functional, but
it allows robust minimizations in u, even for small values of β: the Uzawa method can thus be
applied to (P∗∗) in a straightforward manner. And of course, arguments similar to those given
in [1] show that solutions to (P∗∗) converge to solutions to (P∗) as β goes to 0.

Remark. In [2], a small quadratic term of the form ε‖u‖2 was added to the functional, so
as to ensure the coercivity of the Lagrangian. Even though theoretically valid, this proves
quite useless in practice since for small values of ε, the quadratic term effectively starts to
compensate the linear part only when the norm ‖u‖2 becomes very large. As a result numerical
estimates of uλ tend to blow up, and the algorithm becomes highly unstable. One way around is
of course to choose non-negligible values of ε in which case the quadratic term does stabilize
the algorithm. For this to happen though, it is necessary to have the L2 term of the same
magnitude as the TV norm, but then, the results are not solutions to (P ∗) any more: in fact,
they differ quite significantly from the correct minimum (see section 4).

2.4. Uzawa algorithm for (P∗∗)

The Lagrangian is now given by

L(u, λ) = T V 2(u) +
m∑

i=1

(λi,+ − λi,−)〈H(u),�i〉 + Cλ, (3)

where Cλ is a constant and is thus irrelevant when minimizing L, and the classical Uzawa
algorithm runs as follows:

(i) Make an initial choice for λ0.
(ii) For λp, compute up = arg min L(u, λp) by a steepest gradient descent.

(iii) Make a gradient ascent of the dual functions by the following update: λ
p+1
i,± =(

λ
p

i,± + ρp.φ±
i (up)

)
+, where (t)+ = sup(t, 0) is the projection onto the positive half-

space, and ρp is the step size.
(iv) Stop if the constraints are satisfied, or return to step 2.

Since the algorithm simply consists in a projected gradient ascent, convergence can be
achieved for various choices of steps: constant steps, diverging-sum rule (ρp = ρ0

m
m+p

for
instance) and of course more complicated adaptive methods. Unfortunately, simple rigid
schemes depend heavily on the choice of ρ0, and we observed in practice that large values
of ρ0 could lead to serious blow-offs if not corrected after a few iterations. Adaptive steps
on the other hand are extremely costly, and a steepest gradient ascent for instance is out
of question here, which is why we chose the following compromise: to avoid the (only)
instability observed with rigid schemes, we simply take a constant step ρ0 and verify that the
dual function G(λ) doest not decrease significantly; if it does, the step is divided by two and
the iteration repeated.
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3. Numerical aspects

3.1. Fast unconstrained minimization of L(u, λ)

To minimize L(u, λ) over R
n, we use a steepest gradient descent, and decompose L(u, λ) into

two parts:

L(u, λ) = J 2(u) + Fλ(u).

Here, J (u) = T Vβ(u), and basic algebra gives the following expression:

Fλ(u) =
m∑

i=1

(λi,+ − λi,−)〈H(u),�i〉 = 〈u,Aλ〉,

with

Aλ = H ∗
(∑

i

(λi,+ − λi,−)�i

)
,

H ∗ being the adjoint of H.
The gradient of Fλ(u) in u is then simply given by

∇uL(u, λ) = 2J (u)∇J (u) + Aλ.

Since Aλ can be precomputed, the gradient descent of L(u, λ) becomes straightforward.

Important remarks.

(i) Aλ is easy to compute if D allows a fast evaluation of the following map:

T : (αi) ∈ R
m →

∑
i

αi�i ∈ R
n.

On the other hand, the update of λ (see (iii) in section 2.4), also requires the evaluation of
all the coefficients 〈H(u) − v,�i〉. Hence, the only requirement on D for our algorithm
to work efficiently is that both a decomposition into scalar products 〈w,�i〉, and a
reconstruction mapping T be available. Note that T is just the inverse of w → (〈w,�i〉)i
if (�i)i is an orthonormal basis. If D contains a collection of orthonormal bases, T is the
sum of all the reconstruction operators.

(ii) The above derivation works for any linear operator which can be quickly evaluated along
with its adjoint. This is a rather weak requirement: for a blurring kernel for instance, the
adjoint is given by the symmetric kernel; an inpainting mask is self-adjoint, etc. Note also
that no inversion is ever needed. We will see that having a computable pseudo-inverse
makes the initialization of the Uzawa method more handy, but it is by no means a necessity.

(iii) Also, there is no numerical need to adapt D to H: the algorithm will converge and yield a
result in any case, and this is a major improvement over existing wavelet-based deblurring
algorithms which require quasi-diagonal approximations. Of course, end results will be
better if the dictionary is well adapted: after all, the goal is to minimize E(‖b‖D,∞)!
Note by the way that the constraints can be rewritten as |〈u,H ∗(�i)〉 − 〈v,�i〉| � τ ,
which shows that D should be designed so as to carry information along the thresholding
features H ∗(�).

Our examples will show that good results can be obtained in practice without any deep
analysis: even though some constraints might be weak, the redundancy of D usually
compensates for them by also including other, stronger constraints.
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(iv) Eventually, let us add that the above derivation also holds for more general fidelity terms,
such as the quadratic penalty term proposed in [17]. If ϕ is a smooth function, we can
consider fidelity terms of the form Fλ(u) = ∑

i λiϕ(〈H(u) − v,�i〉), and show that the
resulting gradient in u is given by

∇uFλ(u) = H ∗
(∑

i

λiϕ
′(〈H(u) − v,�i〉)�i

)
.

This makes the diagonal approximation needed in [17] unnecessary.

3.2. Initial choice of the dual variable

As with any gradient-ascent method, a good choice of the initial point (here the multiplier λ0)
is of great importance, since it can spare many iterations. We generalize an idea proposed
originally in [2]: suppose a good approximation u0 to the restoration task is available (through
traditional thresholding, or Wiener filters, or the Rudin–Osher–Fatemi algorithm etc), then
one can define λ0 to be a multiplier such that u0 is the minimum of L(u, λ0). Denoting now
T V 2

β by J , this is equivalent to writing

∇J (u0) + H ∗
(∑

i

(
λ0

i,+ − λ0
i,−

)
�i

)
= 0,

and any solution to this equation is thus a natural candidate for λ0.

When D contains only one orthonormal basis. Assume for now that D contains a single
orthonormal basis D = {�i, i = 1, . . . , n}. H might not be invertible, but if we assume that a
pseudo-inverse H̃ is available such that H ∗ ◦ H̃ ≈ Id, then a reasonable choice is given by

λ0
i,+ − λ0

i,− = −〈H̃ (∇J (u0)),�i〉.
Since the basis is orthonormal, we verify that

H ∗
(∑

i

(
λ0

i,+ − λ0
i,−

)
�i

)
= −H ∗ ◦ H̃ (∇J (u0)) ≈ −∇J (u0).

This, by itself, does not yet determine λ0
i,+ and λ0

i,−. But, recall that the dual problem consists
in maximizing the dual function G(λ). The optimal choice for λ0 is the one that minimizes
λ0

i,+ + λ0
i,− (see (3)) and can easily be shown to be

λ0
i,+ = max(0,−〈H̃ (∇J (u0)),�i〉), λ0

i,− = max(0, 〈H̃ (∇J (u0)),�i〉).
If H is invertible, this choice for λ0 corresponds exactly to the chosen u0. It also works well
in practice if H is not invertible.

Collection of orthonormal bases. Assume now that D is a collection of functions that can
be organized in p orthogonal bases, which we write as Bq = {

�
q

1 . . . �
q
n

}
: typical would-be

wavelet packets. Then obviously, there is more than one multiplier λ that satisfies uλ = u0:
each basis extracted from ∪qBq gives one possible λ0.

Note that searching for the λ that maximizes G over all λ satisfying uλ = u0 is a linear
programming task whose dimensionality is way too large to allow any attempt at solving it.
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We simply propose to compute, as above, one λ0 per basis Bq , and then take the average over
all these λ0.

General H and D. When D is not a collection of orthonormal bases, or if no pseudo-inverse
of H is available, we use a completely different strategy. Let uα be a minimum of the penalty
functional

J (u) + α
∑

i

ϕ(〈H(u) − v,�i〉),

where α > 0 and ϕ(t) = sup(|t | − τ, 0)2, for t ∈ R. Then we know that

∇J (uα) + H ∗
(∑

i

αϕ′ (〈H(uα) − v,�i〉) �i

)
= 0.

Therefore,

λ0
i,+ − λ0

i,− = αϕ′ (〈H(uα) − v,�i〉)
is such that uα minimizes L(u, λ0). Moreover, if all the �i which correspond to active
constraints of the true optimum are independent, it can be shown that the λ0 defined just above
tends to λ∗ as α goes to infinity (see [12]). In practice, a few iterations of the penalty method
thus provide a good initialization of the dual variable, even for dictionaries which are not
orthonormal at all. Clearly though, this initialization requires more computations than that
presented in the previous paragraph.

4. Numerical convergence

To discuss the convergence of our algorithm, we run a simple denoising experiment, in which
the original image is degraded with a Gaussian noise of standard deviation σ = 20. We then
solve (P∗) with a threshold τ = 70, and a large dictionary D containing 16 bases: four fully
decomposed packet trees of depths one to four, and four of their translated (shifted) versions.

The result after five iterations can be seen in figure 1 (top right), and is quite satisfactory:
most of the structures are preserved, while all the noise has been removed. If we let the
algorithm iterate, no notable change is introduced. For comparison purposes we also run the
penalty method over the same number of iterations, with a large penalty parameter α = 1000,
and the resulting image is given at bottom left, while bottom right shows the image obtained
with the ‘non-squared’ algorithm from [2], in the case where it converges (ε = 0.01, see the
next paragraph).

As can be seen, the penalty method has trouble removing the noise (i.e. minimizing the
total variation) efficiently, and this is confirmed by the curves in figure 2. The Uzawa method,
on the other hand, is clearly not enforcing the constraints as thoroughly (see figure 2 and
table 1): the maximum of the constraints decreases extremely slowly towards the threshold
τ . Still, it should be added that, after a few iterations, less than 1% of the constraints remain
above τ .

A very interesting experiment then consists of feeding the Uzawa image as the input for
the penalty method. Since the latter acts mostly like a projection (see figure 2), a few iterations
of it suffice in fact to force the remaining 1% unsatisfied constraints below the threshold. The
result is visually almost identical to the first Uzawa output: the difference is only visible when
rescaling the residual, which as figure 3 shows, is mostly made of lightly contrasted textures.
(To give an idea, the residual has an l∞ norm of 6 on a 255 grey scale.)

The algorithm thus produces quite satisfactory solutions to (P∗): obviously, no decimal
accuracy is to be expected, but the results are of great visual quality, and as we have just
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Figure 1. Top left: original noisy picture (σ = 20). Top right: result after five iterations of the
Uzawa method; numerical enforcement of the constraints is not achieved. Bottom left: result of
the penalty method. Bottom right: result with the non-squared Uzawa algorithm (ε = 0.01).

Table 1. Statistics of the end images for each method. Max: maximum of the constraints. Mean:
mean of the active constraints only. Proportion: proportion of active constraints.

Total variation Max Mean Proportion (%)

Penalty method 11.01 70.030 70.005 0.010
Uzawa method 8.578 72.413 70.271 0.164
Uzawa + penalty 9.003 70.026 70.004 0.009

demonstrated, not so far from the exact minimum. Should one be really concerned with
very precise convergence, the combined ‘projection’ proposed above provides a thoroughly
minimized and constrained image. Note that in theory, augmented Lagrangians were designed
to do exactly this: combine the penalty with the Uzawa method in one efficient algorithm,
which, applied here, might lead to even more accurate results. (At very high computational
costs though, and with no noticeable visual improvement.)

Remark. As mentioned earlier, the squaring of the total variation is decisive in making the
algorithm convergent. It is true that without the squaring, the Uzawa method can still lead
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Figure 2. Iterating the penalty and the Uzawa method. Top left: total variation minimization.
Top right: maximum of the constraints. Bottom left: mean of the active constraints (they usually
represent less than 1% of all constraints). Bottom right: the penalty method acts like a projection.
(The time scale being in number of iterations, it should be remembered that one iteration of the
Uzawa algorithm requires more computations than one iteration of the penalty method.)

Figure 3. Left: Uzawa method followed by a penalty projection. Right: rescaled difference
between the plain Uzawa method, and the projected Uzawa–penalty result.
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Figure 4. Left: denoising with the Rudin–Osher–Fatemi algorithm. Right: solution to (P ∗) with
a complete dictionary of wavelet packets.

to good images (see [2]), provided though that it is very well initialized, and that only a few
iterations are carried out: in most cases though, if this ‘non-squared’ algorithm is allowed to
iterate long enough (10, 20 or more iterations), it is almost guaranteed to blow up at one point
or another, unless the parameter ε is large enough. The bottom right of figure 1 shows the
image obtained with ε = 0.01, which corresponds to the first value for which the algorithm
behaves stably. It is clear from the picture that the total variation is not thoroughly minimized,
and this is because the algorithm converges to the minimum of J (u) = T V (u) + ε‖u‖2 under
the l∞ constraints. Actually, for the displayed image, the (normalized) total variation is
‖u‖T V = 9.438, but the (normalized) quadratic term takes the value ε‖u‖2 = 171.9, which
makes it far from being negligible.

Our ‘squared’ algorithm, on the other hand, is stable and converges even when it is not
well initialized. We have indeed tried several random initializations, always obtaining the
same results, even though the amount of time required for convergence is (quite obviously)
much longer than with the initialization given in the previous section.

At this point, we might add a few words on the speed of convergence: the image in
figure 1 is obtained after only five iterations, and is already of high quality. But denoising
is a ‘simple’ case, and for more general restoration tasks where H is more difficult to invert,
the algorithm typically requires around 20 iterations or sometimes even more to yield a final
high-quality result. (Note that each iteration corresponds to two transforms in D, and to one
fast unconstrained minimization.) Again, the number of iterations depends also on the chosen
initialization; the ones we proposed earlier are generally quite efficient.

5. Results

5.1. Denoising

To complete the previous section, we compare the images obtained for the denoising
experiment to that obtained with the Rudin–Osher–Fatemi algorithm. The result can be
seen in figure 4: clearly, textures are much better preserved, and the overall aspect is much
sharper.
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Figure 5. Left: filter with holes provided by Alcatel Space Industry. It is shown here in the
frequency domain, and its values ranging in [0, 1] have been quantized for display (the black part
corresponds to 0, the first grey level corresponds to the range ]0, 0.12], . . .). Right: blurred image.

Figure 6. Left: deblurring with the Rudin–Osher–Fatemi algorithm. Right: deblurring with our
approach.

5.2. Deblurring

Next, we tackle a difficult deblurring task (with the courtesy of Alcatel Space Industry) which
involves the blurring kernel displayed in figure 5, and a Gaussian noise of variance σ = 2.
Besides its anisotropy, the kernel shows important holes at medium frequencies, and as a
result, its inversion is quite delicate. In fact, it is hard to approximate with traditional methods:
wavelet packets, for example, have dyadic supports which do not fit the holes in the filter at all.

Still, our method solves this in a straightforward manner, without requiring much
more work than the denoising problems presented above: running the Rudin–Osher–Fatemi
algorithm (see [20]), we compute u0, from which we obtain the corresponding initial estimate
for λ0 in the manner described earlier. Using the same wavelet-packet dictionary as before,
we then run 20 iterations of the Uzawa method with a threshold τ = 5. The result is displayed
in figure 6: without any noise blow-up, or edge blurring, the algorithm renders a sharp image,
with most of the original texture. The Rudin–Osher–Fatemi result is also displayed, clearly
showing the difference in the texture preservation.
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Figure 7. A mixed degradation: after the Alcatel blurring, 50% of the pixels are removed along with
the borders (top). Bottom left: the Rudin–Osher–Fatemi result. Bottom right: the reconstruction
with this paper’s algorithm.

5.3. Limits of the model

Finally, we push the difficulty a little further, by assuming that 50% of the blurred image’s
pixels are lost, along with its borders. The degradation operator is thus of the form H = H2◦H1

where H1 is a convolution, and H2 an inpainting mask.
We then solve (P∗) with the same parameters as above, except that the initialization is

refined by first applying a straightforward averaging on the destroyed image to fill in the
holes. Figure 7 shows the result after 50 iterations, along with the degraded image, and the
Rudin–Osher–Fatemi result. Note that this time, the solution to (P ∗) is not so different from
the classical Rudin–Osher–Fatemi approach: some textures are better captured with the L∞

attach, but only slightly, and this is due to the fact that the dictionary is by no means adapted
to the degradation operator. Recall from section 3 that the L∞ constraints are given by the
coefficients 〈H(u),�〉, or equivalently, 〈u,H ∗(�)〉. But here, H(u) and H ∗(�) are images
lacking 50% of their pixels, and because of this, they will in general be extremely irregular.
Consequently, the class of images which have a sparse representation in the family {H ∗(�)}
should be very narrow, and the L∞ constraint has no reason to carry much more information
than the classical L2 fidelity term.

What this last experiment shows is that even though the adaptation of D to H is not
necessary to obtain good images, it can still play an important role. In fact, this role still needs
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to be studied more thoroughly and the question remains open: given a class of images and a
degradation H, how should the dictionary D be designed, if one is to aim at ‘optimal’ results?

5.4. More restoration examples

Because of limitations of space, we could only discuss a few examples here, and we invite
the reader to visit the following webpage, where more results are presented and discussed:
http://www.acm.caltech.edu/∼‘lintner/restoration

Acknowledgments

The authors would like to thank Frédéric Falzon (Alcatel Space) for his support. The work of
SL was supported by Alcatel Space Industry, while studying at the Ecole Normale Supérieure
de Cachan (France).

Appendix. Proof of proposition 1

The proof is based on the following lemma. This lemma states that a convex and coercive
function has, at least, a linear growth towards infinity.

Lemma 1. Let J : R
n → R be convex and coercive over R

n. There exist C1 > 0 and C2 ∈ R

such that, for any u ∈ R
n,

J (u) � C1‖u‖2 + C2.

Proof. Let us first remark that, since J is convex and coercive, its level sets are
convex and compact. Therefore, for any g ∈ R

n, satisfying g �= 0, there exists vg ,
in the level set {v, J (v) � in fwJ (w) + 1}, such that g belongs to the normal cone to
{v, J (v) � in fwJ (w) + 1}, at vg . Therefore, we know there exists αg > 0 such that
αgg ∈ ∂J (vg), where ∂J (vg) denotes the sub-differential of J , at vg (see [21], p 222). So, we
have, for any u ∈ R

n,

J (u) � 〈αgg, u − vg〉 + J (vg).

Let (gj )1�j�n be the canonical basis of R
n. We can repeat the above construction, for all

εgj , with ε = ±1 and j ∈ {1, . . . , n}. We therefore obtain that, for any j ∈ {1, . . . , n} and
any ε = ±1, there exist vε

j ∈ R
n and αε

j > 0 such that

J (u) �
〈
αε

j εgj , u − vε
j

〉
+ J

(
vε

j

)
,

for all u ∈ R
n.

So, we have for any u ∈ R
n,

J (u) � max
j,ε

(〈
αε

j εgj , u
〉
+ Cε

j

)
,

with Cε
j = J

(
vε

j

) − 〈
αε

j εgj , v
ε
j

〉
. Denoting C2 = minj,ε Cε

j , we obtain

J (u) � max
j,ε

αε
j 〈εgj , u〉 + C2.

Noting C ′
1 = minj,ε αε

j , we have

J (u) � C ′
1 max

j,ε
〈εgj , u〉 + C2 = C ′

1‖u‖∞ + C2,

and C ′
1 > 0. We can then conclude. Indeed, for any u ∈ R

n, ‖u‖∞ � ‖u‖2√
n

. �
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Proof of proposition 1. Since J is convex and coercive, lemma 1 shows that there exist
C1 > 0 and C2 ∈ R such that, for any u ∈ R

n,

J (u) � C1‖u‖2 + C2.

Now, for any i ∈ {1, . . . ,M}, there exists wi ∈ R
n such that

ϕi(u) = 〈u,wi〉.
Therefore, we have, for any λ ∈ R

M
+ , and any u ∈ R

n such that ‖u‖2 � −C2
C1

,

L(u, λ) � (C1‖u‖2 + C2)
2 +

〈
u,

M∑
i=1

λiwi

〉

� (C1‖u‖2 + C2)
2 − ‖u‖2

∥∥∥∥∥
M∑
i=1

λiwi

∥∥∥∥∥
2

,

which guarantees that, regardless of λ ∈ R
M , L(u, λ) is coercive in u. �
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