
Noname manuscript No.
(will be inserted by the editor)

Toward Fast Transform Learning

Olivier Chabiron · François Malgouyres · Jean-Yves Tourneret ·
Nicolas Dobigeon

the date of receipt and acceptance should be inserted later

Abstract Dictionary learning is a matrix factor-
ization problem. It aims at finding a dictionary
of atoms that best represents an image or a class
of images according to a given objective, usually
sparsely. It has led to many state-of-the-art algo-
rithms in image processing. In practice, all algo-
rithms performing dictionary learning iteratively
estimate the dictionary and a sparse representation
of the images using this dictionary. However, the
numerical complexity of dictionary learning re-
stricts its use to atoms with a small support since
the computations using the constructed dictionar-
ies require too much resources to be deployed for
large scale applications.

In order to alleviate these issues, this paper in-
troduces a new strategy to learn dictionaries com-
posed of atoms obtained by translating the compo-
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sition of K convolutions with S-sparse kernels of
known support. The dictionary update step associ-
ated with this strategy is a non-convex optimiza-
tion problem. The purpose of the present paper is
to study this non-convex problem. We first refor-
mulate the problem to reduce the number of its
irrelevant stationary points. A Gauss-Seidel type
algorithm, referred to as Alternative Least Square
Algorithm, is introduced for its resolution. The
search space of the considered optimization prob-
lem is of dimension KS, which is typically smaller
than the size of the target atom and is much smaller
than the size of the image. Moreover, the complex-
ity of the algorithm is linear with respect to the size
of the image, allowing larger atoms to be learned
(as opposed to small patches). The conducted ex-
periments show that, when K is large (say K = 10),
we are able to approximate with a very good accu-
racy many atoms such as wavelets, curvelets, sinc
functions or cosines. We also argue empirically
that surprisingly the algorithm generally converges
to a global minimum for large values of K and S.

Keywords dictionary learning · matrix factor-
ization · fast transform · sparse representation ·
global optimization · Gauss-Seidel
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1 Introduction

1.1 Problem Formulation

We consider d ∈ N and d-dimensional signals liv-
ing in a domain P ⊂ Zd (i.e., d = 1 for 1D sig-
nals, d = 2 for 2D images,...). Typically, P =

{0, . . . ,N − 1}d , where N ∈ N is the number of
“pixels” along each axis. We consider an ideal tar-
get atom H ∈ RP which we want to recover. To
fix ideas, one might think of the target atom as a
curvelet in 2D or an apodized modified discrete
cosine in 1D. A weighted sum u ∈ RP of transla-
tions of the target atom corrupted by additive noise
is observed. More precisely, we are interested in
measurements defined by

u = α∗H +b, (1)

where b ∈RP is an additive noise, ∗ stands for the
circular discrete convolution1 in dimension d and
α ∈ RP is a code of known coefficients. A sim-
ple example is obtained when α is a Dirac delta
function. In this situation u reduces to a noisy ver-
sion of H. Another interesting situation is when
α is a sparse code. This situation turns out to be
more favorable since, in that case, H is seen sev-
eral times with different realizations of the noise.
The typical framework we have in mind includes
situations where α is a sparse code, and where α

contains coefficients that have been estimated by
dictionary learning (DL) strategies such as those
described in Section 1.2. In such situations, a DL
algorithm alternates an estimation of α and an esti-
mation of H. Of course, α is only approximatively
known and the stability of the proposed estimation
of H with respect to the noise affecting α is crucial.
Note finally that no assumption or constraint about
the code α is required. However, the performance
of an estimator of H from the data u defined in (1)
clearly depends on the conditioning of the convo-
lution with respect to the value of α.

The problem addressed in this paper consists
of both estimating the unknown target atom H and
expressing it as a composition of convolutions of

1 All the signals in RP are extended by periodization to
be defined at any point in Zd .

sparse kernels. More precisely, we consider an in-
teger K ≥ 2 and K convolutions of sparse kernels
(hk)1≤k≤K ∈ (RP )K . We assume that all these ker-
nels have less than a fixed number S of non-zero
elements (i.e., that they are at most S-sparse). Fur-
thermore, we assume that the support of the ker-
nels (i.e., the locations in P of their non-zero ele-
ments) are known or pre-set. Similarly to the code
α, the location of the non-zero elements can be
designed manually or can be estimated by some
other means. For instance, the supports could be
obtained by alternating support and kernel estima-
tions.

In order to manipulate the kernel supports, we
define, for all k ∈ {1, . . . ,K}, an injective support
mapping Sk ∈ P S. The range of the support map-
ping is defined by

rg
(

Sk
)
= {Sk(1), . . . ,Sk(S)}.

The set of constraints on the support of hk (denoted
by supp

(
hk
)
) takes the form

supp
(

hk
)
⊂ rg

(
Sk
)

,∀k ∈ {1, . . . ,K}. (2)

For 1D signals, examples of simple support map-
pings include Sk(s) = k(s− 1), ∀s ∈ {1, . . . ,S}. A
similar support is displayed in Figure 1 for 2D
images. In addition to the support constraint (2),
the convolution of the K kernels h = (hk)1≤k≤K ∈
(RP )K , should approximate the target atom H, i.e.,

h1 ∗ · · · ∗hK ≈ H.

The motivations for considering such a decompo-
sition are detailed in Section 1.2. They are both to
approximate a large target atom H with a model
containing few degrees of freedom and to obtain
target atoms whose manipulation is numerically
efficient. As an illustration, we mention the ap-
proximation of a curvelet target atom by a compo-
sition of convolutions that will receive a specific
attention in our experiments (see Section 4.3.1).

Therefore, we propose to solve the following
optimization problem

(P0) :


argminh∈(RP )K ‖α∗h1 ∗ · · · ∗hK − u‖2

2,

subject to supp
(
hk
)
⊂ rg

(
Sk
)
,

∀k ∈ {1, . . . ,K}.
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where ‖.‖2 stands for the usual Euclidean2 norm in
RP . For instance, in the favorable case where the
code α is a Dirac delta function and b = 0 (noise-
less case), the solution of (P0) approximates the
target atom H by a composition of sparse convolu-
tions. At the other extreme, when the convolution
with α is ill-conditioned and the noise is signifi-
cant, the solution of (P0) estimates the target atom
H and regularizes it according to the composition
of sparse convolution model.

The problem (P0) is non convex. Thus, de-
pending on the values of K ≥ 2, (Sk)1≤k≤K ∈
(P S)K , α ∈ RP and u ∈ RP , it might be difficult
or impossible to find a good approximation of a
global minimizer of (P0). The main objective of
this paper is to study if such a problem lends itself
to global optimization. Another important objec-
tive is to assess empirically if the computed com-
positions of convolutions provide good approxi-
mations of some atoms usually encountered in ap-
plications. The current paper gives empirical an-
swers to these questions. In order to do so, it con-
tains the description of an algorithm for solving
(P0) and its performance analysis.

Before describing the proposed algorithm, we
mention some links between the optimization
problem (P0) and some known issues in sparse
representation.

1.2 Motivations

The primary motivation for considering the ob-
servation model (1) comes from DL, which was
pioneered by Lewicki and Sejnowski (2000); Ol-
shausen and Field (1997) and has received a grow-
ing attention during the last ten years. It can be
viewed as a way of representing data using a sparse
representation. We invite the reader to consult the
book written by Elad (2010) for more details about
sparse representations and DL. Given a set of L im-

2 RP and RS are endowed with the usual scalar product
denoted 〈., .〉 and the usual Euclidean norm denoted ‖ · ‖2.
We use the same notation whatever the vector space. We
expect that the notation will not be ambiguous, once in con-
text.

ages3 (ul)1≤l≤L ∈ (RP )L, the archetype of the DL
strategy is to look for a dictionary as the solution
of the following optimization problem

argminH,(αl)1≤l≤L

L

∑
l=1
‖Hα

l−ul‖2
2 +λ‖αl‖∗,

where H is a matrix whose columns have a
bounded norm and form the atoms of the dictio-
nary, λ ≥ 0 is a regularization parameter and ‖.‖∗
is a sparsity-inducing norm such as the counting
function (or `0 pseudo-norm) or the usual `1 norm.
The DL optimization problem is sometimes for-
mulated by imposing a constraint on ‖αl‖∗. The
resulting non-convex problem can be solved (or
approximatively solved) by many methods includ-
ing the “method of optimal direction” (MOD) (En-
gan et al, 1999) and, in a different manner, by K-
SVD (Aharon et al, 2006). To better reflect the
distribution of images, it can also be useful to in-
crease the number of images and to use an on-
line strategy (Mairal et al, 2010). Finally, note that
an alternative model has been presented for task
driven DL by Mairal et al (2012). Algorithmically,
all these approaches rely on alternatively updating
the codes (αl)1≤l≤L and the dictionary H.

The problem considered in the current paper
mimics an update step of the dictionary. In this
context, α is fixed and the target atom H is a col-
umn of the dictionary H. The dictionary H is made
of translations of the target atom H. The main nov-
elty of the proposed approach is to impose the
learned atoms to be a composition of convolutions
of sparse kernels. The interest for such a constraint
is that it provides numerically effective dictionar-
ies and permits to consider larger atoms. Indeed,
the reconstruction operator
RP −→ RP

α 7−→ α∗h1 ∗ . . .∗hK

and its adjoint can be computed by K convolu-
tions with kernels of size S. As a consequence,
the computation of the reconstruction operator and
its adjoint have a computational complexity of
O(KS#P ), where #P denotes the cardinality of
the set P . Depending on the support mappings

3 Usually, DL is applied to small images such as patches
extracted from large images.
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(Sk)1≤k≤K , this complexity can be much smaller
than a convolution with a kernel filling the “reach-
able support”

S =

{
p ∈ P , ∃p1 ∈ rg

(
S1) , . . . , pK ∈ rg

(
SK) ,

K

∑
k=1

pk = p
}
. (3)

In the latter case, the computational complexity
is indeed equal to O(#S#P ) or O(#P log(#P )) if
the convolutions are computed using a Fast Fourier
Transform (FFT).

Moreover, when several target atoms are con-
sidered, the convolutions of sparse kernels can be
arranged according to a tree structure to save even
more computing resources. The typical example of
an existing dictionary having a similar structure
is the dictionary made of undecimated wavelets
(Starck et al, 2007) or undecimated wavelet pack-
ets.

Let us detail an example of a fast transform
learning model that can benefit from the current
study. Consider a tree and associate to each edge
e ∈ E of the tree a sparse kernel he ∈ RP and a
support mapping Se ∈ P S; denote as L the set of
all the leaves l of the tree; denote as αl ∈ RP the
coefficients of the leaf l ∈ L and as c(l) the path
containing all the edges linking the root of the tree
to leaf l, for every l ∈ L. The reconstruction of a
code α= (αl)l∈L ∈

(
RP )L with the fast transform

defined by the proposed tree can be defined as

Hα = ∑
l∈L

α
l ∗
(
∗e∈c(l)h

e
)
,

where ∗e∈c(l)he denotes the composition of convo-
lutions between all the kernels associated with the
edges of the path c(l). The adjoint of H is easily
established given this formula.

A dictionary learning problem can then be de-
fined as follows:

argmin ∑
L
l=1 ‖Hαl−ul‖2

2 + γ‖αl‖∗
subject to h ∈ (RP )E,(αl) ∈ ((RP )L)L,

and supp(he)⊂ rg(Se) ,∀e ∈ E,

and ‖he‖2 ≤ 1,∀e ∈ E.

When L = 1 and the tree only contains one leaf,
the dictionary update is exactly the problem we are

considering in this paper (modulo the constraint
‖he‖2 ≤ 1). In particular, it seems impossible to
solve the dictionary update of the above problem
if we are not able to solve the problem (P0). In
other words, solving the problem (P0) is a step to-
ward fast transform learning (hence the name of
the paper).

To conclude with the motivations, having a nu-
merically effective scheme for using a dictionary
is crucial since the computational complexity of
most algorithms favoring sparsity is proportional
to the computational complexity of the matrix-
vector multiplications involving H and its trans-
pose. In particular, for the DL algorithms alternat-
ing a sparse coding step and a dictionary update
step, the sparse coding steps require less compu-
tational resources. These resources are therefore
available for the dictionary update.

1.3 Related Works

Before going ahead, it is interesting to describe
the structures of the dictionaries that have been
considered in DL. Structured and parametric dic-
tionaries have recently been considered with in-
creasing interest. Interested readers can find a con-
cise bibliographical note on that subject by Ru-
binstein et al (2010a). In particular, the struc-
tures studied so far include orthobases (Dobigeon
and Tourneret, 2010) and unions of orthobases
(Lesage et al, 2005), translation invariant dic-
tionaries (Mailhé et al, 2008), concatenation of
learned and fixed dictionaries (Peyré et al, 2010),
dictionaries composed of patches with multiple
sizes (Mairal et al, 2008), dictionaries divided into
ordered pieces (Thiagarajan et al, 2011), structures
induced by structured codes (Jenatton et al, 2010,
2011), and tight frames (Cai et al, 2013). Other
interesting dictionaries are characterized by sev-
eral layers. These dictionaries can be constructed
as the composition of a fixed transform and learned
dictionaries (Rubinstein et al, 2010b; Ophir et al,
2011). Dictionaries made of two layers based on a
sparsifying transform and a sampling matrix (both
layers can be learned by the algorithm investi-
gated by Duarte-Carvajalino and Sapiro (2009))
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have also been considered. Another attempt re-
quires two layers to build separable atoms (Rig-
amonti et al, 2013). To the best of our knowl-
edge, there only exists a few attempts for build-
ing dictionaries involving an arbitrary number of
layers. In a slightly different context, dictionaries
structured by Kronecker products have been pro-
posed by Tsiligkaridis et al (2013). Interestingly,
despite the non-convexity of the corresponding en-
ergy, it is possible to find some of its global min-
ima (Wiesel, 2012). Finally, dictionaries structured
by wavelet-like trees (similar to one we are target-
ing in this paper) using a dictionary update based
on a gradient descent have been studied by Sallee
and Olshausen (2002).

When compared to the dictionaries mentioned
in this Section, the structure of the proposed dic-
tionary aims at obtaining a numerically efficient
translation invariant dictionary, whose elementary
atoms H can have large supports. Moreover, the
update of the proposed structured dictionary re-
duces to a global optimization problem. Surpris-
ingly, the proposed algorithm provides interesting
solutions for relatively large values of the number
of layers K, e.g., K = 10 seems very reasonable.

It is interesting to mention that the decompo-
sition of H as a convolution of K kernels makes
the problem similar to the design of filter-banks
that has received a considerable attention in the
wavelet community. For instance, filters defined
as convolutions of high-pass and low-pass ker-
nels with perfect reconstruction properties have
been studied in (Delsarte et al, 1992) and (Macq
and Mertes, 1993). These filters are determined by
maximizing an appropriate coding gain for image
compression applications. Other methods for de-
signing FIR and IIR filters are also mentioned in
the review paper (Lu and Antoniou, 2000) (based
on weighted least-squares or on a minimax ap-
proach). Finally, we would like to point out that
the filters resulting from our algorithm can vary
from scale to scale, as for for the “non-stationary”
wavelet transform (Uhl, 1996) or wavelet-packets
(Cohen and Séré, 1996). The main novelty of the
proposed work is that our filters are constructed as
a composition of convolutions with sparse kernels,

which cannot be obtained with the existing meth-
ods.

1.4 Paper Organization

The paper is organized as follows. Section 1
formulates the proposed dictionary update and
provides motivations with references to previous
works. A more practical problem formulation is
introduced in Section 2. Section 3 presents an al-
gorithm for approximating a dictionary atom as a
composition of convolutions, in order to build a
fast transform. The algorithm is based on an al-
ternating least squares strategy whose steps are
detailed carefully. Simulation results illustrating
the performance of the proposed algorithm and its
convergence properties are provided in Sections 4
and 5. Conclusions and future work are reported in
Section 6.

2 Reformulating (P0)

The problem (P0) is not very tractable because
it has many stationary points. Denote as h =

(hk)1≤k≤K ∈ (RP )K the sequence of kernels and
as E the objective function of (P0)

E (h) = ‖α∗h1 ∗ · · · ∗hK − u‖2
2.

The gradient of E is

∇E (h) =
(

∂E
∂h1 (h) , . . . ,

∂E
∂hK (h)

)
,

where ∂E
∂hk denotes the partial differential of the en-

ergy function E, for any k ∈ {1, . . . ,K}. The latter
can be calculated easily, leading to

∂E
∂hk (h) = 2H̃k ∗ (α∗h1 ∗ · · · ∗hK−u), (4)

where

Hk = α∗h1 ∗ · · · ∗hk−1 ∗hk+1 ∗ · · · ∗hK , (5)

and where the operator .̃ is defined for any h ∈ RP

as

h̃p = h−p, ∀p ∈ P . (6)
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Note that the notation Hk has been used instead of
Hk(h) to improve readability.

As soon as hk1 = hk2 = 0 for two distinct values
of k1 and k2 ∈ {1, . . . ,K}, we have Hk = 0, for all
k ∈ {1, . . . ,K}, and thus

∂E
∂hk (h) = 0 ∀k ∈ {1, . . .K}.

As a consequence, nothing prevents a minimiza-
tion algorithm solving (P0) to get stuck at one of
these stationary points, although it is usually not a
global minimizer of (P0).

Furthermore, ∀h ∈ (RP )K and ∀(µk)1≤k≤K ∈
RK such that ∏

K
k=1 µk = 1, we have

E
[
(µkhk)1≤k≤K

]
= E (h) ,

while, for any k ∈ {1, . . . ,K},

∂E
∂hk

[
(µkhk)1≤k≤K

]
=

1
µk

∂E
∂hk (h) .

This results in an unbalanced situation where the
partial differentials and the gradient are large along
directions of small kernels. These kernels are
therefore favoured which does not seem justified.

To address the two issues mentioned above and
reduce the number of irrelevant stationary points,
we propose to include an additional constraint for
the norms of the kernels hk ∈RP , ∀k ∈ {1, . . . ,K}.
More precisely, we consider a norm-to-one con-
straint ‖hk‖2 = 1, ∀k ∈ {1, . . . ,K} and introduce
an additional scaling factor λ ≥ 0, to scale the re-
sult according to the target atom. To simplify no-
tations, we write

D =

{
h = (hk)1≤k≤K ∈ (RP )K | ∀k ∈ {1, . . . ,K},

‖hk‖2 = 1 and supp
(

hk
)
⊂ rg

(
Sk
)}

and define the following optimization problem

(P1) : argminλ≥0,h∈D ‖λα∗h1 ∗ · · · ∗hK − u‖2
2.

Let us now analyze the properties of the opti-
mization problem (P1).

Proposition 1 (Existence of a solution) For any
(u,α,(Sk)1≤k≤K) ∈

(
RP ×RP × (P S)K

)
, if

∀h ∈D, α∗h1 ∗ . . .∗hK 6= 0, (7)

then the problem (P1) has a minimizer.
This property relies on the regularity of the ob-

jective function and the compacity/coercivity of
the problem. Its proof is detailed in Appendix.

Note that there might be refined alternatives
to the condition (7). However, the investigation of
the tightest condition for the existence of a mini-
mizer of (P1) is clearly not the subject of this pa-
per. Concerning the existence of a solution, note
that the objective function of (P1) is not necessar-
ily coercive, e.g., it is not coercive if there exists
h∈ (RP )K such that α∗h1∗ . . .∗hK = 0. In this sit-
uation, a minimizing sequence might be such that
λα∗h1 ∗ . . .∗hK and (hk)1≤k≤K have accumulation
points whereas α∗h1 ∗ . . .∗hK and λ go towards 0
and infinity. Note finally that we typically expect
the condition (7) to hold as soon as the supports
(Sk)1≤k≤K ∈ (P S)K and supp(α) are sufficiently
localized. In our experiments, we have never en-
countered a situation where α∗h1 ∗ . . .∗hK equals
zero.

We also have:
Proposition 2 ((P1) is equivalent to (P0)) Let
(u,α,(Sk)1≤k≤K) ∈

(
RP ×RP × (P S)K

)
be such

that (7) holds. For any (λ,h) ∈ R× (RP )K , we
consider the kernels g = (gk)1≤k≤K ∈ (RP )K

defined by

g1 = λ h1 and gk = hk, ∀k ∈ {2, . . . ,K}. (8)

The following statements hold:

1. if (λ,h) ∈ R× (RP )K is a stationary point of
(P1) and λ > 0 then g is a stationary point of
(P0).

2. if (λ,h) ∈ R× (RP )K is a global minimizer of
(P1) then g is a global minimizer of (P0).

The proof relies on the homogeneity of the
problems (P0) and (P1). The proof of the propo-
sition is detailed in Appendix.

To conclude this part, it is interesting to men-
tion some structural properties of problem (P1).
The objective function of (P1) is a polynomial
of degree 2K. Thus, it is infinitely differentiable
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and non-negative. The objective function of (P1) is
non-convex. However, for any k ∈ {1, . . . ,K}, the
objective function of (P1) is marginally quadratic
and convex with respect to hk. Finally, D is a
smooth but non convex set. It is not difficult to
check that the following mapping provides an or-
thogonal projection onto D:

(RP )K −→ D

(hk)1≤k≤K 7−→ (h
k
)1≤k≤K ,

where

h
k
=


hk
1

rg(Sk)
‖hk1

rg(Sk)‖2
, if ‖hk

1rg(Sk)‖2 6= 0,

1√
S
1rg(Sk) , otherwise,

where 1rg(Sk) is the characteristic function of

rg
(
Sk
)
.

3 The alternating least squares algorithm

3.1 Principle of the algorithm

The objective function in (P1) being non-convex,
there is in general no guarantee to find a global
or a local minimum of (P1). However, it makes
sense to build a method finding a stationary point
of (P1). Also, because the considered problem has
similarities with the best rank 1 approximation of
tensors, we have considered an algorithm inspired
from a well known algorithm solving this tensor
problem: The alternating least squares (ALS) al-
gorithm (De Lathauwer et al, 2000). This ALS al-
gorithm alternates minimizations with respect to
the kernels hk, ∀k ∈ {1, . . . ,K}. The resulting al-
gorithm is often referred to as a “Gauss-Seidel” or
“block coordinate descent”. Although our conver-
gence analysis will not rely on these results let us
mention that some convergence properties of these
algorithms have been studied in (Luo and Tseng,
1992; Grippo and Sciandrone, 2000; Razaviyayn
M. et al, 2013; Attouch et al, 2013). As we will
see, the ALS algorithm takes advantage of the fact
that, when all the kernels but one are fixed, the ob-
jective function is a quadratic function of this latter
kernel. As a consequence, every step of the algo-
rithm will have a closed form solution and thus has
a low complexity.

Using a better minimization algorithm might
help to reduce the time required for the opti-
mization. Among the alternating strategies, we
can think of proximal Gauss-Seidel strategy (see
(Attouch et al, 2010)) or proximal alternating
linerarized minimization (see (Bolte et al, 2013)
) or finally a variant (see Chouzenoux et al
(2013)). Also, gradient descent or quasi-Newton
algorithms might provide good convergence rates.
Finally, the reader can find standard results on all
the issues related to optimization in (Bertsekas,
2003).

More precisely, for any k ∈ {1, . . . ,K}, we pro-
pose to (alternatively) solve the following least
squares (LS) problems

(Pk) :


argmin

λ≥0,h∈RP ‖λα∗h1 ∗ · · · ∗hk−1

∗h∗hk+1 ∗ . . .∗hK−u‖2
2,

subject to supp(h)⊂ rg
(
Sk
)

and ‖h‖2 = 1.

where the kernels (hk′
p )p∈P are fixed ∀k′ 6= k. The

resulting alternating least square (ALS) algorithm
is described in Algo. 1.

Algorithm 1: ALS algorithm
Input:
u: target measurements;
α: known coefficients;
(Sk)1≤k≤K : supports of the kernels (hk)1≤k≤K .
Output:
λ and kernels (hk)1≤k≤K such that λh1 ∗ . . .∗hK ≈H.

begin
Initialize the kernels (hk)1≤k≤K ;
while not converged do

for k = 1 ,..., K do
Update λ and hk with a minimizer of
(Pk).

3.2 Resolution of (Pk)

Before studying the existence of a minimizer of
(Pk), let us rewrite the problem (Pk) in a simpler
form. Since the embedding from RS in rg

(
Sk
)
⊂
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RP and the operator
RP −→ RP

h 7−→ α∗h1 ∗ · · · ∗hk−1 ∗h∗hk+1 ∗ . . .∗hK ,

are linear, their composition can be described by
a matrix-vector product Ckh, where the vector h ∈
RS and Ck is a (#P )× S matrix. (The matrix Ck
will be detailed in Section 3.3.)

A solution of (Pk) can therefore be constructed
by embedding in rg

(
Sk
)
⊂ RP a solution of the

equivalent problem (still denoted (Pk), for simplic-
ity)

(Pk) :
{

argminλ≥0,h∈RS ‖λCkh − u‖2
2

subject to ‖h‖2 = 1.

where we consider that u has been vectorized. In
order to solve this problem, we define

(P′k) : argminh∈RS ‖Ckh − u‖2
2.

The problem (P′k) is a LS problem which has a
minimizer h∗ ∈ RS. Moreover, the gradient of its
objective function is

CT
k (Ckh−u).

Finally, by computing a stationary point of the
problem (P′k), we obtain:

h∗ = (CT
k Ck)

†CT
k u, (9)

where (CT
k Ck)

† is the pseudo-inverse of CT
k Ck. Set-

ting

λ = ‖h∗‖2 and hk =

{
h∗
‖h∗‖2 , if ‖h∗‖2 6= 0,
1√
S
1 , otherwise

(10)

where 1 ∈RS is a vector of ones. It is easy to check
that we always have h∗ = λhk. One can also show
that any (µ,g) ∈ R×RS satisfying the constraints
of (Pk) is such that:
‖λCkhk−u‖2

2 = ‖Ckh∗−u‖2
2,

≤ ‖Ck(µg)−u‖2
2 = ‖µCkg−u‖2

2.

As a consequence, (Pk) has a minimizer defined
by (9) and (10). Moreover, note that if (λ′,h′) is a
solution of (Pk), we can easily check that λ′h′ is
a minimizer of (P′k). The latter being unique when
Ck is full column rank, we know that the solution
of (Pk) is unique under that same condition.

Altogether, we obtain the update rule by em-
bedding in rg

(
Sk
)
⊂ RP the solution described

by (9) and (10). In order to apply these formulas,
the main computational difficulties are to compute
CT

k u, CT
k Ck and the pseudo-inverse of CT

k Ck. These
computations are the subject of the next paragraph.

3.3 Computing CT
k u and CT

k Ck

Considering Dirac delta functions for h ∈ RS and
the linearity of Ck, we obtain for any h ∈ RS

(Ckh)p =
S

∑
s=1

Hk
p−Sk(s)hs, ∀p ∈ P

where Hk is defined in (5). In other words, each
column of Ck is a vectorization of (Hk

p−Sk(s))p∈P .
For any p′ ∈ P , denote as τp′ the translation oper-
ator such that (τp′v)p = vp−p′ , ∀(v, p) ∈ RP ×P .
Using this notation, the sth column of Ck is a vec-
torization of τSk(s)H

k. Therefore, the sth line of CT
k

is the transpose of a vectorization of τSk(s)H
k. We

finally have

(CT
k v)s = 〈τSk(s)H

k,v〉, ∀v ∈ RP . (11)

Note that the computational complexity for
computing Hk is O((K − 1)S#P ). Once Hk has
been computed, the cost for computing (CT

k u)s is
O(#P ), ∀s ∈ {1, . . . ,S}, and therefore the cost for
computing CT

k u is O(S#P ). Altogether, we obtain
a complexity O(KS#P ).

We can immediately deduce the form of CT
k Ck.

Indeed, each of its column is obtained by apply-
ing (11) in which we replace v by the column
vector τSk(s′)H

k, for some s′ ∈ {1, . . . ,S}. There-
fore the coefficient of CT

k Ck at the location (s,s′)∈
{1, . . . ,S}2 is

(CT
k Ck)s,s′ = 〈τSk(s)H

k,τSk(s′)H
k〉. (12)

This Gram matrix is symmetric, positive semidefi-
nite and of size S×S. Once Hk has been computed,
the computational complexity for computing CT

k Ck
is O(S2#P ). The computation of its pseudo-inverse
is a well studied problem and is a step of the algo-
rithm that can be optimized. An off-the-shelf im-
plementation using a singular value decomposition
(SVD) typically requires O(S3) operations.
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Algorithm 2 summarizes all the steps re-
quired for the proposed ALS algorithm. The over-
all computational complexity is typically O((K +

S)KS#P ) per iteration of the while loop4. It can be
reasonably applied in situations where KS(K + S)
is not to large. The most demanding case consid-
ered in the experiments described in this paper cor-
responds to KS2 = 6250 (corresponding to K = 10
and S = 25). In order to choose the number of it-
erations in the while loop, we have used the rel-
ative difference between the values of the objec-
tive function of (Pk) for two consecutive iterations.
When this difference is lower than 10−4, we con-
sider that we have reached a stationary point, and
the algorithm stops.

Algorithm 2: Detailed ALS algorithm
Input:
u: target measurements;
α: known coefficients;
(Sk)1≤k≤K : supports of the kernels (hk)1≤k≤K .
Output:
(hk)1≤k≤K : convolution kernels such that
h1 ∗ . . .∗hK ≈ H.

begin
Initialize the kernels ((hk

p)p∈P )1≤k≤K ;
while not converged do

for k = 1 ,..., K do
Compute Hk according to (5)

O((K−1)S#P )
Compute CT

k Ck and CT
k u according

to (12) and (11) ;
O((S+1)S#P )

Compute h∗ according to (9);
O(S3)

Update hk and λ according to (10) ;
O(S)

3.4 Convergence of the algorithm

Before stating the convergence result, let us give a
few notations.

First, notice that the result of an iteration of
the for loop in Algorithm 2 only depends on the

4 In the practical situations we are interested in, #P � S
and S3 can be neglected when compared to (K +S)S#P .

initial kernels h ∈ D and not on the initial scal-
ing factor λ. If we consider an initial condition
h ∈ D of the for loop in Algorithm 2, we denote
the initial condition of the kth iteration by Tk(h).
For instance, we have T1(h) = h. We also denote
the scaling factor and the kernels resulting from
the whole for loop by T (h). More precisely, de-
noting as (λn,hn)n∈N the sequence generated by
Algorithm 2, we have for all n ∈ N

(λn+1,hn+1) = T (hn).

Proposition 3 (Convergence of Algorithm 2)
For any (u,α,(Sk)1≤k≤K) ∈

(
RP ×RP × (P S)K

)
,

if

α∗h1 ∗ . . .∗hK 6= 0, ∀h ∈D, (13)

then the following statements hold:

1. The sequence generated by Algorithm 2 is
bounded and its limit points are in R×D . The
value of the objective function is the same for
all these limit points.

2. For any limit point (λ∗,h∗) ∈ R×D , if for all
k ∈ {1, . . . ,K}, the matrix Ck generated using
Tk(h∗) is full column rank and CT

k u 6= 0, then
(λ∗,h∗) = T (h∗) and (λ∗,h∗) is a stationary
point of the problem (P1).

The proof relies on the fact that the objective
function is coercive, smooth, that each iteration of
the algorithm is a regular mapping that makes the
value of the objective function decrease. It also ex-
ploits the fact that every problem (Pk) has a unique
solution. The detailed proof of the proposition is
given in Appendix.

3.5 Initialization of the algorithm and restart

First, it is interesting to note that the ALS algo-
rithm does not need any initialization for λ. More-
over, the initial kernel values (hk)1≤k≤K must sat-
isfy the constraints and therefore belong to D .
When the problem (P1) has a global minimizer, we
denote by I ⊂ D the non-empty convergence set
such that the ALS algorithm converges to a global
minimizer when it has been initialized with an el-
ement of I. Surprisingly, after running intensively
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the ALS algorithm, it appears that in many situa-
tions I is actually large. In order to illustrate this
aspect, we have chosen a simple initialization. It
consists of initializing our algorithm by drawing a
random variable uniformly distributed in D . This
is easily achieved (Muller, 1959) by using5

hk =
h
‖h‖2

, with h∼NS(0, Id),

where NS(0, Id) is the centered normal distri-
bution in RS. Our experiments will show that
P(h 6∈ I) is often significantly smaller than 1 when
h is uniformly distributed in D. Moreover, an ad-
vantage of this random initialization is that we can
use a “restart” strategy to explore D . More pre-
cisely, we propose to run the ALS algorithm R
times, for R ∈N, and to return the result for which
the objective function is the smallest. The proba-
bility that such a strategy fails to provide a global
minimizer is equal to the probability that none of
the R independent initializations belong to I, i.e.,

P(not global) = [P(h 6∈ I)]R

which decays rapidly to 0, when P(h ∈ I) is not
negligible. For instance, to guarantee

P(not global)≤ ε

for ε > 0, we must take

R≥ Rε =
log(ε)

log(P(h 6∈ I))
. (14)

Note that the number of restarts does not increase
significantly when ε decreases. However, when
P(h ∈ I) is small (or negligible) we have

Rε ∼
− log(ε)
P(h ∈ I)

.

The proposed ”restart” strategy is therefore only
reasonable when P(h ∈ I) is not too small.

5 For simplicity, in the formula below, we do not mention
the mapping of RS into RP necessary to build hk.

4 Approximation experiments

4.1 Simulation scenario

Our first goal is to empirically assess the ability
of a composition of convolutions to approximate a
given target atom H ∈ RP . We are also interested
in observing the influence of the number of ker-
nels K and of the size of the kernels on the ap-
proximation error. In order to do so, this section
presents results obtained for several 1D and 2D
target atoms H (i.e., d = 1 or 2) that have been se-
lected from dictionaries commonly used in signal
and image processing.

For all the experiments in Section 4, we con-
sider a size N ∈ N, a dimension d ∈ {1,2} and
take P = {0, . . . ,N − 1}d . We consider a target
atom H ∈ RP , a code α ∈ RP and a zero mean
Gaussian noise b ∈ RP of variance σ2. Through-
out these experiments, we explore parameters up
to K = 11 and S = 25. Moreover, for a dimension
d ∈ {1,2} and a size c∈N, we always consider the
support mappings (Sk)1≤k≤K ∈ (P S)K such that for
all k ∈ {1, . . . ,K}

rg
(

Sk
)
= k{−c, . . . ,0, . . . ,c}d . (15)

For example with two 2D kernels h1 and h2 and
a size c = 1, their support mappings are set to
rg
(
S1
)
= {−1,0,1} × {−1,0,1} and rg

(
S2
)
=

{−2,0,2} × {−2,0,2}, which means that both
kernels have S = 9 authorized non-zero elements.
Note that centering these support mappings on

p = 0 is possible because of the periodization of
RP . Figure 1 shows an example of support map-
ping obtained for K = 4, d = 2 and c = 1.

It is not difficult to show (for instance, by in-
duction) that the reachable support defined in (3)
associated with the support mappings defined in
(15) is:

S =

{
K

∑
k=1
−ck, . . . ,

K

∑
k=1

ck

}d

=

{
−c

K(K +1)
2

, . . . ,c
K(K +1)

2

}d

.

To continue with the previous example, the
convolution of h1 with h2 can reach the set S =
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Fig. 1: The supports rg
(
Sk
)

described by (15), for d = 2, k∈
{1,2,3,4} and for c= 1 (i.e., S = 3×3). The representation
is shifted so that the origin element of (15) is at the center
of each image. The constraint (2) forces each kernel hk to
take the value 0 outside of rg

(
Sk
)
.

{−3, . . . ,3}2, which contains 49 pixels. There-
fore, the width of S is given by K(K + 1)c and
its size (length or area) is (K(K +1)c)d . Note that
the size of S is usually much smaller than the size
of the search space, equal to K(2c+ 1)d . The ra-
tio between these two quantities corresponds to
a “compression ratio” when describing the atom
with convolution kernels. This ratio behaves like
K2d−1

2d when both c and K grow. Table 1 shows the
compression ratio for a few values of (K,c) and
d ∈ {1,2}. The gain is clearly more interesting
when increasing K compared to increasing c.

For most experiments, the support of H is con-
tained into S . When it is the case, we provide an
indicator for the ability of the composition of con-
volutions to reduce the search space while filling
the target atom’s support. This indicator G is the
ratio between the size of the effective support of H
and the size of the actual search space using the K
S-sparse kernels, i.e.,

G =
#suppeff(H)

K(2c+1)d

where

suppeff(H)=
{

p ∈ P | |Hp| ≥ 10−4(maxp∈P |Hp|)
}
.

The role of the effective support is to realistically
account for the energy localization in H. We will
provide some values of G for the tests presented in
this section.

Compression ratio K = 3 K = 4 K = 6 K = 10

d = 1 c = 1(S=3) 0.67 1.00 1.67 3.00
c = 2(S=5) 0.80 1.20 2.00 3.60
c = 3(S=7) 0.86 1.29 2.14 3.86

d = 2 c = 1(S=9) 1.33 4.00 16.67 90.00
c = 2(S=25) 1.92 5.76 24.00 129.60
c = 3(S=49) 2.20 6.61 27.55 148.78

Table 1: Compression ratio (K(K+1)c)d

K(2c+1)d for various K and c
in dimension d = 1 and d = 2.

For each experiment, the quantities N, d, H, α,
σ, K, c and the number R of restarts are provided.
Given these quantities, we compute u according to
(1). Then, Algorithm 2 is run for a given number
R of restarts and the result with the smallest objec-
tive function value is kept. The result of this pro-
cess is denoted as (λ,(hk)1≤k≤K) ∈R×D in what
follows.

Given a result (λ,(hk)1≤k≤K) ∈ R ×D , we
evaluate the quality of the approximation of H by
λh1 ∗ · · · ∗ hK using the peak-signal-to-noise ratio
(PSNR). Moreover, in order to consider that the
size of the support of H can be much smaller than
#P , the PSNR is normalized according to the size
of the effective support of H. More precisely, it is
defined by

PSNRH = 10log10

(
r2

MSEH

)
where r = maxp∈P (Hp)−minp∈P (Hp) is the dy-
namic range of the atom H and the mean-square-
error (MSE) is defined by:

MSEH =
‖λh1 ∗ · · · ∗hK−H‖2

2
#suppeff(H)

. (16)

Note that the usual PSNR and MSE are nor-
malised by the whole image size #P instead of
#suppeff(H). The normalization defined in (16) is
motivated by the nature of most atoms studied in
this section: though their support may span over
the whole set P , most of their energy is concen-
trated in a small region.
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Note that in noisy settings, PSNR values are
provided in addition to the noise variance σ2.
These PSNR values inform us on the degradation
between α ∗H and u, and cannot be compared to
the values of PSNRH , which concern the recon-
structed atom only. The only exception is the first
experiment, of paragraph 4.2.1, where the code α

is a Dirac delta function.

We also provide a figure of merit reflecting
both the quality of the convergence and the level
of regularization induced by the composition of
convolutions. The Normalized Reconstruction Er-
ror (NRE) is defined as

NRE =
‖λα∗h1 ∗ · · · ∗hK−u‖2

2

‖u‖2
2

. (17)

When NRE is large, either the convergence has not
been reached or the values of K and S are too small
to obtain a good approximation of H. When it is
small, the algorithm has converged to a stationary
point close to a global minimum and the values of
K and S provide a good approximation of u. Note
that this last property can be a problem when u is
contaminated by a strong noise.

Finally, in order to assess the additional dif-
ficulty induced by the convolution with the code
α, we provide a measure of conditioning. Indeed,
recovering H from u can be a badly conditioned
problem (see (1)) yielding instabilities. For every
experiment where α is not a Dirac delta function,
a histogram of the values of the modulus of its
Fourier transform |α̂| is used to measure condition-
ing. The greater the range over which these val-
ues span, the worse the conditioning. The case of
a sparse α seems to be the best compromise be-
tween conditioning and redundancy, the latter be-
ing crucial to get a stable approximation of H in
the presence of noise.

Note that NRE can be small whatever the con-
ditioning because the value of the denominator in
(17) depends on α. For this reason, PSNRH is still
the most relevant indicator of the success of the
algorithm.

4.2 1D targets

4.2.1 Apodized Modified Discrete Cosine

The modified discrete cosine transform (MDCT)
has been successfully used in several signal pro-
cessing applications such as audio coding (Painter
and Spanias, 2000). The aim of the proposed ex-
periment is to approximate an apodized modified
discrete cosine (MDC) with a composition of con-
volutions. In order to do so, we apply the inverse
MDCT to a Dirac delta function located at a given
frequency, in a signal of size 512 (i.e., d = 1).
We then apodize the MDC using the sine window
(wp)0≤p≤255 defined by:

wp =


0 if p ∈ {0, . . . ,127}
sin
[
π
(p−128)

256

]
if p ∈ {128, . . . ,383}.

0 if p ∈ {384, . . . ,512}

This type of window is, for instance, used in
MDCT analysis for time-domain aliasing cancel-
lation (Princen and Bradley, 1986).

Figures 2 and 3 show examples of target atoms
H obtained for frequencies 10Hz and 100Hz. The
code α used in this experiment is a Dirac delta
function located at p = 256. In this simple, noise-
less case, u equals H. As for all simulations con-
ducted in this section, the kernel supports have
been defined according to (15). We have used R =

50 restarts because the simulation is very fast.
Moreover, we have considered 5≤K ≤ 11 and

5 ≤ S = 2c+ 1 ≤ 11, corresponding to the values
of PSNRH reported in Table 2. One can see that
the higher K and S, the better the approximation
of H. This result is expected since increasing these
parameters confers more flexibility to describe the
target atom H, leading to a lower resulting objec-
tive function value (after algorithm convergence),
which is inversely proportional to PSNRH . Note
that values of PSNRH above 50 dB are obtained in
many cases.

The approximations obtained for frequencies
10 and 100, both with K = 9, S = 2c+ 1 = 9, are
depicted in Figures 2 and 3, respectively. More
precisely, each figure shows the approximation
λh1 ∗ · · · ∗ hK and the atom H. Note that the re-
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PSNRH (dB) K = 5 K = 7 K = 9 K = 11
c = 2 14.43 17.32 23.81 38.26
c = 3 16.23 23.02 46.24 51.48
c = 4 18.45 34.84 54.32 54.33
c = 5 21.60 53.70 54.82 55.73

Table 2: MDC approximation for frequency 100Hz:
PSNRH for several values of K and c.

sulting approximations are very accurate, and G =
256
9×9 = 3.16.

Fig. 2: Approximation of an apodized frequency 10 MDC
by the convolution of K = 9 kernels of sparsity S = 9
(PSNRH = 58.88dB).

Fig. 3: Approximation of an apodized frequency 100 MDC
by the convolution of K = 9 kernels of sparsity S = 9
(PSNRH = 54.32dB).

The same experiment has been conducted for
the frequency 100 with K = 9, S = 2c + 1 = 9
and R = 25 restarts, with an additive white Gaus-

sian noise of variance σ2 ∈
[
10−6,10−3

]
. Figure

4 shows PSNRH as a function of the noise vari-
ance. Note that PSNRH is always higher than the
PSNR between u and α ∗H 6. This means that
the model (P0) reduces noise when u is a noisy
apodized MDC. This denoising would be further
improved with a sparse code α containing several
non-zero coefficients.

Fig. 4: PSNRH for the approximation of the apodized fre-
quency 100 MDC by the convolution of K = 9 kernels of
sparsity S = 9, for 10−6 ≤ σ2 ≤ 10−3 (blue curve). The
green curve is the PSNR between u and α∗H.

4.2.2 Sinc function

This experiment aims at approximating the sinc
function used to perform a linear zoom (Whittaker,
1915). The sinc interpolation has been success-
fully approximated with splines (Aldroubi et al,
1992). Though the spline interpolation can be in-
terpreted as a composition of convolutions, we use
different kernel supports. The zoom factor is Z = 3
and the signal is of size 128. We therefore have
d = 1 and N = 3×128= 384. The target atom H is
a sinc function obtained by computing the inverse
Fourier transform of the characteristic function of
a centered interval of length N/3. The signal to be
zoomed corresponds to the first 128 values of the
128th column of the Barbara image.

The code α has been built by upsampling this
signal by a factor Z = 3 (see Figure 5). This up-
sampling has been performed by inserting 2 zeros

6 In this case the comparison is relevant, because α is a
Dirac delta function.
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between every couple of neighbors in the initial
signal. We are obviously not in a case where α

is sparse. Moreover, the histogram of its Fourier
transform displayed in Figure 6 shows that the
convolution with α is not very well conditioned.
Indeed, the ratio between the highest Fourier coef-
ficient and the lowest is 728.

The signal u has been constructed according to
(1) for different noise levels. Moreover, as for all
experiments in this section, kernel supports have
been set according to (15).

First, we have considered K = 9 and c= 4 (i.e.,
S = 9) and run R = 50 restarts of Algorithm 2
for noiseless and noisy signals (σ2 = 5). Figures
7 and 8 shows the target sinc atom H and the ap-
proximation λ ∗ h1 ∗ · · · ∗ hK , for the noiseless and
noisy cases. In the noiseless case (Figure 7), we
see that the resulting composition of convolutions
λ∗h1 ∗ · · ·∗hK is a good approximation of the sinc
function. In the noisy case (Figure 8), the approx-
imation is less accurate, which is expected since
there is no regularization and the convolution with
α is ill-conditioned.

Fig. 5: Code α used in the the approximation of a 1D sinc
function.

The same experiment has been run for K ∈
{3,5,7,9} and c∈ {1,2,3} (i.e. S ∈ {3,5,7}), R =

50, for both cases σ2 = 0 and σ2 = 5. In the latter
case, the PSNR between u and α∗H is 28.20 dB.

Tables 3 and 5 contain the values of PSNRH
obtained for these parameters. In the noisy case
(Table 3), PSNRH is only a little smaller than that
of the noiseless case (Table 5), which suggests that
the method is robust to noise. To confirm this, a

Fig. 6: Histogram of |α̂|, the modulus of the Fourier trans-
form of the code.

Fig. 7: Approximation of a noiseless 1D sinc function with
(K,c) = (9,4). The target sinc atom H and the composition
of convolutions λh1 ∗ · · · ∗hK . PSNRH = 44.47dB.

Fig. 8: Approximation of a noisy (σ2 = 5) 1D sinc function
with (K,c) = (9,4). The target sinc atom H and the com-
position of convolutions λh1 ∗ · · · ∗hK . PSNRH = 35.68dB.

single case (K = 9, c = 3) is run for an increasing
noise variance 0 < σ2 < 20. Figure 9 shows that
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when the noise variance increases (and PSNR be-
tween u and α∗H decreases), PSNRH decreases at
the same rate.

Fig. 9: Evolution of PSNRH and NRE, for the sinc target
atom, with respect to the noise variance σ2, for K = 9 ,
c = 3.

Moreover, in the presence of noise, increas-
ing parameters K ans S does not clearly improve
PSNRH . This is due to the lack of regularization,
when K and c are large. We do not observe this
phenomenon in Table 5, which contains PSNRH
results for the noiseless case.

Tables 4 and 6 show, for the same experiments,
the convergence criterion defined in (17). We ob-
serve that increasing K and c improves the crite-
rion NRE, even in the noisy case, which is ex-
pected because of the conditioning of the convo-
lution with α. This simulation shows that it is pos-
sible to have a good reconstruction of the signal u
with a poor approximation of the atom H when the
convolution with α is poorly conditioned.

PSNRH (dB) K = 3 K = 5 K = 7 K = 9
c = 1 31.66 33.14 34.53 35.77
c = 2 37.34 38.03 37.32 36.67
c = 3 37.69 37.61 36.63 36.82

Table 3: Sinc approximation: PSNRH for σ2 = 5 (R = 50).

Finally, it is interesting to test the stability of
the proposed model to an imperfect knowledge
of α. For this purpose, a Gaussian noise bα ∼
N (0,σ2

α) has been added to the code α used to
solve (P1) (u is still built with a noiseless α). We

NRE×10−3 K = 3 K = 5 K = 7 K = 9
c = 1 5.0 4.6 4.1 4.1
c = 2 3.5 3.5 3.4 3.4
c = 3 3.5 3.4 3.3 3.2

Table 4: Sinc approximation: NRE for σ2 = 5 (R = 50).

PSNRH (dB) K = 3 K = 5 K = 7 K = 9
c = 1 31.46 33.91 32.89 33.79
c = 2 37.59 38.95 39.29 39.49
c = 3 39.14 41.86 41.93 42.07

Table 5: Sinc approximation: PSNRH for σ2 = 0 (R = 50).

NRE×10−3 K = 3 K = 5 K = 7 K = 9
c = 1 2.0 1.2 1.2 1.1
c = 2 0.3 0.2 0.2 0.2
c = 3 0.2 0.1 0.1 0.1

Table 6: Sinc approximation: NRE for σ2 = 0 (R = 50).

have set K = 9 and c = 3, i.e., S = 7, and have run
the algorithm for several noise levels 0≤ σ2

α ≤ 15.
Figure 10 shows that PSNRH is stable with respect
to σ2

α, even though NRE tends to increase with σ2
α.

This suggest that the model is robust to an imper-
fect knowledge of α.

Fig. 10: Evolution of PSNRH , for the sinc target atom, with
respect to the noise variance σα on the code α, for K = 9 ,
c = 3.

Finally, it is important to note that all the ker-
nels used in these 1D experiments have the same
support. Despite this constraint, the optimized ker-
nels approximate very different target atoms such
as MDC at frequency 10 and 100 and a sinc func-
tion. This shows that the proposed model based
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on compositions of convolutions is reasonably rich
and versatile.

4.3 2D targets

4.3.1 Curvelet

The aim of this experiment is to approximate a
curvelet atom H in an image (i.e., d = 2) of size
N × N with N = 128. The curvelet is obtained
by applying the inverse curvelet transform to a
Dirac delta function, using the MCALAB toolbox
(Fadili et al, 2010). The code α corresponds to a
Dirac delta function located at the barycenter of
the curvelet. Once again, the support mapping is
the one described in (15), with either c = 1 or
c= 2. Note that this support mapping does not take
the anisotropy of the curvelet into account. This is
an unfavorable situation. All values of K satisfying
3≤K ≤ 11 have been tested. We consider a noise-
less case so that u is a simple translation of H. We
have used R = 10 restarts.

Figure 11 shows the target atom H and λh1 ∗
· · ·∗hK , for K = 7 and c = 2. For these parameters,
the size ratio between the effective support of the
curvelet and the actual search space is G = 42.72.
We observe that, although PSNRH = 44.30 dB, the
accuracy of the approximation is not the same in
different parts of the image. In particular, the tails
of curvelet are not properly captured.

PSNRH (dB) K = 3 K = 5 K = 7 K = 9 K = 11
S = 3×3 33.06 36.55 36.52 37.22 37.01
S = 5×5 39.99 45.81 44.30 40.74 38.05

Table 7: Curvelet approximation: PSNRH for several val-
ues of K and S.

NRE K = 3 K = 5 K = 7 K = 9 K = 11
c = 1 1.99 0.89 0.90 0.76 0.80
c = 2 0.40 0.11 0.15 0.34 0.63

Table 8: Curvelet approximation: NRE for several values
of K and c.

Table 7 contains the values of PSNRH for vari-
ous values of K and c. In this experiment, we were

Fig. 11: Curvelet approximation with K = 7 and S = 5×
5. Comparison between λh1 ∗ . . . ∗ h7 (top) and the target
curvelet atom H (bottom). We have PSNRH = 44.30.

expecting that increasing K and S would improve
the accuracy. It is not exactly what we observe in
Table 7. For S = 5×5, increasing K beyond a cer-
tain value actually makes PSNRH decrease. This
result can be explained by a lack of convergence,
as is confirmed in Table 8. This problem could eas-
ily be corrected by an initialization exploiting the
results obtained for smaller values of K and c.

Finally, Figure 12 shows the kernels (hk)1≤k≤K
computed for K = 7 and S = 5×5. We can observe
that many kernel coefficients are close to zero, i.e.,
only the coefficients along the main direction of
the curvelet have significant values. It is obvious
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Fig. 12: Curvelet approximation for K = 7 and S = 5× 5.
Zoom on the computed kernels (hk)1≤k≤7. The colormap is
flattened around 0 to highlight the higher coefficients.

that the simple isotropic dilation of the supports
defined by (15) is not appropriate for this curvelet.
This raises the question of the adaptation of the
support mappings (Sk)1≤k≤K to the atom’s geome-
try.

4.3.2 Cosine

The aim of this experiment is to approximate an
atom representing a 2D cosine function in an im-
age of size 64×64 (i.e., d = 2 and N = 64). In the
context of image processing, such an atom can be
seen as a large local cosine or a Fourier atom. Both
are widely used in image processing. The interest
of this atom is that it covers the whole image and
is of a rather large support. Beside, patches of this
size are difficult to handle with existing dictionary
learning strategies. The considered atom is given
by

Hp = cos
(

2π
〈p,(2,5)〉

N

)
,∀p ∈ {0, . . . ,63}2.

The code α is a sparse vector whose support
elements are randomly chosen. More precisely,
for all p ∈ P , there is a probability 10−1 that

αp 6= 0. The values of the non-zero elements are
then set according to the centered normal distri-
bution N (0,1). In other words, for a given p,
the elements of code αp are assumed to be inde-
pendent and identically distributed according to
a Bernoulli-Gaussian distribution, that has been
widely used in sparse signal and image decon-
volution (Champagnat et al, 1996; Kail et al,
2012; Quinsac et al, 2011). Therefore, u contains
a few weighted translations of the cosine atom H7,
which should result in a better approximation of
H using Algorithm 2. Figures 13 and 14 show the
code and the histogram of its Fourier transform.
Note that the ratio between the largest and the
smallest Fourier coefficients (in modulus) is 91,
which corresponds to a reasonable conditioning.
The target u is built with additive Gaussian noise
of variance σ2 = 0.5, which corresponds to a nor-
malized PSNRH between α∗H and u of 22.08.

Fig. 13: Cosine experiment: Code α.

The support mapping is the same as for the pre-
vious experiment (see (15)) with, either c = 1 (S =

3×3) or c = 2 (S = 5×5). Different Values of K
have been tested in the range 3 ≤ K ≤ 11, each
time with R = 15 restarts.

PSNRH (dB) K = 3 K = 5 K = 7 K = 9 K = 11
c = 1 11.79 12.27 13.81 25.15 30.09
c = 2 11.94 15.97 41.44 38.94 39.82

Table 9: 2D Cosine approximation: PSNRH .

7 A sum of cosines of same frequency and different
phases will yield a cosine of unchanged frequency.
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Fig. 14: Cosine experiment: Modulus of the Fourier trans-
form of the code |α̂|.

NRE K = 3 K = 5 K = 7 K = 9 K = 11
c = 1 1.02 0.89 0.41 0.04 0.02
c = 2 0.96 0.24 0.01 0.01 0.01

Table 10: 2D Cosine approximation: NRE.

Tables 9 and 10 provide the PSNRH and NRE
indicators in the studied range of parameters. In
this experiment, we expect to obtain a somewhat
regularized atom thanks to the repetitions induced
by the sparse (and reasonably conditioned) code
α. We observe in Table 9 that PSNRH rises above
30 if parameters K and S are large enough. Even
for K = 9 and c = 2, the ratio between the number
of variables describing the kernels and the size of
the cosine is G = 64×64

9×5×5 = 18.20. Table 10 shows
a steady improvement of NRE when K and c in-
crease.

Figures 15 and 16 show the cosine image u, its
approximation λα∗h1 ∗ · · ·∗hK , the actual atom H
and λh1 ∗ · · · ∗hK , for K = 7 and c = 2. The results
obtained here are quite accurate even though the
cosine image was corrupted by additive noise.

Figure 17 shows the obtained kernels
(hk)1≤k≤K . As opposed to the kernels obtained
for the curvelet approximation, the energy is
more uniformly distributed on the kernel sup-
ports. These kernels and the curvelet kernels are
provided in a Matlab file available online (see
http://chabiron.perso.enseeiht.fr/FTL_
demo/FTL_demo_v1.1.zip).

This experiment was also run with fixed K = 7
and c = 2 for an increasing noise variance, to test
the robustness of the proposed model. Figure 18

Fig. 15: Cosine approximation with K = 7, c= 2, and Gaus-
sian noise of variance σ2 = 0.5. Cosine image u (left) and
approximation λα∗h1 ∗ · · · ∗hK (right).

Fig. 16: Cosine approximation with K = 7, c= 2, and Gaus-
sian noise of variance σ2 = 0.5. True atom H (left) and ap-
proximation λh1 ∗ · · · ∗hK (right).

Fig. 17: Cosine approximation with K = 7, c= 2, and Gaus-
sian noise of variance σ2 = 0.5. Zoom on the computed ker-
nels (hk)1≤k≤7).

http://chabiron.perso.enseeiht.fr/FTL_demo/FTL_demo_v1.1.zip
http://chabiron.perso.enseeiht.fr/FTL_demo/FTL_demo_v1.1.zip
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shows the values of PSNRH associated with the re-
constructed image, as a function of the noise vari-
ance. Note that PSNRH decreases at the same rate
as the PSNR measuring the degradation between u
and α∗H.

Fig. 18: Evolution of PSNRH of a reconstructed cosine
atom when the noise variance σ2 varies in [0,2], for K = 6
and c = 2(S = 5×5).

4.3.3 Wavelet decomposition

In this experiment, we consider a scenario reflect-
ing the difficulties of DL. More precisely, we con-
sider d = 2, N = 512, a target atom H defined
as a wavelet atom and a code α resulting from
the wavelet coefficients of a natural image. More
precisely, the following operations have been con-
ducted

– Select an image (here the Barbara image).
– Compute the wavelet transform of the image

using the Daubechies wavelet db4 at level L.
We used the official Matlab wavelet toolbox
with L = 3.

– Select the set of coefficients associated with an
orientation and a given decomposition level l
such that 1≤ l ≤ L. The low frequency at level
l = L = 3 was considered for the first experi-
ment and the horizontal detail at level l = 3 for
the second experiment.

– Set the non selected wavelet coefficients to
zero and compute the inverse wavelet trans-
form. Add white Gaussian noise of variance
σ2 = 5 to obtain u.

– Define α as a zoom of factor 2l of the selected
coefficients, where the zoom consists of inter-
polating with zeros.

– Solve problem (Pk) with the code α, the target
atom u, R = 1, with a support mapping defined
by (15) for the parameters K = 6 and S = 3×3
(i.e. c= 1). Note that the knowledge of the sup-
ports associated with the composition of con-
volutions leading to the wavelet atom was not
used in this experiment.

Fig. 19: Logarithm of the histogram of |α̂|, the modulus of
the Fourier transform of the code. Approximation coeffi-
cients (top) and Horizontal detail coefficients (bottom).

The results obtained for the low frequency
wavelet atom at level 3 and the horizontal detail
wavelet atom are shown in Figures 20, 21, 22 and
23. Note that the conditioning of the convolution
with α is less favorable for the estimation of the
low frequency wavelet atom. Indeed, α is sparser
when selecting detail coefficients, which results in
a better conditioned problem. Figure 19 shows his-
tograms of |α̂| for both cases. Note that the ratio
between the largest and the smallest Fourier coeffi-
cients (in modulus) is 532 for the horizontal detail
case, and 6.67×104 in the approximation case.
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Fig. 20: Estimation of the low frequency wavelet atom at
level 3. Target u (left) and λα∗h1 ∗ · · · ∗hK (right). NRE =
10−3.

Fig. 21: Estimation of the low frequency wavelet atom at
level 3. Atom H (left) and λ∗h1 ∗· · ·∗hK (right). PSNRH =
29.94.

For both experiments, the composition of con-
volutions is close to the corresponding wavelet
atom. However, PSNRH is larger for the horizon-
tal detail case, which suggests that a good con-
ditioning for α is crucial. Unsurprisingly, conver-
gence is better for the approximation coefficients
case (NRE = 10−3) than for the horizontal detail
case (NRE = 0.68), though our primary concern
remains accuracy on atom reconstruction. Note,
however, that we did not run multiple restarts: a
better convergence could still be achieved by in-
creasing R.

Finally, we rerun both experiments with addi-
tive Gaussian noise of variance σ2

α = 10 corrupt-
ing the code α. Note that this noise degrades the
conditioning of the convolution with α. For the
horizontal detail coefficients, we obtain max|α̂|

min|α̂| =

4.99×103, NRE = 1.62 and PSNRH = 29.09. For
the approximation coefficients, we obtain max|α̂|

min|α̂| =

8.47× 104, NRE = 0.002 and PSNRH = 27.17.
The horizontal detail case still gives a better result,

Fig. 22: Estimation of the horizontal detail wavelet atom at
level 3. Target u (left) and approximation λα ∗ h1 ∗ · · · ∗ hK

(right). NRE = 0.68.

Fig. 23: Estimation of the horizontal detail wavelet atom at
level 3. Atom H (left) and approximation λ ∗ h1 ∗ · · · ∗ hK

(right). PSNRH = 36.61.

as expected. Both approximations λh1 ∗· · ·∗hK are
shown in Figures 24 and 25.

Fig. 24: Approximation obtained with a noisy code α (σ2
α =

10). Horizontal detail atom H (left) and its approximation
λh1 ∗ · · · ∗hK (right) (PSNRH = 29.09, NRE = 1.62).

As for 1D atoms, it is important to note that
all the kernels used in these 2D experiments have
the same support. Again, despite this constraint,
the optimized kernels approximate very different
target atoms such as a curvelet, a cosine and a
wavelet. This shows that the composition of con-
volution model is reasonably rich and versatile.
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Fig. 25: Approximation obtained with a noisy code α (σ2
α =

10). Approximation atom (left) and its approximation λh1 ∗
· · · ∗hK (right) (PSNRH = 27.17, NRE = 2.10−3).

This potential will be exploited to obtain dictio-
naries well adapted to a given image class, once
the dictionaries are learnt from datasets.

4.4 Dictionary learning experiment

As a follow-up to the previous experiment re-
lated to wavelet decomposition, the experiment
presented in this section puts the method more in
context with the intended application, namely dic-
tionary learning. Basically, it is the same exper-
iment as the one presented in Section 4.3.3 ex-
cept that the code is learnt through a sparse coding
scheme instead of being supposed known.

We consider d = 2, N = 256, a wavelet atom
H and a code α∗ resulting from the wavelet coef-
ficients of the barbara image. More precisely, the
following operations have been conducted

– Build α∗, H and u exactly as in Section 4.3.3
for the case of horizontal detail coefficients.
That is, α is the level 23 upsampling of the hor-
izontal detail coefficients, H is the level 3 hor-
izontal detail wavelet atom, and u = α∗ ∗H is
the partial wavelet reconstruction of the input
image (using the level 3 horizontal coefficients
only).

– Initialize α and the kernels (hk)1≤k≤K with
random values, where K = 5 and S = 3× 3,
with the support mapping defined by (15).

– Iterate between:
– Solve a Basis Pursuit Denoising (BPDN)

problem to update α,
– Solve a variant of (P1) that does not con-

tain λ with the updated code α,

Although, this is a preliminary study and we
have no proof of convergence, this aims at find-
ing a solution of the following dictionary learning
problem:

argmin
α,(hk)1≤k≤K

‖α∗h1 ∗ · · · ∗hK − u‖2
2 + γ‖α

l
‖1

subject to h ∈ (RP )K ,α ∈ RP ,
and supp

(
hk
)
⊂ rg

(
Sk
)
,∀k ∈ {1, . . . ,K},

and ‖hk‖2 ≤ 1,∀k ∈ {1, . . . ,K},
and supp(α)⊂ Sα, j

with Sα, j = {p′ ∈ P |∀p ∈ P , p′ = jp}, for some
chosen integer j. The role of the constraint on the
support of α is to improve the incoherence of the
set of atoms of our dictionary. Note that the con-
straints on the kernel norms have been changed
to ‖hk‖2 ≤ 1,∀k ∈ {1, . . . ,K} and that the weight
λ has been removed. To solve the sparse coding
part of this problem, we use BPDN (Chen et al,
1998) with a simple Iterative Thresholding algo-
rithm (Daubechies et al, 2004) with the renormal-
ization of the dictionary proposed in (Malgouyres
and Zeng, 2009).

The experiment is run for different initializa-
tions and supports for the code. First, the initial
code is chosen as the solution α∗ perturbed by ad-
ditive Gaussian noise of variance σ2 = 5, and j = 8
is chosen for the support constraint on α. This is
supposed to be the most favorable case since α∗

has been built as a level 8 upsampling. In another
experiment, we use a Gaussian random initialisa-
tion for j ∈ {4,8}. The L1 penalty γ has been em-
pirically set to 10.

Table 11 shows the results obtained in terms
of PSNRH , NRE and sparsity level, whereas Fig-
ure 26 shows the atoms obtained with a randomly
initialized code and j ∈ {4,8}. Though this exper-
iment is only a first attempt for learning both the
code and the atoms with our model, it appears that
enforcing incoherence of the atoms of our dictio-
nary will play a central role to fully learn fast trans-
forms.
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Initialization PSNRH NRE Sparsity
Noisy α∗, j = 8 30.59 0.04 1.0%
Random, j = 8 19.10 0.04 1.1%
Random, j = 4 18.21 0.07 1.9%

Table 11: DL experiment: PSNRH , NRE and sparsity for
various support constraints on the code. In some cases,
PSNRH is computed after a translation and/or a sign
change.

Fig. 26: Estimation of the horizontal detail wavelet atom at
level 3 with code unknown. Atom H (top left) and approxi-
mations with j = 8 (top right), j = 4 (bottom left) and j = 8
with a favorable initialization (bottom right).

5 Convergence Assessment

5.1 Simulation Scenario

This section evaluates

P(not global) and Rε =
log(ε)

log(1−P(h ∈ I))

for various supports, kernels and noise levels. All
the experiments have been conducted with one-
dimensional signals of size #P = 128 and (K,S) ∈
{2, . . . ,7}×{2, . . . ,10} and random support map-
pings S = (Sk)1≤k≤K . For every k ∈ {1, . . . ,K}, the
support mapping Sk maps {1, . . . ,S} into S dis-
tinct elements randomly drawn according to a uni-
form distribution in {1, ...,10}. Moreover, for any
(k1,k2) ∈ {1, . . . ,K}2, with k1 6= k2, rg

(
Sk1
)

and
rg
(
Sk2
)

are independent random vectors. We also

consider K independent random kernels

hk
p

{
∼N (0,1) , if p ∈ rg

(
Sk
)

= 0 , otherwise.

Finally, the code is set to α = (1,0, . . . ,0) (i.e., no
translation) and the image u is obtained by con-
volving the kernels, i.e.,

u = α∗h1 ∗ · · · ∗hK +b

where b ∼ N (0,σ2
1S ), σ2 is the noise variance

and the set S is the “reachable support” defined
in (3). Note that u is zero outside of the reachable
support.

5.2 Performance measure

Given a problem defined by (u,α,S), a global min-
imizer h∗ = (h∗,k)1≤k≤K ∈ (RP )K of (P0) and a so-
lution h = (h

k
)1≤k≤K ∈ (RP )K provided by Algo-

rithm 2, we denote the approximation error by

Ea(u,α,S) = ‖α∗h∗,1 ∗ . . .∗h∗,K−u‖2
2.

For the problem constructed in the previous para-
graph, we expect that

Ea(u,α,S)≤ σ
2 (#S) ,

where σ2 is the noise variance. Moreover, we
know that Ea(u,α,S) = 0 for σ = 0. We also de-
note the numerical error by

En
(
h,u,α,S

)
= ‖α∗h

1∗. . .∗h
K−u‖2

2−Ea(u,α,S).

The only quantity that we can actually observe is
the sum of these two errors

‖α∗h
1∗ . . .∗h

K−u‖2
2 =Ea(u,α,S)+En((h,u,α,S).

We therefore consider that Algorithm 2 has con-
verged to a global minimum if

‖α∗h
1∗ . . .∗h

K−u‖2
2≤σ

2 (#S)+10−4‖u‖2
2. (18)

Of course, this notion is not very accurate when σ2

is large.



Toward Fast Transform Learning 23

5.3 Evaluation of P(not global)

For any fixed (K,S) ∈ {2, . . . ,6}×{2, . . . ,10}, we
have generated L = 50K2 signals. Each signal is
labelled by an index l ∈ {1, . . . ,L}. For every ex-
periment, we consider R = 25 random initializa-
tions according to a uniform distribution defined
on the set of constraints associated with (P1), as
described in Section 3.5. The corresponding out-
come of Algorithm 2 is referred to as the rth re-
sult with r ∈ {1, . . . ,R}. Finally, for any (l,r) ∈
{1, . . .L}×{1, . . . ,R}, we introduce the following
indicator function

1(l,r) =


1, if (18) holds for the rth result

obtained from the lth input,
0, otherwise.

The probability of reaching a global minimum of
problem (P1) is estimated as follows

P(global minimizer)' 1
LR

L

∑
l=1

R

∑
r=1

1(l,r).

5.4 Results

Figures 27 and 28 show the results obtained in
the noiseless (σ2 = 0) and noisy (σ2 = 5× 10−2)
cases respectively. In each figure, the curves show
P(global minimizer) and the number of restarts
needed to ensure a failure probability lower than
ε, Rε =

log(ε)
log(1−P((hk)1≤k≤K∈I))

for a given value of

K whereas the x axis indicates the support size S.
We can see that for very sparse kernels (S≤ 3), the
probability of success is quite high. However, this
probability drops significantly when the support
size increases. Surprisingly, P(global minimizer)
increases when the support size increases. The
more kernels we use (i.e., the larger K), the steeper
the decrease and increase. These results show that
it is possible to obtain convergence to a global
minimum with only a few restarts of the proposed
algorithm even for relatively large values of K. The
last experiments obtained in the noisy case show
similar patterns. As a consequence, the described
convergence properties seem to be robust to noise.

Fig. 27: Convergence test for σ = 0: Estimated probabil-
ity of reaching a global minimum (top) for every K ∈
{2, . . . ,7} and corresponding number of restarts Rε to guar-
antee P(global minimizer)≥ 99% (bottom). For every K ∈
{2, . . . ,7}, the results have been averaged over L = 50K2

inputs from which we have computed R = 25 outputs.

Fig. 28: Convergence test for σ2 = 5.10−2: Estimated prob-
ability of reaching a L2 ball of radius σ

√
#S around a global

minimum (top) for every K ∈ {2, . . . ,6} and corresponding
number of restarts Rε to guarantee P(global minimizer) ≥
99% (bottom). For every K ∈ {2, . . . ,6}, the results have
been averaged over L = 50K2 inputs, from which we have
computed R = 25 outputs.

6 Conclusions and perspectives

We introduced a new important problem whose
purpose is to mitigate the computational issues
encountered in most dictionary learning frame-
works (which generally constrain the use of small
patches). We proposed to consider atoms defined
as a composition of convolutions with sparse ker-
nels. The determination of these atoms required
to solve a non-convex optimization problem. Us-
ing the sparsity of kernels to reduce the search
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space, we studied a computationally efficient algo-
rithm based on alternate least squares minimiza-
tions. This algorithm has linear complexity with
respect to the image size. It allows the learning of
fast transforms by the dictionary update stage and
permits to consider larger atoms. Our experiments
showed that compositions of convolutions can ap-
proximate accurately many atom-like signals and
images such as curvelets, cosines and wavelets.
This illustrates that the non-convex optimization
problem considered in this paper lends itself to
global optimization and that (despite the constraint
on the kernel supports) the considered setting is
sufficiently rich and versatile to approximate a
large class of atoms. However, the full potential
of these compositions of convolutions for approx-
imation purposes still remains to be assessed.

Future work includes the definition of a tree
structure for the proposed composition of ker-
nel convolutions for dictionary learning applica-
tions. Designing efficient rules to learn the kernel
supports also remains a large and unexplored is-
sue which might have a huge impact on the per-
formance of the proposed algorithm. The typical
strategies one can think of for improving the sup-
ports is to adapt algorithms like the orthogonal
matching pursuit or to add a term in the energy
favoring the sparsity of the kernels.

Designing efficient rules to learn the kernel
supports also remains a large and unexplored is-
sue which might have a huge impact on the per-
formance of the proposed algorithm. As an ex-
ample, the learning algorithms investigated in the
important literature related to deep learning (and
in particular to convolutional networks) would de-
serve to be studied in the context of convolutions
with sparse kernels. Indeed, as explained in (Ben-
gio and LeCun, 2007), even if the convergence of
these algorithms is difficult to prove, they do not
seem to suffer from the convergence problems that
plague deep fully-connected neural nets.

In a similar direction, the experiments of Sec-
tion 5 show an unexpected behavior of the al-
gorithm. Understanding formally when the func-
tional lends itself to global optimization is a im-
portant question that we plan to address in the near
future.
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Appendix

Proof of Proposition 1

First notice that D is a compact set. Moreover,
when (7) holds, the objective function of (P1) is
coercive in λ. Thus, for any threshold µ, it is pos-
sible to build a compact set such that the objective
function evaluated at any (λ,h) outside this com-
pact set is larger than µ. As a consequence, we can
extract a converging subsequence from any mini-
mizing sequence. Since the objective function of
(P1) is continuous in a closed domain, any limit
point of this subsequence is a minimizer of (P1).

Proof of Proposition 2

The proof of 1 hinges on formulating the expres-
sion of a stationary point of (P1), then showing
that the Lagrange multipliers associated with the
norm-to-one constraint for the (hk)1≤k≤K are all
equal to 0. First, considering the partial differen-
tial of the objective function of (P1) with respect
to λ and a Lagrange multiplier γλ ≥ 0 for the con-
straint λ≥ 0, we obtain

λ‖α∗h1 ∗ · · · ∗hK‖2
2−
〈
α∗h1 ∗ · · · ∗hK ,u

〉
=

γλ

2
,

(19)

and

λγλ = 0. (20)

Then, considering Lagrange multipliers γk ∈R as-
sociated with each constraint ‖hk‖2 = 1, we have
for all k ∈ {1, . . . ,K}

λH̃k ∗ (λα∗h1 ∗ · · · ∗hK−u) = γkhk, (21)
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where Hk is defined by (5). Taking the scalar prod-
uct of (21) with hk and using both ‖hk‖2 = 1 and
(19), we obtain

γk = λ
γλ

2
= 0, ∀k ∈ {1, . . . ,k}.

Hence, (21) takes the form, for all k ∈ {1, . . . ,K}

λH̃k ∗ (λα∗h1 ∗ · · · ∗hK−u) = 0. (22)

When λ > 0, this immediately implies that the ker-
nels g defined by (8) satisfy

∂E
∂hk (h) = 0, ∀k ∈ {1, . . .K},

i.e., the kernels g ∈ (RP )K form a stationary point
of (P0).

The proof of the item 2 is straightforward since
for any ( f k)1≤k≤K ∈ (RP )K satisfying the con-
straints of (P0)

8, we have
‖α∗g1 ∗ . . .∗gK−u‖2

2

= ‖λα∗h1 ∗ . . .∗hK−u‖2
2

≤

∥∥∥∥∥
(

K

∏
k=1
‖ f k‖2

)
α∗ f 1

‖ f 1‖2
∗ . . .∗ f K

‖ f K‖2
−u

∥∥∥∥∥
2

2

≤ ‖α∗ f 1 ∗ . . .∗ f K−u‖2
2.

As a consequence, the kernels (gk)1≤k≤K defined
by (8) form a solution of (P0).

Proof of Proposition 3

The first item of proposition 3 can be obtained di-
rectly since 1) the sequence of kernels generated
by the algorithm belongs to D and D is compact,
2) the objective function of (P1) is coercive with
respect to λ when (13) holds, and 3) the objective
function is continuous and decreases during the it-
erative process.

To prove the second item of proposition 3, we
consider a limit point (λ∗,h∗) ∈ R×D . We de-
note by F the objective function of (P1) and de-
note by (λo,ho)o∈N a subsequence of (λn,hn)n∈N

8 We further assume that ‖ f k‖2 6= 0, for all k ∈
{1, . . . ,K}, since the inequality is otherwise trivial.

which converges to (λ∗,h∗). The following state-
ments are trivially true, since F is continuous and
(F(λn,hn))n∈N decreases:

lim
o→∞

F (T (ho)) = lim
o→∞

F(λo,ho) = F(λ∗,h∗) (23)

However, if for any k inside {1, . . . ,K}, we have
CT

k u 6= 0 and the matrix Ck generated using Tk(h∗)
is full column rank, then there exist an open neigh-
borhood of Tk(h∗) such that these conditions re-
main true for the matrices Ck generated from ker-
nels h in this neighborhood. As a consequence, the
kth iteration of the for loop is a continuous map-
ping on this neighborhood. Finally, we deduce that
there is a neighborhood of h∗ in which T is con-
tinuous.

Since T is continuous in the vicinity of h∗
and (ho)o∈N converges to (h∗), the sequence
(T (ho))o∈N converges to T (h∗) and (23) guaran-
tees that

F (T (h∗)) = F(λ∗,h∗).

As a consequence, denoting h∗ = (h∗,k)1≤k≤K , for
every k ∈ {1, . . . ,K}, F(λ∗,h∗,k) is equal to the
minimal value of (Pk). Since Ck is full column
rank, we know that this minimizer is unique (see
the end of Section 3.2) and therefore (λ∗,h∗,k) is
the unique minimizer of (Pk). We can then deduce
that (λ∗,h∗) = T (h∗).

Finally, we also know that (λ∗,h∗) is a station-
ary point of (Pk). Combining all the equations stat-
ing that, for any k, (λ∗,h∗,k) is a stationary point of
(Pk), we can find that (λ∗,h∗) is a stationary point
of (P1).
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