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Abstract

This paper develops an implementation of a Predual Proximal Point
Algorithm (PPPA) solving a Non Negative Basis Pursuit Denoising model.
The model imposes a constraint on the l

2 norm of the residual, instead
of penalizing it. The PPPA solves the predual of the problem with a
Proximal Point Algorithm (PPA). Moreover, the minimization that needs
to be performed at each iteration of PPA is solved with a dual method.
We can prove that these dual variables converge to a solution of the initial
problem.

Our analysis proves that we turn a constrained non differentiable con-
vex problem into a short sequence of nice concave maximization problems.
By nice, we mean that the functions which are maximized are differen-
tiable and their gradient is Lipschitz.

The algorithm is easy to implement, easier to tune and more general
than the algorithms found in the literature. In particular, it can be ap-
plied to the Basis Pursuit Denoising (BPDN) and the Non Negative Basis
Pursuit Denoising (NNBPDN) and it does not make any assumption on
the dictionary. We prove its convergence to the set of solutions of the
model and provide some convergence rates.

Experiments on image approximation show that the performances of
the PPPA are at the current state of the art for the BPDN.
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1 Introduction

1.1 Recollection on Basis Pursuit Denoising

The use of the Basis Pursuit Denoising model (BPDN) [7] in image/signal pro-
cessing is now a fairly developed field of research. For instance, it is commonly
used for compression, source separation [37], feature selection for classification
[5], and restoration [4]. Many theoretical results have also been established sup-
porting this model. Most of them aim at understanding the equivalence between
the usual BPDN (see below) and the search for the sparsest approximation (see,
among others, [14, 15]). An extensive body of work has also been carried out
under the name Compressed Sensing [33, 13, 6]. Other authors have shown
that the BPDN is an efficient way to simplify a complex data distribution (see
[30, 29]). The usual BPDN takes the form

min
x∈RP

‖Ax− b‖22 + λ‖x‖1, (1)

where A is an N−by−P matrix (i.e. N rows and P columns), b ∈ R
N is the

datum, λ > 0 is real, ‖.‖2 stands for the Euclidean norm on R
N and ‖.‖1 stands

for the l1 norm on R
P .

We will always suppose that P ≥ N (and in practice we often have P ≫ N).
The columns of A are denoted (Ai)i=1..P , they form a dictionary of atoms which
are used to represent the datum b. The purpose of the BPDN is to express an
approximation of b as a sparse linear expansion in this dictionary.

A nice geometric interpretation of the model (1) arises when we write it
under the form

min
c∈RN

‖c− b‖22 + λE(c), (2)

where E is defined, for every c ∈ R
N , by

{

E(c)
def
= minx∈RP ‖x‖1

under the constraints Ax = c.

Indeed, the strength of the functional E (the regularization term in (2)) is
that its level sets are scaled versions of the convex hull of (Ai)i=1..P ∪(−Ai)i=1..P

(see [12, 30]). It is therefore possible to build a functional E that favor the use of
specific structures; and these structures are explicitly chosen by the user. This
functional can therefore be designed to favor the structures which are known to
be important in a given application.

One drawback of the above functional E is that it favors both the apparition
of Ai and −Ai. This might lead to the bad modeling of some structures which
are only used with a given sign. For instance when dealing with images of text,
the letters are always dark on a brighter background. If, in an expansion, an
element of the dictionary representing a letter at a given location appears with
a negative sign, it describes a content which is not a letter. This content should
be represented by elements of the dictionary devoted to the background. (This
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holds also for astronomical image, images of faces. . . ). This led some authors
[15, 30, 26] to study the Non Negative Basis Pursuit Denoising (NNBPDN),
where the above regularization term E is replaced by Enn defined, for every
c ∈ R

N , by






Enn(c) = minx xt1P

under the constraints xi ≥ 0, ∀i = 1..P,
and Ax = c.

where .t stands for the transpose and 1P stands for a vector of size P with all
its entries equal to 1.

The level sets of Enn are scaled versions of the convex hull of (Ai)i=1..P . Of
course, if for all i = 1..P , −Ai ∈ (Ai)i=1..P one obtains a functional similar to
E.

Another issue which we wanted to improve in (1) concerns the choice of
the parameter λ. For practical applications, it is always preferable to solve the
model in the form

{

minc∈RN Enn(c),
under the constraints ‖c− b‖2 ≤ τ, (3)

for a parameter τ > 0. Indeed, τ can be tuned automatically, according to some
prescribed precision (in approximation) or a known noise level (in denoising,
compressed sensing).

Notice that, as is well known, there is a correspondence between the param-
eter λ in (1) and the parameter τ in (3). However, this correspondence depends
on the initial datum b.

These considerations led us to consider a NNBPDN model taking the form

(D)







minx x
t1P

under the constraints xi ≥ 0, ∀i = 1..P,
and ‖Ax− b‖2 ≤ τ,

for τ > 0.
The purpose of the paper is to design an efficient algorithm (the PPPA)

solving (D).

1.2 Existing algorithms solving the BPDN

As mentioned in the introduction, the literature on the resolution of the BPDN
is rapidly growing. No algorithm is currently available for solving (D). Almost
all the papers deal with the model under its form:

min
x∈RP

f(x), (4)

with
f(x)

def
= ‖Ax− b‖22 + λ‖x‖1,

for λ > 0 and x ∈ R
P .
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1.2.1 Iterative Thresholding (IT)

The IT has been studied in [11, 1, 21, 20, 10, 9, 25].
This algorithm is proved to converge (with a linear convergence rate) as soon

as the operator norm of A is strictly smaller than 1. This means

M
def
= sup

x 6=0

‖Ax‖2
‖x‖2

< 1.

In Section 3.3.2, we present a trick (which has independently been noticed
in [25]) to apply the IT to any matrix A.

1.2.2 Parallel Coordinate Descent (PCD) Algorithm

The PCD algorithm was proposed in [18] and extended in [19]. It is proved
to converge under conditions which are not satisfied by the l1 norm. We have
observed however that it behaves well in this framework.

Notice that, in this algorithm, at the kth iteration, a descent direction dk

is computed. Then an optimal step is computed along that direction. This
requires the evaluation of f

(

xk + tdk
)

at different time steps t. The evaluation
of ‖A(xk+tdk)−b‖22 is rapid, since it is a second order polynomial in t. However,
each evaluation of ‖xk + tdk‖1 costs one multiplication and two additions per
element of the dictionary. Depending on the matrix A this might represent a
non negligible proportion of the total computational time.

1.2.3 Gradient Projection for Sparse Reconstruction (GPSR)

This algorithm is described in [23]. Like our algorithm, it benefits from the fact
that it is possible to rewrite (4) in the form

{

minx+,x−∈RP f(x+ − x−)
under the constraints x+ ≥ 0 and x− ≥ 0.

This is a simpler form of the problem than (4) since the orthogonal projection
onto the constraints is easy. Moreover, this permits to get rid of the non-
differentiable l1 norm. The GPSR also exploits the fact that f(x+ − x−) is
quadratic in x+ and x−.

1.2.4 Other methods

In [7], the authors propose an interior point method. (A better description
is given in [36].) To our knowledge, the last development, in the direction of
interior point methods is [26] (the algorithm is called l1 ls). It is reported, in
[23], to be slower than GPSR.

The Block Coordinates Relaxation (BCR) algorithm introduced in [36] only
applies when the dictionary of atoms corresponding to the columns of A is a
union of orthonormal bases (its extension to a union of orthogonal bases is
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straightforward). Indeed, it uses the fact that the soft-thresholding operator
provides an exact resolution of (4) when the dictionary is an orthonormal basis.

The homotopy algorithm (it computes an exact solution of (4) for a decreas-
ing λ) proposed in [31, 16] is very elegant and has the advantage of being exact.
Similar algorithms are used in the machine learning community (for comput-
ing SVMs). The history of this algorithm apparently goes back to the 50’s in
economics. The homotopy algorithm does require, at each iteration, the inver-
sion of a matrix. At the end of the iterative process, the size of this matrix
equals the number of non-zero coordinates of the result. This restricts its use
to applications where this number remains very small.

At least one algorithm (see [17]) exists for solving the related problem
(named LASSO)

{

minx∈RP ‖Ax− b‖22
under the constraint ‖x‖1 ≤ τ ′, (5)

for τ ′ > 0. This “parameterization of the problem” is indeed relevant for the
machine learning community.

Finally, there are many algorithms (in particular the Matching Pursuit fam-
ily) which promote sparsity. They have the same goal and are in competition
with the BPDN but do not solve the BPDN.

1.2.5 The continuation trick

This trick permits to deal better with the difficulty of the problem (4) when λ

is small (or very small). It has been observed by several authors (see, among
others, [23, 25]) that it is faster, in this case

• to compute a solution of the model for λ′ ≥ λ and initialize the algorithm
with this solution.

• than to compute directly a solution for λ, with a crude initialization.

Using this idea recursively, we can consider a decreasing set of values (λ′l)1≤l≤L

such that λ′L = λ and compute the solutions for all the values (λ′l)1≤l≤L.
This trick is called homotopy (because of its similarity with the homotopy

algorithm) or continuation. It can be adapted to any algorithms solving (D),
(4) and (5).

The drawback of this continuation trick is that it is difficult to construct
a good sequence (λ′l)1≤l≤L and to determine the correct level of convergence
required when l < L. It is particularly difficult to determine these parameters
automatically. However, when they are properly tuned (for a given problem),
this strategy diminishes the computational time requirement significantly.

1.3 Sketch of the PPPA

The general description of the PPPA is as follows:

• Consider (P ) the predual of (D).
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• We solve the predual (P ) with a PPA. (Thus the name of the algorithm.)
Doing so, we obtain a sequence of minimization problems. As usual with
the PPA, the solutions of this sequence of problems converge linearly to
the solution of (P ). Moreover, in each of these minimization problems,
the objective function consists of the objective function of (P ) plus the
usual proximal term. We solve each of these problems by a dual method.
This means that we first compute a Kuhn-Tucker vector of the problem
in order to solve the problem. These Kuhn-Tucker vectors converge to the
set of solutions of (D).

The above construction is possible because the objective function (in the
maximization providing the above Kuhn-Tucker vectors) equals a known Moreau
envelope plus a quadratic term. This has two consequences :

1. It has the smoothness of a Moreau envelope. In particular, its gradient is
Lipschitz (which makes the maximization easy).

2. We can evaluate it and compute its gradient with closed form formulae.

1.4 Notation and hypotheses

The following notation and hypotheses hold throughout the paper.
For any positive integer k, we denote v ∈ R

k a column vector of length k.
Moreover, we denote the entries of v by (vi)i=1..k. The usual norms are defined
by

‖v‖2 def
=

√

√

√

√

k
∑

i=1

v2
i ,

‖v‖1 def
=

k
∑

i=1

|vi|,

and
‖v‖∞ def

= max
i=1..k

|vi|.

We denote
R

k
+

def
= {v ∈ R

k : ∀i = 1..k, vi ≥ 0}.
For any positive integer k and any u and v ∈ R

k, u ≤ v means that, for all

i = 1..k, ui ≤ vi. (We define ≥ similarly.) Also max(u, v)
def
= (max(ui, vi))i=1..k.

The vector ut is the transpose of u. The vector 1k is column vector of size k
with all its entries equal to 1.

For any set F ⊂ R
k, the indicator function of F is denoted by χF and it

equals 0, on F , and +∞ outside F .
The matrix A is an N -by-P (N and P are positive integers) matrix which

positively generates R
N . More precisely, the matrix A is such that

∀d ∈ R
N , there exists x ∈ R

P
+ such that Ax = d.
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Under this hypothesis, (D) has a solution. Notice also that, depending on A,
this solution might not be unique. (A trivial example of non-uniqueness is when
two columns of A are equal.)

For any set of columns J ⊂ {1, . . . , P}, the matrix AJ is a N -by-#J matrix
(where # denotes the cardinal of a set) containing the columns of A whose index
are in J . When J only contains one element, we write Aj instead of Aj .

We also assume that the datum b ∈ R
N and the parameter τ > 0 are such

that ‖b‖2 > τ . Otherwise, the problem (D) is trivial (x = 0 solves (D)).

1.5 Organization of the paper

In section 2, we build the PPPA. The predual is computed in Section 2.1. The
general form of the algorithm and main statement concerning its convergence
are given in Section 2.2. The proof of the convergence is given in Section 2.3.
In Section 2.4, the fact that the objective functions which are maximized have
a Lipschitz gradient is established. Then, some calculations yield closed form
formulae for the main computations of the algorithms (see Section 2.5). The
pseudo-code of the PPPA is given in Section 2.6. It is easy to implement. Details
and a variation around this algorithm are described in Section 2.7.

Then, some experiments are explained and commented in Section 3. The
aims of these experiments are to understand the role of parameter of the algo-
rithm and to compare it to the IT, the PCD and the GPSR-BB.

We finally give some perspectives in section 4.

2 Building the algorithms

2.1 The Predual formulation

In this section, we consider the optimization problem (P ) below and show that
its dual is indeed the above problem (D). In other words, we prove that (P ) is
the predual of (D).

(P )

{

mind∈RN τ‖d‖2 − dtb

under the constraints Atd ≤ 1P .

The Lagrangian of the problem (P ) is

L(d, x)
def
= τ‖d‖2 − dtb+ xt(Atd− 1P ),

where the vector x ∈ R
P
+ contains the dual variables.

The unique1 solution c∗ of (P ) is also the first argument of any saddle point
(c∗, x∗) of the Lagrangian. We also know that the second argument x∗ of any
saddle point of the Lagrangian solves the dual of (P ) (x∗ is called a Kuhn-Tucker
vector of (P )).

1The existence and uniqueness of the solution of (P ) are easy to establish and need not be
detailed here. They are given in [38].
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The dual of (P ) is the following problem

max
x∈RP

+

min
d∈RN

L(d, x) = max
x∈RP

+

(

min
d∈RN

τ‖d‖2 + dt(Ax − b)
)

− xt1P . (6)

Finally, notice that we have

min
d∈RN

τ‖d‖2 + dt(Ax − b) =

{

−∞ , if b−Ax 6∈ τ∂‖.‖2(0)
0 , otherwise,

with
∂‖.‖2(0) = {d ∈ R

N , ‖d‖2 ≤ 1}.
Integrating those results into (6), we finally obtain the dual of (P ):

{

maxx∈RP

+
− xt1P

under the constraint ‖Ax− b‖2 ≤ τ,

which is precisely the problem (D) considered in the preceding section.
It follows that the problem (D) can be solved by any algorithm solving (P )

if this algorithm also provides one of its Kuhn-Tucker vectors x∗.
In the following, we will only consider a small family of such algorithms.

(Our motivation for considering this family will be clear after Section 2.4 and
2.5) This family is described in the next section.

2.2 Applying the Proximal Point Algorithm to (P )

We propose to solve the predual (P ) with a PPA (see, among other, [35, 24]).
We denote

gc,α(d)
def
= α‖d− c‖22 + τ‖d‖2 − dtb+ χF (d),

where F
def
= {d ∈ R

N : Atd ≤ 1P } is the feasible set of (P ).
Applying the PPA to (P ) means that we compute the following sequence:

cm+1 = argmind∈RN gcm,αm
(d), (7)

for a given c0 and a nonnegative bounded sequence (αm)m∈N.
General results on the PPA (see [35]) guarantee that (cm)m∈N converges

linearly to the solution c∗ of (P ). (A more precise statement is given in Theorem
1).

For the PPPA, we need to go one step further and prove that this implies
the convergence of the corresponding Kuhn-Tucker vectors. We also need to
compute those vectors, since our actual goal is to solve (D). Therefore we solve
(7) with a dual method. In order to do so, we consider the Lagrangian of (7) :

L′(d, x, cm, αm)
def
= αm‖d− cm‖22 + L(d, x)

= αm‖d− cm‖22 + τ‖d‖2 + dt(Ax− b)− xt1P . (8)
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We know that a Kuhn-Tucker vector of (7) exists (see [34], Th 28.2, p.277)
and maximizes on R

P
+:

fcm,αm
(x)

def
= min

d∈RN

L′(d, x, cm, αm).

Moreover, for any Kuhn-Tucker vector x∗ ∈ argmaxx∈RP

+
fcm,αm

(x), we have

cm+1 = argmind∈RN L′(d, x∗, cm, αm).

The family of algorithms which we call Predual Proximal Point Algorithm
(PPPA) is described in Table 1.

• Initialize c0

• Repeat until convergence (loop in m)

1. Use a gradient based algorithm for solving

xm ∈ argmaxx∈RP

+
fcm,αm

(x)

2. Update cm+1 =
argmind∈RN L′(d, xm, cm, αm).

Table 1: General form of the algorithm. The gradient based algorithm still
needs to be specified.

Notice that the function fcm,αm
(x) is concave because L′ is concave in

x. We also know that −fcm,αm
is coercive on R

P
+ (for instance fcm,αm

(x) ≤
L′(0, cm, x, αm) = −‖x‖1 + cst).

We will show in Section 2.4 that x 7→ ∇fcm,αm
(x) is Lipschitz and we will

provide an upper bound of its Lipschitz constant (this bound can be computed
numerically). Together, this will guarantee the convergence of most gradient
based algorithms considered in Step 1.

Notice that, besides the matrix-vector multiplication, the only difficulties in
the implementation of the above algorithm are the computations of∇fcm,αm

(x),
in Step 1, the resolution of Step 2 and, depending on the gradient based algo-
rithm in Step 1, the evaluation of fcm,αm

(x). We will show in Section 2.5 that
these computations can be performed with closed form formulae. Essentially, the
cost of the evaluation of ∇fcm,αm

(x) is two matrix-vector multiplications; the
cost for computing argminc∈RN L′(d, xm, cm, αm) and for evaluating fcm,αm

(x)
is one matrix-vector multiplication.

Before going into those details, let us first state the following theorem, which
guarantees that the PPPA approximates actual solutions of (P ) and (D). It also
guarantees that the loop in m of Table 1 converges rapidly and is short. The
proof of the theorem is contained in the next section (the proof is independent
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of the rest of the paper and can be skipped); it is a straightforward application
of a well known result which is true for many convex problem (see [35]). In
particular, the linear convergence rate of the point (1) is similar to what is
known for those convex problems. The main difficulty is to prove that (P )
satisfies the hypotheses of Theorem 2, in [35]. The convergence of (Axm)m∈N

and (xm)m∈N are easily obtained once the point (1) is established.

Theorem 1 Assume (αm)m∈N is a bounded nonnegative sequence and ‖b‖2 >
τ , there exists t > 0 and T > 0 such that the sequences (cm)m∈N and (xm)m∈N

defined in Table 1 satisfy

1. (cm)m∈N converges to c∗. If moreover, (αm)m∈N is nonincreasing and for
tm = t√

t2+α
−2
m

< 1

‖cm+1 − c∗‖2 ≤ tm‖cm − c∗‖2, ∀m ≥ T.

In words, (cm)m∈N converges to c∗ faster than linearly with convergence
ratio t√

t2+lim infm→∞(α−2
m )

.

2. For any x∗ ∈ S, where S is the optimal set of (D), (Axm)m∈N converges to
Ax∗. If moreover, (αm)m∈N is nonincreasing and for Tm = 4αm + 2τ

‖c∗‖2
,

‖Axm −Ax∗‖2 ≤ Tm‖cm − c∗‖2, ∀m ≥ T.

The left term converges to 0 with the same rate as (‖cm − c∗‖2)m∈N.

3. Given d(xm,S)
def
= minx∗∈S ‖xm − x∗‖2, we have

lim
m→+∞

d(xm,S) = 0.

2.3 Proof of Theorem 1

2.3.1 Proof of Theorem 1, point (1)

The first statement is a direct application of Theorems 1 and 2 of [35]. Theorem
1 of [35] guarantees that (cm)m∈N converges to c∗. We can apply it because (P )
has a solution. In order to apply Theorem 2 of [35], we only need to show that
∂g−1 is Lipschitz continuous at 0 (see [35]), for g defined for d ∈ R

N by

g(d)
def
= τ‖d‖2 − dtb+ χF (d),

where we recall that F
def
= {d ∈ R

N : Atd ≤ 1P } is the feasible set of (P ).
The Lipschitz continuity of ∂g−1 at 0 follows from Proposition 7, in [35]: in-

deed, we show that, since ‖b‖2 > τ , the function g satisfies the second statement
(named b) of Proposition 7, in [35].

First, notice that, when ‖b‖2 > τ , the minimizer c∗ of g (i.e. the solution of
(P )) is unique. The proof of this statement is straightforward and is given in
[38].
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Therefore, in order to apply Proposition 7 of [35], we only need to show that

lim inf
d→c∗

g(d)− g(c∗)
‖d− c∗‖22

> 0. (9)

In order to prove this last statement, let us first remark that, since ‖b‖2 > τ ,
c∗ 6= 0. Therefore, d→ τ‖d‖2 − dtb is infinitely differentiable at c∗. The second
order Lagrange expansion holds for this function and, for all d ∈ F (c∗ trivially
belongs to F ),

g(d) = g(c∗) +

(

τ
c∗

‖c∗‖2
− b
)t

(d− c∗)

+
τ

2‖c∗‖32

(

‖d− c∗‖22‖c∗‖22 −
(

(c∗)t(d− c∗)
)2
)

+ o(‖d− c∗‖22). (10)

The difficulty, when trying to prove (9), is to prove that the first and second
order terms of (10) cannot cancel simultaneously. We achieve this by splitting F
into two complementary sets : one set on which the first order term is far from
0; its complement on which the second order term is far from 0. The details
are given below. Before doing so, we establish some results which hold for any
d ∈ F .

First, since c∗ solves (P ), there exists a Kuhn-Tucker vector x ∈ R
P
+ such

that (see [34], Th. 28.3, p. 281)

∀i = 1..P, xi((A
i)tc∗ − 1) = 0 (11)

and

τ
c∗

‖c∗‖2
− b = −Ax. (12)

Notice that, since ‖b‖2 > τ , x 6= 0 and there exists i0 ∈ I such that xi0 > 0.
Then, by (11), for any i = 1..P such that xi > 0 (and in particular for i0),

(Ai)tc∗ = 1 (13)

and therefore xi(A
i)t(c∗ − d) ≥ 0, for all d ∈ F . Thus, using (12)

(

τ
c∗

‖c∗‖2
− b
)t

(d− c∗) = (Ax)t(c∗ − d)

= xt [At(c∗ − d)]

=

P
∑

i=1

xi(A
i)t(c∗ − d)

≥ xi0 (A
i0)t(c∗ − d) (14)

≥ 0. (15)

Let us now constructs the sets which we evoked in the paragraph following
(10).
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To do so, notice that for any d ∈ R
N (and in particular for d ∈ F ) there

exists β ∈ R and r ∈ R
N such that d = (1−β)c∗+r, with rtc∗ = 0. Moreover, β

and r are unique. (We use this notation throughout this proof without explicitly
recalling it.) Notice that

d− c∗ = r − βc∗. (16)

Let us denote by

E = {d = (1− β)c∗ + r ∈ F,with rtc∗ = 0, β ≥ 0 and ‖r‖2 ≤
β

2‖Ai0‖2
},

where we recall that i0 is a given index such that xi0 > 0.
We are going to show that the first order term in (10) cannot cancel on E.
We obtain, using successively (10) (and the convexity of g), (14), (16) and

(13) that, for all d ∈ E,

g(d)− g(c∗) ≥
(

τ
c∗

‖c∗‖ − b
)t

(d− c∗) + o(‖d− c∗‖22)

≥ xi0(A
i0 )t(βc∗ − r) + o(‖d− c∗‖22)

≥ xi0(β − (Ai0 )tr) + o(‖d− c∗‖22)

Since, for all d ∈ E

‖(Ai0)tr‖2 ≤ ‖(Ai0)t‖2‖r‖2 ≤
β

2
,

we obtain

g(d)− g(c∗) ≥ xi0

β

2
+ o(‖d− c∗‖22).

Moreover, for d ∈ E,

‖d− c∗‖22 = β2‖c∗‖22 + ‖r‖22 ≤ (‖c∗‖22 +
1

4‖Ai0‖22
)β2.

Finally, for d ∈ E,

g(d)− g(c∗) ≥ xi0

2

‖d− c∗‖2
√

‖c∗‖22 + 1
4‖Ai0‖2

2

+ o(‖d− c∗‖22).

So we get

lim inf
d→ c∗

d ∈ E

g(d)− g(c∗)
‖d− c∗‖22

= +∞. (17)

Let us now consider the situation where d ∈ F \E, we deduce from (10) and
(15) that

g(d)− g(c∗) ≥ τ

2‖c∗‖32
(‖d− c∗‖22‖c∗‖22 −

(

(c∗)t(d− c∗)
)2

) + o(‖d− c∗‖22).

12



Decomposing again d = (1− β)c∗ + r, with rtc∗ = 0, we obtain

g(d)− g(c∗) ≥ τ

2‖c∗‖32
((β2‖c∗‖22 + ‖r‖22)‖c∗‖22 − β2‖c∗‖42) + o(‖d− c∗‖22)

=
τ‖r‖22
2‖c∗‖2

+ o(‖d− c∗‖22). (18)

Moreover, for d ∈ F \ E, we either have β < 0 or ‖r‖2 > β
2‖Ai0‖2

≥ 0. In the

latter case, we trivially have

β2 ≤ 4‖Ai0‖22‖r‖22.

If β < 0, we have, using the definition of F and (13),

1 ≥ (Ai0)td ≥ (1− β) + (Ai0 )tr.

So
(Ai0 )tr ≤ β

and
0 < −β ≤ −(Ai0)tr ≤ ‖Ai0‖2‖r‖2.

This implies that β2 ≤ ‖Ai0‖22‖r‖22.
We finally obtain that, whenever d ∈ F \E,

β2 ≤ 4‖Ai0‖22‖r‖22
and therefore

‖d− c∗‖22 = β2‖c∗‖22 + ‖r‖22 ≤ (4‖Ai0‖22‖c∗‖22 + 1)‖r‖22.

Together with (18), this guarantees that

lim inf
d→ c∗

d ∈ F \ E

g(d)− g(c∗)
‖d− c∗‖22

≥ τ

2‖c∗‖2(4‖Ai0‖22‖c∗‖22 + 1)
> 0.

This result and (17) guarantee that (9) holds and concludes the proof of the
first statement.

2.3.2 Proof of Theorem 1, point (2)

Again, since ‖b‖2 > τ , c∗ 6= 0. The objective function of (P ) is differentiable at
c∗ and, for any x∗ ∈ S,

τ
c∗

‖c∗‖2
− b +Ax∗ = 0. (19)

Since cm+1 converges to c∗, for m large enough, cm+1 cannot be zero. Given
the definition of cm+1 (see Table 1), we therefore know that

∂L′

∂d
(cm+1, xm, cm, αm) = 2αm(cm+1 − cm) + τ

cm+1

‖cm+1‖2
+Axm − b = 0. (20)
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Using (19) and (20), we obtain

Ax∗ −Axm = 2αm(cm+1 − cm) + τ

(

cm+1

‖cm+1‖2
− c∗

‖c∗‖2

)

.

Since (cm)m∈N converges to c∗, this leads to (Axm)m∈N converges to Ax∗. More-
over, if (αm)m∈N is nonincreasing,

‖A(x∗ − xm)‖2 ≤ 2αm(‖cm+1 − c∗‖2 + ‖cm − c∗‖2) + τ

∥

∥

∥

∥

‖c∗‖2cm+1 − ‖cm+1‖2c∗
‖c∗‖2‖cm+1‖2

∥

∥

∥

∥

2

≤ 2αm

(

t
√

t2 + α−2
m

+ 1

)

‖cm − c∗‖2

+ τ

∥

∥

∥

∥

(‖c∗‖2 − ‖cm+1‖2)cm+1 − ‖cm+1‖2(c∗ − cm+1)

‖c∗‖2‖cm+1‖2

∥

∥

∥

∥

2

≤ 4αm‖cm − c∗‖2 + τ

∣

∣‖c∗‖2 − ‖cm+1‖2
∣

∣+ ‖c∗ − cm+1‖2
‖c∗‖2

≤
[

4αm +
2tτ

√

t2 + α−2
m ‖c∗‖2

]

‖cm − c∗‖2

≤
(

4αm +
2τ

‖c∗‖2

)

‖cm − c∗‖2

This concludes the proof of the second statement.

2.3.3 Proof of Theorem 1, point (3)

In order to establish the last statement of Theorem 1, we are going to show that
(xm)m∈N

is bounded in R
P
+ and that any convergent sub-sequence of (xm)m∈N

converges to an element in S.
Let us first remark that, because of the definition of cm+1 and xm, we have

for any x∗ ∈ S (as for any element of R
P
+),

L′(cm+1, xm, cm, αm) ≥ L′(cm+1, x∗, cm, αm).

Using the definition of L′ (see (8)), we obtain

(cm+1)tAxm − (xm)t1P ≥ (cm+1)tAx∗ − (x∗)t1P .

So,
(xm)t1P ≤ (x∗)t1P + ‖cm+1‖2‖A(x∗ − xm)‖2. (21)

Since limm→+∞ cm = c∗ and limm→+∞A(x∗−xm) = 0, we are guaranteed that
there exists B > 0, such that, for all m ∈ N,

(xm)t1P ≤ B.

14



As a consequence, (xm)m∈N is bounded in R
P
+.

Let x be an accumulation point of (xm)m∈N. We know from the second
statement of the theorem that limm→+∞Axm = Ax∗ and therefore

Ax = Ax∗. (22)

This guarantees that x belongs to the feasible set of (D). Moreover, using (21),
this leads to

xt1P ≤ (x∗)t1P .

Now, (22) and the fact that x∗ ∈ S guarantee that the converse inequality holds.
We finally have

xt1P = (x∗)t1P .

Altogether, this implies x ∈ S and concludes the proof.

2.4 The gradient of fc,α is Lipschitz

The Lipschitz continuity of ∇fc,α is very important since, in Step 1 of Table 1,
we need to maximize fc,α. Remember that we already know that fc,α is concave
and −fc,α is coercive on R

P
+.

Before establishing this result, let us recall some facts about the Moreau
envelope of ‖.‖2 and let us express fc,α using this Moreau envelope.

We denote the Moreau envelope of ‖.‖2 by eβ. It is defined for c ∈ R
N and

β > 0, by

eβ(c)
def
= min

d∈RN

β‖d− c‖22 + ‖d‖2. (23)

As is usual for the Moreau envelope (see the introduction of [27]), for any d and
d′ ∈ R

N ,
‖∇eβ(d)−∇eβ(d′)‖2 ≤ 2β‖d− d′‖2. (24)

Also, for this particular Moreau envelope, we know that the vector d∗ solving
the optimization problem on the right hand side of (23) is

d∗ =

{

0 , if ‖c‖2 ≤ 1
2β

2β‖c‖−1
2β‖c‖ c , otherwise.

(25)

Recalling that, for x ∈ R
P
+, c ∈ R

N and α > 0,

L′(d, x, c, α) = α‖d− c‖22 + τ‖d‖2 + dt(Ax− b)− xt1P

we can rewrite

L′(d, x, c, α) = α
∥

∥d− c+ 1
2α

(Ax − b)
∥

∥

2

2
+ τ‖d‖2

+ct(Ax − b)− 1
4α
‖Ax− b‖22 − xt1P .

(26)

Therefore, for any x ∈ R
P
+,

fc,α(x) = τeα

τ

(

c− 1
2α

(Ax− b)
)

+ct(Ax− b)− 1
4α
‖Ax− b‖22 − xt1P .

(27)

We can now state the main result of the section.
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Theorem 2 For any c ∈ R
N , α > 0, any x and x′ in R

P
+,

‖∇fc,α(x) −∇fc,α(x′)‖2 ≤ C‖x− x′‖2,

where C
def
= M2

α
, for M the operator norm of A :

M
def
= sup

x 6=0

‖Ax‖2
‖x‖2

.

Proof. Differentiating (27), we obtain that, for any x ∈ R
P
+,

∇fc,α(x) = − τ

2α
At ∇eα

τ

(

c− 1

2α
(Ax − b)

)

+Atc− 1

2α
At(Ax − b)− 1P .

Writing, for x and x′ ∈ R
P
+,

e
def
= ∇eα

τ
(c− 1

2α
(Ax − b)) (28)

and

e′
def
= ∇eα

τ
(c− 1

2α
(Ax′ − b)), (29)

we obtain

∇fc,α(x) −∇fc,α(x′) =
τ

2α
At(e′ − e) +

1

2α
AtA(x′ − x),

=
1

2α
At
(

τ(e′ − e) +A(x′ − x)
)

.

Notice that we have

M = sup
x 6=0

‖Ax‖2
‖x‖2

= sup
d 6=0

‖Atd‖2
‖d‖2

.

Indeed, they are both equal to the square root of the largest singular value of
the matrix A.

We can therefore deduce that

‖∇fc,α(x)−∇fc,α(x)‖2 ≤ M

2α
‖τ(e′ − e) +A(x− x′)‖2,

≤ M

2α
(τ‖e′ − e‖2 + ‖A(x′ − x)‖2) .

Moreover, using (28), (29) and (24)

‖e′ − e‖2 ≤ 2
α

τ
‖ 1

2α
A(x− x′)‖2.

Finally, for any x ∈ R
P
+ and x′ ∈ R

P
+,

‖∇fc,α(x) −∇fc,α(x′)‖2 ≤ M

α
‖A(x′ − x)‖2

≤ M2

α
‖x′ − x‖2.
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The above theorem is important since it guarantees that, when solving the
first step of Table 1, most gradient based algorithms with constant step size
converge for some known step size (see next sections). Together with Theorem
1, this ensures that the whole algorithm converges to the desired solution.

However, in order to chose the step size in these algorithms we need to have
an estimate of the best possible Lipschitz constant. This can, of course, be done
experimentally be running the algorithm for several step sizes, with all the other
parameters fixed.

A more flexible way to chose the step size is to use the expression for C which
is given in the Theorem 2. In order to compute M , we can use the algorithm
described in Table 2. This algorithm computes the square root of the largest
eigenvalue of the matrix AtA, which equals M .

• Input : a matrix A

• Output : the constant M

• The algorithm :

– Initialize x0 6= 0.

– Repeat until convergence (loop in k)

1. Normalize xk ← xk

‖xk‖2

2. Compute dk = Axk

3. Update xk+1 = Atdk

– Set M = ‖xk+1‖
1
2

2

Table 2: Iterative algorithm computing the constant M (see Theorem 2).

An alternative is to use the following upper bound of M . When the dictio-
nary is the union of K orthonormal sets (for instance K orthonormal bases), we
have

M ≤
√
K.

Finally, we will see from (31) and (33) that fc,α does not satisfy any sort of
ellipticity or strong convexity property. This rules out the application of theo-
rems which require this property, when studying the convergence of a gradient
based algorithm for solving Step 1 of Table 1.
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2.5 Exact resolution of Step 2 and exact computation of

∇fc,α (x) and fc,α (x)

First, as is usual with the gradient of functions defined as a minimum, when
computing ∇fc,α (x) many terms cancels out2 and we have

∇fc,α (x) = Atc∗ − 1P ,

where
c∗ = argmind∈RN L′(d, x, c, α). (30)

As a consequence, the resolution of Step 2 in Table 1, the evaluation of
fc,α (x) and, modulo a multiplication by At, the computation of ∇fcm,αm

(x)
boil down to the same problem : the solution of (30).

In order to calculate the solution of (30), we use (26) which guarantees that

c∗ = argmind∈RN

α

τ

∥

∥

∥

∥

d− c+
1

2α
(Ax − b)

∥

∥

∥

∥

2

2

+ ‖d‖2.

Using (25), we obtain

c∗ =

{

0 , if ‖2αc− (Ax − b)‖2 ≤ τ
‖2αc−(Ax−b)‖−τ

2α‖2αc−(Ax−b)‖ (2αc− (Ax− b)) , otherwise.

We conclude that in Step 1 of the algorithm described in Table 1, the function
fc,α and its gradient can be computed with :

∇fc,α (x) = Atc∗ − 1P , (31)

and
fc,α (x) = L′(c∗, x, c, α), (32)

where










c∗ =

{

0 , if ‖d‖2 ≤ τ
‖d‖2−τ

2αm‖d‖2
d , otherwise,

with d = 2αc+ b−Ax.
(33)

Moreover, Step 2 of the algorithm in Table 1 is solved by applying (33) at
xm.

2Notice that the differentiation is not that trivial since, in L′, the optimal c depends on

x. Heuristically, as is common with such max min problems, the term ∂L′

∂c
equals zero and it

cancels the terms ∂c∗

∂x
which appear in the calculation of ∇fc,α (x). For an example of such

a calculation, see the construction of the Uzawa algorithm in [8]
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2.6 A simple version of the PPPA

In this section, we present the algorithm obtained when the gradient based
algorithm used to solve Step 1 of the algorithm described in Table 1 is a simple
projected gradient ascent with a constant time step. Given Theorem 2, we know
(see [32], Cor. 2.1.2, p. 70, and Th. 2.2.8, p. 88) that it converges as soon as the
time step is in the range (0, 2

C
), where C is as given in Theorem 2. Moreover,

the ”best time step” is ρ = 1
C

.
We also know (see [32]) that, for ρ = 1

C
, cm ∈ R

N and αm > 0, there exists
a constant C1 > 0 (which depends on the quality of the initialization) such that

|f∗
cm,αm

− fcm,αm

(

xm,k
)

| ≤ C1
2C

k + 4
,

where xm,k is the result of the algorithm at the kth iteration, when solving Step
1 in Table 1 at the mth iteration, and

f∗
cm,αm

def
= max

x∈RP

+

fcm,αm
(x).

The final algorithm is described in Table 3.

• Inputs : τ > 0, the initial image b ∈ R
N , a matrix

A and (αm)m∈N

• Output : the coordinates x

• The algorithm :

– Initialize x0,0 ∈ R
P
+, c0 ∈ R

N and ρ = 1
C

.

– Repeat until convergence (loop in m)

∗ Repeat until convergence (loop in k)

1. Compute dk = 2αmc
m + b−Axm,k

2. if (‖dk‖2 ≤ τ), set dk = 0
otherwise, set dk ← a dk, with a =
‖dk‖2−τ

2αm‖dk‖2

3. Update xm,k+1,

xm,k+1 = max
(

0, xm,k + ρ(Atdk − 1P )
)

∗ Update cm+1 = dk and xm+1,0 = xm,k+1

Table 3: PPPA solving (D) : Step 1 of the algorithm described in Table 1 is
solved by a projected gradient descent with a constant step size.

The details on the initialization are given in Section 2.7.2. In the experi-
ments, the constant C was estimated using Theorem 2 and the algorithm de-
scribed in Table 2.
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2.7 Details and variants of the algorithm

This section contains some details on the use of the above algorithm when
solving the usual BPDN (instead of a NNBPDN), the initialization, the stopping
criteria and the possibilities we investigated for (αm)m∈N.

Also, there exist many gradient based algorithms for solving the Step 1 in
Table 1. In addition to the projected gradient algorithm with constant step
described in the above section, we have implemented another version. This
version is described in this section.

2.7.1 Symmetric and partly symmetric dictionaries

The algorithm presented so far solves a NNBPDN. We would like to emphasize
that, this generalization is not made at any expense when the PPPA is used to
solve the BPDN. The PPPA can be applied when the dictionary is symmetric
(i.e. ∃J ⊂ {1, . . . , P}, such that (Ai)i=1..P = (Aj)j∈J ∪ (−Aj)j∈J ) or partly
symmetric (i.e. ∃J and J ′ ⊂ {1, . . . , P}, such that (Ai)i=1..P = (Aj)j∈J′ ∪
(Aj)j∈J ∪ (−Aj)j∈J ).

For simplicity, let us consider a symmetric dictionary (Ai)i=1..P = (Aj)j=1.. P

2
∪

(−Aj)j= P

2
+1..P . When applied to the concatenation of two vectors x+ and

x− ∈ R
P

2 , the multiplication by A can be computed by

A1.. P

2 (x+ − x−),

where A1.. P

2 contains the P
2 first columns of A. This is exactly the matrix vector

multiplication needed in the algorithms solving the BPDN.
Similarly, the multiplication of d ∈ R

N by At is performed by concatenating

(A1.. P

2 )td and − (A1.. P

2 )td

and only requires one matrix vector multiplication with a matrix of size P
2 ×N .

As a conclusion, the cost for computing the matrix-vector multiplications
with A is essentially the same as the cost for applying the corresponding oper-
ations with the matrix A1.. P

2 .
A more serious issue is that the algorithm might converge more slowly, be-

cause it needs time to set a coordinate (for instance) x−i to 0 although x+
i > 0.

In order to assess the extent of this problem, we evaluated

R
def
= 100

#{i ∈ {1, . . . , P
2 }, x

+
i > 0 and x−i > 0}

#J

for a symmetric dictionary, throughout the iterative process (# denotes the
cardinal of a set). The order of magnitude of the worst value we found is
R ≈ 0.1 and it always decayed rapidly to 0. This suggests that this is not a
problem in practice.

However, when this occurs, we also observed that adding the “projection”

∀i ∈ {1, . . . , P
2
}, (x+

i , x
−
i )←

{

(x+
i − x−i , 0) , if x+

i ≥ x−i
(0, x−i − x+

i ) , otherwise,
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as a fourth step, in the algorithm of Table 3, slightly improves the convergence.
Notice that this “projection” obviously increases fcm,αm

(the objective function
which is maximized). We have no theoretical proof of convergence with this
“projection”, but we neither anticipate, nor have experimentally observed, any
convergence problem when using this “projection”.

Although it does not seem to be a necessary step, all the experiments con-
ducted in Section 3 use this “projection”.

Notice that the composition of the step 3 in Table 3 and the above “projec-
tion” is not a soft thresholding.

2.7.2 The initialization

In the algorithm of Table 3, we need to initialize x0,0 and c0 ∈ R
N .

We have not studied the initialization of x0,0. There are indeed many pos-
sibilities for this initialization and we postpone this study to future work. We
therefore simply use

x0,0 = 0.

Concerning the initialization of c0, let us first observe that (cm)m∈N con-
verges to the solution c∗ of (P ). Therefore, c0 should be close to c∗. Let us
approximate c∗, given an estimate x0,0 of a solution of (D).

If x0,0 is properly initialized, the Kuhn-Tucker conditions for the problem
(P ) lead to

τ
c∗

‖c∗‖2
− b+Ax0,0 ≈ 0.

Moreover, since c∗ solves (P ) and ‖b‖2 > τ we have

‖Atc∗‖∞ = 1.

So, we have
{

c∗ ≈ 1
‖Atc′‖∞

c′,

with c′ = b−Ax0,0 (34)

Therefore, it seems reasonable to initialize c0 at the approximate value of
c∗ given by (34). Of course, the advantage of this initialization is more striking
when x0,0 is close to an actual solution of (D).

2.7.3 Stopping criteria

Although well designed stopping criteria would improve the algorithm, this is
an aspect which we have not studied in details. The stopping criteria used in
the experiments are :

• for the loop in k : The loop continues while :

1√
N
‖A(xm,k − xm,k−1)‖2 >

10

128
and k < 50.

21



In practice, during the first iterations of the loop in m, the stopping cri-
terion which is used is “k < 50”. After that “ 1√

N
‖A(xk − xk−1)‖2 < 10

128”

is used and the maximum number of iterations in k rapidly equals 1. The
value 10

128 was set empirically.

Notice in this respect that a better stopping criterion could be deduced
from conditions A, A’, B or B’, in [35], p. 880. It would at least provide
better theoretical guarantees of convergence.

• for the loop in m : in order to study the convergence of the algorithm, we
simply use the stopping criterion : continue the loop in m while

the number of matrix vector multiplications ≤ 6000.

Of course, a better stopping criterion should be used if one wants to avoid
useless iterations. This criterion is also motivated by the idea that the
stopping criterion for the loop in m depends on the context (time con-
straints, needed accuracy . . . ). It should be customized for a specific
application. A list of several possible stopping criteria is given in [23].

2.7.4 Setting the sequence (αm)m∈N

Although we know that the algorithm converges as soon as the sequence (αm)m∈N

is bounded, it is clear that the behavior of the sequence (xm)m∈N depends on
(αm)m∈N. We have observed in many examples (one of them is detailed in Sec-
tion 3.2) that, when the algorithm is stopped before it has converged and when
(αm)m∈N is constant : a larger (αm)m∈N leads to a larger residual norm and a
smaller regularity term. (The converse statement is also true.)

We have tried three strategies, in order to set this sequence.

• PPPA 1: The first one aims at understanding what can be expected from
the algorithm, if one knows a reasonable choice for (αm)m∈N (for instance
by training the algorithm on similar problems). In such a scenario, the user
knows an approximation of the best (αm)m∈N. We mimic this situation
by running the algorithm for several sequences

αm ≡ α0, for α0 = 10−3, 10−2, 10−1, 1, 10, 102, 103.

and selecting the best value for α0 according to an external criterion (in
practice in our experiments, it is the value of the objective function in (1)).
Notice that the values α0 are crudely sampled. This aims at mimicking
the approximate knowledge of the ideal value for α0. In section 3, the
result for this sequence (αm)m∈N is referred to as PPPA 1.

• PPPA 2: The second considers a more uncertain scenario where the se-
quence is automatically adjusted. In this case, we set αmin = 10−3 and
αmax = 103 and we adjust the new value αm at the end of each iteration
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in m according to the criterion

if ‖Axm − b‖2 <
τ

1.1
, set αm+1 = min(αm ∗ 1.001, αmax)

if ‖Axm − b‖2 > 1.1 τ , set αm+1 = max(
αm

1.001
, αmin)

We also set α0 = αmin + αmax

100 . In section 3, the results for this sequence
(αm)m∈N is referred to as PPPA 2. Notice that this sequence might be
increasing and it does not satisfy the hypotheses leading to the linear
convergence rates in Theorem 1. We have not observed any problem with
its convergence.

• PPPA 3: The third strategy uses the observations which are made in Sec-
tion 3.2. At the end of each iteration in m it applies the following rule:

if ‖Axm − b‖2 < τ , then αm+1 = 2αm.

We start from α0 = 0.1. After αm has been changed, we wait for 25
iterations inm before applying this rule again. The purpose is to guarantee
that the change of αm+1 already has had an impact on the residual error.
In section 3, the results for this sequence (αm)m∈N is referred to as PPPA
3. Notice that this sequence (αn)n∈N is increasing.

2.7.5 Armijo Rule Along the Projection Arc

We also implemented a version of the algorithm where the gradient based algo-
rithm used to solve Step 1 of Table 1 is the “Armijo Rule Along the Projection
Arc” described in [3], Section 2.3.1, p. 230.

In short, the principle of this algorithm (for maximization) is to define at
the iteration m and k

x(ρ)
def
= max

(

xm,k + ρ∇fcm,αm
(xm,k), 0

)

∀ρ > 0.

The algorithm uses the update

xm,k+1 = x(ρ),

where ρ = βlρ0, for β ∈ (0, 1), a fixed ρ0 > 0 and for the first nonnegative
integer l such that

fcm,αm
(x(βlρ0))− fcm,αm

(xk) ≥ σ(∇fcm,αm
(xm,k))t

(

x(βlρ0)− xm,k
)

,

for σ ∈ (0, 1).
In the context of our problem, the drawback of this algorithm is that each

test of a new value l requires one evaluation of fcm,αm
(x(βlρ0)). This evalu-

ation is made using (32) and requires one matrix vector multiplication. The
additional cost for these multiplications makes the use of the Armijo rule ineffi-
cient. Experimentally, we have not witnessed any situation where this step size
rule improves the constant step size rule of the version of the PPPA described
in Table 3.

In the following, we do not consider this option further.
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3 Experimental results

In Section 3.1, we give all the details on the quantities which are used to assess
the quality of the algorithms.

We describe in Section 3.2 some experiments on the convergence of the
PPPA. In particular they emphasize the influence of (αm)m∈N on the behavior
of the algorithm.

Finally, in Section 3.3, we compare the PPPA to the other implementations
of the BPDN (the IT, PCD and GPSR-BB).

All the programs and scripts which were used to produce those experiments
are available on the web: [28]. Notice that the codes and scripts are adapted to
the SPARCO toolbox (see [2]). It is therefore easy to test the PPPA for all the
problems included in this toolbox.

Also, since the existing algorithms and problem solve the BPDN (not the
NNBPDN) we restrict our experiments to this situation. We therefore always
assume that the matrix A corresponds to a symmetric dictionary (i.e, in Matlab

notations, A = [A1.. P

2 , (−A1.. P

2 )]). Also, we write x ∈ R
P

2 and, when necessary,
implicitly assume that it is extended to x̃ ∈ R

P
+ according to

x̃i = xi and x̃P

2
+i = 0 if xi ≥ 0

x̃i = 0 and x̃P

2
+i = xi otherwise.

We therefore have
Ax̃ = A1.. P

2 x.

3.1 Convergence criterion

To assess the quality of a decomposition x ∈ R
P

2 such that A1.. P

2 x approximates
an image b ∈ R

N , we consider four quantities :

l0
def
=

100
P
2

#{i = 1..
P

2
, xi 6= 0},

l1
def
=

1
P
2

‖x‖1,

and the RMSE

RMSE
def
=

1√
N
‖A1.. P

2 x− b‖2.

To be consistent, we also consider the

target RMSE
def
=

τ√
N
.

We also display the value

f(x)
def
= ‖A1.. P

2 x− b‖22 + λ‖x‖1,
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when the Lagrange multiplier λ is available. It is indeed the functional which is
minimized in the usual BPDN (see (1)).

Since most of the computational time is spent in computing matrix-vector
multiplications and most algorithms use two matrix-vector multiplications per
iteration, we evaluate time with

time
def
=

#matrix-vector multiplication

2
.

3.2 Practical convergence of the Proximal Point Algo-

rithm and influence of (αm)m∈N

As can be seen in the preceding sections, beside the parameters of the problem
A, τ and b, the only parameter of the algorithm is (αm)m∈N (see (7)).

First, we know that, for any bounded positive sequence (αm)m∈N, the al-
gorithm converges (see Theorem 1). The questions we would like to answer in
this section are : What can we expect as (xm)m∈N converges to S (the set of
solutions of (D))? Do we have a way to estimate a good αm+1 by observing
xm?

In order to understand these aspects, we run the algorithm for several se-
quences αm ≡ α0 and interrupt them before they have reached full convergence.
Before describing the details of the experiments, let us summarize our findings.

• The criterion RMSE increases with α0. The RMSE can even be smaller
than the target RMSE (i.e. τ√

N
), when α0 is very small.

• The criteria l0 and l1 decay as α0 increases.

• When α0 increases, the functional f first decreases and then increases.

• The criterionRMSE converges first. As the number of iterations increases
more values α0 permits to obtain an accurate RMSE. Once the RMSE

criterion has converged it remains in the vicinity of its target value, the
criteria l0 and l1 still decay.

Each line of Table 4 and 5 contains the statistics described in Section 3.1 for
a given value α0 (and we recall that, in this experiment, αm ≡ α0) and for the
SPARCO problem number 10 with the target RMSE = 1.

Table 4 corresponds to time = 500. The algorithms have not converged. The
RMSE criterion has reached its target for α0 = 1, 10 and 100. The general
behavior described above holds.

Table 5 corresponds time = 3000. The RMSE criterion has reached its
target for α0 = 0.1, 1, 10, 100 and 1000. The l1 and l0 criterion still decay as
α0 increases. The best approximation of the solution is therefore for α0 = 1000.
Notice that all the values have improved, compared to Table 4. In particular,
for the value of α0 which reached the RMSE target after 500 iterations, the
RMSE is still around the target RMSE. The l1 and l0 criteria are improved.
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α0 l0 l1 RMSE

0.001 93.8477 0.50175 0.848469
0.01 88.1836 0.497928 0.8492
0.1 71.1914 0.463789 0.861673
1 47.4609 0.282127 1.00368
10 15.7227 0.231428 1.00074
100 6.73828 0.212524 1.019
1000 2.44141 0.119846 1.31399
10000 0.390625 0.0350802 1.91381
100000 0.195312 0.0293655 1.9707

Table 4: Convergence of the PPPA depending on (αm)m∈N. The experiment is
on the SPARCO Problem number 10 with the target RMSE = 1. For every
value α0, the statistics are obtained after 500 iterations (i.e. time = 500).

α0 l0 l1 RMSE

0.001 88.6719 0.498578 0.849038
0.01 73.8281 0.469742 0.858661
0.1 48.6328 0.301641 1.00005
1 18.5547 0.236177 0.99991
10 7.12891 0.220643 0.99986
100 2.53906 0.21497 0.999306
1000 0.78125 0.194661 1.04896
10000 0.488281 0.108985 1.36281
100000 0.0976562 0.0347324 1.91658

Table 5: Convergence of the PPPA depending on (αm)m∈N. The experiment is
on the SPARCO Problem number 10 with the target RMSE = 1. For every
value α0, the statistics are obtained after 3000 iterations (i.e. time = 3000).
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3.3 Comparison of the algorithms

3.3.1 The local DCT problem

We chose to compare the algorithms on the following problem because it is very
difficult to solve and discriminate between the algorithms.

We consider the following dictionary of atoms (i.e. the matrix A): a transla-
tion invariant discrete local cosine dictionary. It consists in all the translations
of the 64 small images displayed on Figure 1. The small image at the “frequency
location” (ξ, η) ∈ {0, . . . , 7}2 is

φξ,η
m,n =

1
√

Cξ,η

{

cos( ξ(2m+1)π
16 ) cos(η(2n+1)π

16 ) , if (m,n) ∈ {0, . . . , 7}2,
0 , if (m,n) 6∈ {0, . . . , 7}2,

with

Cξ,η =

7
∑

m.n=0

(

cos(
ξ(2m+ 1)π

16
) cos(

η(2n+ 1)π

16
)

)2

.

Figure 1: Small images defining the translation invariant discrete local cosine
dictionary.

The dictionary is also symmetrized and we finally obtain

(ψi)i∈I = (φj)j∈J ∪ (−φj)j∈J , (35)

where

(φj)j∈J =
{

τm,n(φξ,η), for (ξ, η) ∈ {0, . . . 7}2 and (m,n) ∈ {0, . . . ,
√
N − 1}2

}

,

for τm,n, the translation of an image by the vector (m,n). Although we never
actually build the matrix A, its columns would correspond to the elements ψi

in (35).
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Since this dictionary is symmetric, the problem can be solved by any al-
gorithm solving the usual BPDN (as opposed to the NNBPDN). This allows
comparisons.

We take b equal to an extracted part of the image Barbara (see Figure 2).
(When necessary, the image is periodized outside its original support.) It is of
size 128× 128. We have N = 1282 = 16384 and3 P

2 = 64 ∗N ∼ 106

Figure 2: Image extracted from the image Barbara. It is used for the input b in
all the experiments.

We make two experiments, one for λ = 0.1 and one for λ = 100. They
respectively lead to target RMSE = 0.0235988 and 9.58555. The first case is,
of course, much more difficult than the second.

3.3.2 The algorithm to which we compare the PPPA

We compare PPPA 1, PPPA 2 and PPPA 3 (see Section 2.7.4) to the IT (see
[11]), PCD (see [18]) and the GPSR-BB (see [23]). The version of the IT and
PCD to which we compare are available at [28], the GPSR-BB algorithm is at
[22].

The implementation of the PCD is identical to that described in [18]. For
the IT, we needed to improve it in order to apply it to the local DCT problem
(for this dictionary, the operator norm of the matrix is larger than 1). However,
we observe that the IT can be applied to any matrix A, since, for any β > 0 :

x∗ ∈ argminx∈RP ‖Ax− b‖22 + λ‖x‖1 (36)

⇐⇒ βx∗ ∈ argminx∈RP ‖( 1
β
A)x− b‖22 + λ

β
‖x‖1 (37)

So one can solve (37) for β such that M
β
< 1, and multiply the obtained solution

by 1
β
. This provides a solution to (36)4.

In practice, the user needs to compute M and chose β such that

M

β
∈ (0, 1).

3 P
2

is the number of columns in the BPDN (as opposed to NNBPDN).
4This trick has independently been observed in [25]
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We found experimentally that a larger M
β

leads to a faster convergence.

We downloaded the GPSR 5.0 toolbox at [22]. In the comparison, we use the
Barzilai-Borwein Gradient projection (GPSR-BB), without debiasing. We use
the options ′MINITERA′ and ′MAXITERA′ to fix the number of iterations.

We have, of course, tested on an easy problem that all these implementations
converge to the same solution.

3.3.3 Influence of the parameters and how we fix them

In order to compare the PPPA 1, PPPA 2, PPPA 3, IT, PCD and GPSR-BB
algorithms, we need to use them on the same problem. The purpose of our
paper is obviously not to answer the question : How to fix λ in the model (4)?
So our only choice is to follow the steps:

• Run the IT, PCD, and GPSR-BB algorithms for a given value λ.

• Compute τ (equivalently, the target RMSE) : the smallest l2 norm of
the residual amongst those obtained with the IT, PCD and GPSR-BB
algorithms.5

• Run PPPA for this τ .

This results in an unfair comparison favoring the IT, GPSR-BB and PCD
algorithm. Indeed, solving (4) for a fixed λ leads to a residual error (i.e.
‖Ax∗−b‖2) which depends on the input b (see Table 6). Therefore, although the
required accuracy or noise level is fixed (and often known) the accuracy of the
residual error depends on b. To be fair to the PPPA, we should find a strategy
enabling the IT, GPSR-BB and PCD to find the correct λ. This would slow
them. This cannot be seen on the experiments presented in Section 3.3.4.

clean image RMSE noisy image RMSE
for λ = 0.1 (standard deviation 20) for λ = 200

pepper 0.02512 pepper + noise 17.74
lena 0.02504 lena + noise 18.30
barbara 0.02498 barbara + noise 20.11
baboon 0.02715 baboon + noise 21.41

Table 6: RMSE as a function of the input image b, when (1) is used with a fixed
λ (the matrix A corresponds to the local DCT problem of section 3.3.1, we used
PCD for computing the result of (4)). Even similar images (interior scenes with
a woman + noise) lead to different RMSE. The RMSE varies more when λ is
large.

5In theory they should lead to the same residual norm but we observe a small difference
because the convergence is not perfect.
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algorithm l0 l1 RMSE f

IT 28.1609 0.284446 0.0294607 29840.5
PCD 29.9812 0.264319 0.026786 27727.6

GPSR-BB 20.6212 0.272771 0.0283202 28615.2
PPPA 1 3.27272 0.222995 0.200705 24042.7
PPPA 2 3.3596 0.223517 0.0999004 23601
PPPA 3 8.49972 0.246459 0.0243556 25852.8

Table 7: Experiment for the local DCT problem, λ = 0.1, target RMSE =
0.0235988, time = 500. In terms of f (which is the best criteria since the
algorithms are far from convergence), all the PPPA produce a better solution.

algorithm l0 l1 RMSE f

IT 11.4758 0.254577 0.0254477 26704.9
PCD 6.95639 0.239962 0.0235988 25170.9

GPSR-BB 8.25691 0.245702 0.0239035 25773
PPPA 1 1.66874 0.216994 0.0521594 22798
PPPA 2 2.58303 0.219227 0.0270889 22999.7
PPPA 3 3.76682 0.226575 0.0237763 23767.4

Table 8: Experiment for the local DCT problem, λ = 0.1, target RMSE =
0.0235988, time = 3000. All the PPPA produce a better solution. In particu-
lar, the PPPA solution is much more sparse than the IT, PCD and GPSR-BB
solutions. The values of α3000 are respectively 100, 2.0990, 1.6, for PPPA 1,
PPPA 2 and PPPA 3.

3.3.4 Result of the comparison

We give in Tables 7 and 8, the convergence criteria for the results of the different
algorithms, for the local DCT problem with λ = 0.1 at time = 500 and 3000.
In is clear from these figures that all the versions of the PPPA perform better
than the other algorithms. Concerning PPPA 1, notice that in Tables 7, 8 and
9, the value α0 leading to the best value for f is not one of those for which the
RMSE criterion has converged.

The same experiment for λ = 100 is less favorable to the PPPA. In particular
PPPA 2 and PPPA 3 are less accurate than the other algorithms at time = 500.
However, at time = 3000, PPPA 1 provides the best solution. In particular
its result is more sparse. PPPA 3, also gives very good results, if one is not
interested in a very accurate RMSE. Notice that, in this simpler experiment,
all the algorithms give similar results at time = 3000.
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algorithm l0 l1 RMSE f

IT 1.08442 0.176016 9.7777 2.0023e+ 07
PCD 0.973034 0.175485 9.62048 1.99173e+ 07

GPSR-BB 0.916862 0.17561 9.67858 1.99488e+ 07
PPPA 1 0.740337 0.173939 10.1404 1.99236e+ 07
PPPA 2 1.5254 0.180304 9.58529 2.04116e+ 07
PPPA 3 0.598907 0.175847 10.1887 2.01397e+ 07

Table 9: Experiment for the local DCT problem, λ = 100, target RMSE =
9.58555, time = 500.

algorithm l0 l1 RMSE f

IT 0.760555 0.175435 9.60997 1.99087e+ 07
PCD 0.61779 0.175344 9.58555 1.98915e+ 07

GPSR-BB 0.674343 0.175362 9.5923 1.98956e+ 07
PPPA 1 0.59557 0.17534 9.58555 1.98911e+ 07
PPPA 2 1.04094 0.176379 9.58554 2.00001e+ 07
PPPA 3 0.540924 0.17526 9.64634 1.99019e+ 07

Table 10: Experiment for the local DCT problem, λ = 100, target RMSE =
9.58555, time = 3000. The values of α3000 are respectively 1000, 9.98, 1.04, for
PPPA 1, PPPA 2 and PPPA 3.
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4 Perspectives

Several aspects of the algorithm and its convergence analysis could be improved.
We give a non-exhaustive list below.

• One obvious improvement of the PPPA is to find a better gradient based
algorithm for solving Step 1 in Table 1. The first tests we made did not
lead to much improvements. A more systematic study/implementation
of these algorithms would be interesting. Before studying this aspect,
one should realize that this would only affect few iterations in m, since
afterward the loop in k is very well initialized and the algorithm does not
need many iterations in k.

• The main drawback of the current algorithm is that it requires the user to
select (αm)m∈N. The algorithm seems to be relatively stable with regard
to the sequence (αm)m∈N but it is possible to select this sequence badly.
It would be interesting to better develop a method selecting (αm)m∈N in
an automatic way.

Another possibility might be to tune another hidden parameter of the
algorithm, if this parameter has more meaning.

In particular, it is possible to multiply the objective function in (P ), by
a constant factor β. The dual of this problem is similar to (D). This
parameter is very much similar to the (hidden) parameter β used for the
IT, in (36) and (37).

Another parameter is hidden in 1P in (P ). We can also multiply 1P by a
factor β′. The dual of the new problem (P ) is still (D). However, such a
β′ would appear and have an impact on the final algorithm.

• The convergence rate of the loop in k could perhaps be improved. In
particular, the convergence rate stated in Section 2.6 concerns the value
of the function (fc,α(xm,k))k∈N and not (xm,k)k∈N. It would be interesting
to obtain a convergence rate which provides an upper bound for one of the
quantities which are known not to perturb the convergence of the PPA.
(See the criteria A,A’,B,B’ in the stability analysis of the PPA, in [35]).

• In Theorem 1, we have not been able to obtain convergence rates for
the sequence (xm)m∈N. We have not even been able to establish that it
converges to a single point. Although we know that (cm)m∈N converges
linearly, argmaxx∈RP

+
fcm,αm

(x) might be a set and the element we pick

in this set might vary a lot. This is due to the lack of uniqueness for
the problem (D) and (possibly) for the maximization of fc,α. It might be
possible to find a reasonable set of hypotheses for which the maximizer of
fcm,αm

(x) is unique. If not, it seems possible to obtain convergence rates
for (xm)m∈N by using both

– the fact that we initialize the gradient based algorithm for solving
Step 1 in Table 1 at the previous value xm;
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– some techniques used to prove the stability of the maximizer of a
function with regard to one of its parameters. (The parameter c in
fc,α does indeed converge.)

Such a result could also be incorporated in the convergence rate of the
loop in k. This loop benefits, in practice, a lot from the fact that it is
initialized at the previous xm and our analysis does not incorporate this
information.

• Another interesting question is to determine the set of problems for which
the “Predual Proximal Point Algorithm” (as described in this paper) can
be successfully applied.

In particular, it does not seem difficult to modify the data fidelity term in
(D). The main modification seems to concern the problem (P ) and the
function eβ . Several other Moreau envelopes are known and can be used
in place of eβ. This determines a class of problems (P ) (and therefore of
problems (D)) to which the PPPA can be applied. A good starting point
for such a project seems to be [9], since it exploits similar ideas.

This perspective is interesting since modifying the data fidelity term gives
a chance to improve the performance of the l1− l2 model, while keeping to
l1. It might also permit to apply the l1 regularization to other problems
(such as the restoration of compressed images).

• In order to answer a question of a referee, we mention that we do not
know if the convergence rate of (cm)m∈N and (Axm)m∈N can be improved
or not. It could very well be that the particular structure of our function
g permits to obtain a better convergence rate.
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