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1 Introduction

This paper focuses on some properties of energies whose level sets are polyhe-
dral. To be specific, we consider an energy of the form

E(u) = max
ψ∈D

〈u, ψ〉, (1)

where u ∈ R
N , D is a dictionary in R

N (i.e. a finite subset of R
N ) and 〈., .〉

stands for the scalar product in R
N .

The interest in such energies comes from their wide use in scientific com-
puting, today. Almost all our examples come from image processing; in this
field, such energies are used in: total variation regularization (for references,
see the introduction of Section 4), in Basis Pursuit and likewise algorithms
(see references in Section 3), wavelet soft thresholding (see [1,2], where soft-
thresholding is proved to be the solution to optimization problems involving
energies whose level sets are polyhedral), image compression (see [3,4], where
JPEG and JPEG2000 are interpreted in terms of solutions to optimization
problems involving an energy whose level sets are polyhedral),...

An analysis of such optimization problems is presented in [5]. Roughly speak-
ing, it says that asymptotically, as E(u) becomes small (u is the solution to
the optimization problem), u is more and more likely to have a large rank.
This latter notion is defined as follows: for all u ∈ R

N , we define

F(u) , {ψ ∈ D, E(u) = 〈u, ψ〉},

and

rk(u) , dim
(
Span((ψ)ψ∈F(u))

)
.

We call rk(u), the rank of u. We can prove (see [5]) that rk(u) does not depend
on the choice of D defining E (see (1)), it only depends on E. More precisely,
if we consider two dictionaries such that (1) holds for all u ∈ R

N , the notion
of rank defined with respect to those dictionaries coincide.

Notice that, rk(u) ∈ {1, . . . , N} and, for almost every u ∈ R
N , rk(u) = 1.

Another trivial situation is rk(0) = N .

Denoting the τ level set of the function E by

LE(τ) = {u ∈ R
N , E(u) ≤ τ},

we define, for any u ∈ R
N , the facet of LE(E(u)) at u by

u = {v ∈ R
N , E(v) = E(u) and ∀ψ ∈ D, ψ ∈ F(u) ⇔ 〈v, ψ〉 = E(v)}.
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Geometrically, u is an open polyhedron of an affine manifold. The rank of u
is simply the codimension of u (or equivalently of the affine manifold).

In fact, the meaning of the rank is quite explicit when the energy is expressed
under the form (1). The importance of the notion of rank has been established
in [3], where it is shown that the compression standards JPEG and JPEG2000
can be considered particular cases of more general compression schemes for
which the number of coefficients that need to be coded is the rank of the
solution to an optimization problem involving an energy whose level sets are
polyhedral. The modification of the result of [5] to the context of compression
is given in [4].

However, the meaning of the rank might not be obvious for a functional of
l1 kind. The first purpose of this paper is to establish this meaning for two
kinds of energies: those whose level sets are expressed as the convex hull of a
finite subset of R

N and the total variation. Once this meaning is established,
an adaptation of the results in [5] is sometimes possible (see below).

The paper is organized as follows:

• In Section 2, we summarize the result established in [5].
• In Section 3, we study energies whose level sets are defined as scaled versions

of the convex hull of a finite subset B ⊂ R
N . Examples of use of such energies

are found in Basis Pursuit algorithms. We show that, for any u ∈ R
N , u can

be expressed with N − rk(u) + 1 non-zero coordinates, where rk(u) denotes
the rank of u. In this context, we are able to adapt the results established in
[5]. The resulting theorem says that algorithms involving such a regularity
criterion are very likely to provide a solution which is represented with only
few coordinates in B. Since it is easy to obtain, we also state a result saying
that, with probability 1, the decomposition of the result of a Basis Pursuit
model is the sparsest decomposition of this result.

• In Section 4, we study an approximation of the total variation (with full
details in dimension 2 and indications in dimension 1) whose level sets are
polyhedral. We establish some links between the rank of an element u ∈ R

N2

and the size of the set

I2 = {(i, j) ∈ R
N2

,∇ui,j = (0, 0)}.

These results suggest that staircasing (which is usually quantified by the
size of I2) relates to the notion of rank. However, the notion of rank, by
itself, does not permit to quantify the staircasing artifact in dimension 2.
A deeper analysis is needed to state a formal theorem stating that, in 2D,
the solutions containing staircasing are very likely to appear. This shows
the limitations of the notion of rank for energies like the 2D total variation.
However, we are able to state such a theorem for 1D signals.
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The paper is organized so that a reader can skip Section 3 or 4. They are
completely independent and both contain a short introduction to their specific
research area.

2 A rank likelihood estimate

As a particular case, [5] studies an optimization problem of the form

(P ) :





Minimize D(w − u0)

under the constraint E(w) ≤ τ

for a datum u0 ∈ R
N , such that E(u0) > τ > 0, a norm E defined by (1) and

a functional D, defined over R
N . In the text, we will refer to D as the “data

fidelity term” and to E as the “regularization term”.

In [5], it is assumed that D is a regular (i.e. continuously differentiable away
from 0) norm. (The boundary of the level sets of D also needs to be slightly
“curved”, we refer the reader to [5] for details.)

Notice that, such optimisation problems are explicitly expressed under the
form (P ) (see [6], for instance). However, most of the time, they are written
in the form 




Minimize E(w)

under the constraint D(w − u0) ≤ τ ′

for D(−u0) > τ ′ > 0, or

Minimize E(w) + λD(w − u0),

for λ > 0.

However, under the hypotheses given above, these optimization problems are
equivalent to (P ). Indeed, their solutions are always characterized by

−λ′D(w − u0) ∈ ∂E(w),

for an adequate λ′ > 0, where ∂E denotes the subgradient of E.

Returning to (P ), the following theorem is proved in [5].

Theorem 1 Let f be a norm over R
N and U be a random variable whose

distribution law is uniform in a set A satisfying

Lf(τ1) ⊂ A ⊂ Lf(τ2),
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for τ2 ≥ τ1 > 0.

There exist non-negative real numbers (CK)1≤K≤N such that, for all K ∈
{1, . . . , N},

CKτ
N−K τK1

L(A)
+ ◦(τN−K) ≤ P(rk(Us) = K) ≤ CKτ

N−K τK2
L(A)

+ ◦(τN−K)

as τ goes to 0, where L(A) is the Lebesgue measure of A and Us denotes the
solution to (P ) when u0 is a realization of U . (Where E and D satisfy the
hypotheses given after the definition of (P ).)

This theorem estimates the probability law of rk(us), when us is a solution to
(P ) and τ is small. It tells us that, in this case, rk(us) is very likely to be large.
This holds under quite general assumptions on the data distribution law and
for a large class of data fidelity terms. Notice that, depending on the function
E (see the next two sections), the property of having a large rank might be
an advantage or a drawback of the method.

Of course, it would be absurd to claim that sampled images are uniformly
distributed in a convex set. This is a limitation of the theorem as stated
above. However, as suggested by the issues encountered in the applications
(compression, Basis Pursuit and total variation regularization), the general
philosophy of the theorem agrees with the common observations 1 made on
these algorithms. Also, as is explained in [5], one could in principle integrate
other kinds of distribution laws. The calculation might be difficult to set up
though.

Finally, for a fixed regularization term, we can increase the likelihood of getting
a small or large rank by designing E so that the constants CK are improved.
When expressing CK (see [5]), we see that they depend strongly on D. Mod-
ifying D could therefore also lead to improvements of the model. However,
we can expect improvements but cannot expect to go beyond the estimation
given in Theorem 1. The only way to go beyond those estimates would be to
chose D failing to comply with the hypotheses.

1 Image compression standards (JPEG and JPEG 2000) use a projection onto a
polytope. The Basis Pursuit algorithm is used to obtain sparse decomposition of
images. When applied to images, the total variation regularization is know to provide
solutions which contain staircasing.
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3 The Basis Pursuit regularization term

In this section, we consider the energy defined for u ∈ R
N by

E(u) = min
(αj)j∈J∈C(u)

∑

j∈J

αj (2)

where

C(u) = {(αj)j∈J , such that ∀j ∈ J, αj ≥ 0 and u =
∑

j∈J

αjϕj}

where B = (ϕj)j∈J is a finite subset of R
N such that,

for all u ∈ R
N , C(u) 6= ∅. (3)

Note that, throughout the section, we will use the ϕ letter for the elements of
B. Our purpose is to avoid possible confusion with the elements of a dictionary
D which will soon be used to characterize E by a formula of the type

E(u) = max
ψ∈D

〈u, ψ〉, ∀u ∈ R
N .

The letter ψ is reserved for the elements of D.

Also, we will often abuse the notation, by writing (αi)i∈I ∈ C(u), for I ⊂ J . In
such a case, one should understand that the numbers (αj)j∈J\I are implicitly
set to 0.

Notice that we could easily avoid the condition (3). In this case E is only
defined over




u ∈ R
N , ∃(αj)j∈J ∈ R

J such that u =
∑

j∈J

αjϕj and ∀j ∈ J, αj ≥ 0




 .

For simplicity, we will always suppose that the condition (3) holds.

One motivation for considering such an energy is that it is used in Basis
Pursuit [7], for source separation [8], and for feature selection in classification
[9]. Let us also mention the theoretical work in [10,11] which specifies the
geometry of B so that the (αj)j∈J solving E(u) is the sparsest in C(u). The
Basis Pursuit norm considered in [7,8] is of the form E above, for a dictionary
B = B̃ ∪ {−ϕ, ϕ ∈ B̃}, where B̃ is a given dictionary.

Another important motivation for studying energies of the form E is that
its level sets are scaled version of the convex hull of B. Indeed, under the
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hypotheses above, E is clearly a norm and we have

{u,E(u) ≤ 1} =



u =

∑

j∈J

αjϕj, where ∀j ∈ J, αj ≥ 0 and
∑

j∈J

αj ≤ 1



 ,

so

LE(1) =



u =

∑

j∈J

αjϕj + α′0, where α′ ≥ 0, ∀j ∈ J, αj ≥ 0

and α′ +
∑

j∈J

αj = 1





As a consequence, LE(1) is the convex hull of B ∪ {0} (see [12], Cor. 2.3.1, p.
12). But, because of the condition (3), 0 belongs to the interior of LE(1) and
therefore the convex hull of B ∪ {0} equals the convex hull of B. Of course,
since E is a norm, for any τ > 0, LE(τ) is a scaled version of the convex hull
of B.

As a consequence, the level sets of E are polyhedral (see [12], Th. 19.1, p. 171)
and the results described in Section 2 can be applied to such an energy.

The representation of a convex polyhedron as the convex hull of a finite set of
elements is classical (see [12], Section 18, p. 162). This, alone, is an important
motivation for studying energies whose level sets are polyhedral in our current
framework.

The question we would like to address here is the relation between the rank
of an element u ∈ R

N and certain properties of u. Heuristically, it seems clear
that as the rank of u grows, we need less and less ϕj to represent u.

In order to establish this result, we first construct the dictionary D, such that

E(u) = maxψ∈D〈u, ψ〉.

Proposition 1 Let u ∈ R
N and let (α′

j)j∈J ∈ C(u) be such that

E(u) =
∑

j∈J

α′
j.

We write

I ′ = {j ∈ J, α′
j 6= 0}.

There exists a subset I ⊂ I ′ such that

(1) (ϕi)i∈I is an independent system of vectors,
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(2) there exists (αi)i∈I ∈ C(u) such that, for all i ∈ I, αi > 0, and

E(u) =
∑

i∈I

αi.

Proof. First, if I ′ is such that (ϕi)i∈I′ is not an independent system of vectors,
there exists i0 ∈ I ′ such that

ϕi0 =
∑

i∈I′\{i0}

αi0i ϕi

So, we can deduce from the hypotheses of the proposition that, for all λ ∈ R,

u=
∑

i∈I′
α′
iϕi

=
∑

i∈I′
α′
iϕi + λ


ϕi0 −

∑

i∈I′\{i0}

αi0i ϕi




=
∑

i∈I′\{i0}

(α′
i − λαi0i )ϕi + (α′

i0
+ λ)ϕi0.

We write, for j ∈ J

αλj =





α′
j − λαi0j , if j ∈ I ′ \ {i0}

α′
i0

+ λ , if j = i0

0 , otherwise.

Notice that, for λ sufficiently small (λ can be positive or negative), (αλj )j∈J ∈
C(u), and

∑

j∈J

αλj =
∑

i∈I′
α′
i + λ


1 −

∑

i∈I′\{i0}

αi0i


 .

So, since (α′
j)j∈J is a solution to (2), we necessarily have

∑

i∈I′\{i0}

αi0i = 1.

As a consequence, as long as αλj ≥ 0, for all j ∈ J , (αλj )j∈J is also a solution
to (2). We take λ0 to be equal to the largest negative value such that, for all
j ∈ J , αλj ≥ 0 (it is not difficult to see λ0 exists and λ0 < 0) and we obtain

(αλ0

j )j∈J ∈ C(u) such that

E(u) =
∑

i∈I′
αλ0

i

and
#{j ∈ J, αλ0

j 6= 0} < #I ′,
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where # denotes the cardinal of a set.

We can repeat the same procedure as long as the set of indexes thus obtained
does not define an independent system of vectors. We write the result I. Ob-
viously, I satisfies the conditions of Proposition 1. 2

Definition 1 We call face any subset F ⊂ J such that (ϕf)f∈F is a basis
and there exists u ∈ R

N , which cannot be expressed as a linear combination of
strictly fewer than N elements of B, and there exists (αf)f∈F ∈ C(u) satisfying

E(u) =
∑

f∈F

αf .

We write F for the set of all the faces.

For any F ∈ F , we write ψF for the unique solution to

∀f ∈ F, 〈ψF , ϕf〉 = 1.

Throughout this section, the notation F will be used for faces. The indexes of
elements of B belonging to a given face F will generally be denoted by f .

Notice that, for any u ∈ R
N which cannot be expressed as a linear combination

of strictly fewer than N elements of B, Proposition 1 guarantees that there
exists a face F ∈ F such that

E(u) =
∑

f∈F

αf ,

for a given (αf)f∈F ∈ C(u). (It is also clear that, for all f ∈ F , αf > 0.)

Observe also that

E(u) =
∑

f∈F

αf =
∑

f∈F

αf 〈ϕf , ψF 〉 = 〈u, ψF 〉.

In fact, we can prove a little more.

Proposition 2 Let F be a face. For any

v ∈





∑

f∈F

αfϕf , with αf > 0, ∀f ∈ F



 ,

there exists (αf )f∈F ∈ C(v) and

E(v) =
∑

f∈F

αf = 〈v, ψF 〉.
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Proof. First, since F is a face, there exists u ∈ R
N which cannot be expressed

as a linear combination of strictly fewer than N elements of B and there exists
(αf)f∈F ∈ C(u) and

E(u) =
∑

f∈F

αf = 〈u, ψF 〉.

Here, for each f ∈ F , αf > 0.

Let us observe that, since F is a face, for any j ∈ J \F , there exists (αjf )f∈F ∈
R
F such that

ϕj =
∑

f∈F

α
j
fϕf .

So, for any λ ≥ 0,

u=
∑

f∈F

αfϕf + λ


ϕj −

∑

f∈F

α
j
fϕf




=
∑

f∈F

(αf − λα
j
f)ϕf + λϕj.

Moreover, since αf > 0, for all f ∈ F , we have, for any sufficiently small λ > 0,

(α′
i)i∈J ∈ C(u),

where

α′
i =





αi − λα
j
i , if i ∈ F

λ , if i = j

0 , otherwise.

Hence,

∑

f∈F

αf ≤
∑

j∈J

α′
j

≤
∑

f∈F

αf + λ


1 −

∑

f∈F

α
j
f


 .

Finally, for any j ∈ J \ F , ∑

f∈F

α
j
f ≤ 1. (4)

Let us consider (αvf)f∈F such that αvf > 0, for all f ∈ F , and

v =
∑

f∈F

αvfϕf .
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For any (βj)j∈J ∈ C(v), it is not difficult to see that, for any f ∈ F ,

αvf =
∑

j∈J

βjα
j
f .

(Recall, that, since F is a face, (ϕf)f∈F is a basis.)

So, since (4) holds,

∑

f∈F

αvf =
∑

j∈J

βj
∑

f∈F

α
j
f ,

≤
∑

j∈J

βj.

Therefore

E(v) =
∑

f∈F

αvf = 〈v, ψF 〉.

. 2

Theorem 2 For any u ∈ R
N ,

E(u) = maxF∈F 〈u, ψF 〉.

Proof. Let us first consider u ∈ R
N such that u cannot be expressed as a linear

combination of strictly fewer than N elements of B.

By Proposition 1 and Definition 1, there exists F ∈ F such that

E(u) = 〈u, ψF 〉.

It follows that

E(u) ≤ maxF ′∈F〈u, ψF ′〉.

In order to prove the converse statement, let us consider a face F ′ ∈ F . Since
it is a face, there exists v ∈ R

N such that

E(v) = 〈v, ψF ′〉

and v cannot be expressed as a linear combination of strictly fewer than N

elements of B.

Let us consider, for λ ∈ [0, 1],

uλ = λu+ (1 − λ)v.
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Proposition 2 guarantees that for any sufficiently small λ > 0

E(uλ) = 〈uλ, ψF ′〉.

So, for such a λ,

λ〈u, ψF ′〉 + (1 − λ)〈v, ψF ′〉= 〈uλ, ψF ′〉

=E(λu+ (1 − λ)v)

≤λE(u) + (1 − λ)E(v)

≤λ〈u, ψF 〉 + (1 − λ)〈v, ψF ′〉.

This guarantees that

〈u, ψF ′〉 ≤ 〈u, ψF 〉.

It follows that, for any u ∈ R
N which cannot be expressed as a linear combi-

nation of strictly fewer than N elements of B,

E(u) = maxF∈F 〈u, ψF 〉.

The result follows from the fact that

{
u ∈ R

N , u cannot be expressed as a linear combination of

strictly fewer than N elements of B}

is dense in R
N and the fact that both E and maxF∈F 〈., ψF 〉 are continuous.

2

One of the consequences of Theorem 2 is that, for all j ∈ J and all F ∈ F ,

〈ϕj, ψF 〉 ≤ 1.

We can now reformulate, for u ∈ R
N , the definition of rk(u) for the energy E.

We have

rk(u) = dim
(
Span(ψF )F∈F(u)

)
,

for

F(u) = {F ∈ F , 〈u, ψF 〉 = E(u)}.

Let us also adapt the general definition given in the introduction to the current
context. We write, for u ∈ R

N ,

u = {v ∈ R
N , E(v) = E(u) and ∀F ∈ F , F ∈ F(u) ⇔ 〈v, ψF 〉 = E(v)}.
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As remarked in [5], u is an open polyhedron of an affine manifold whose
dimension is N − rk(u).

Finally, let us write, for all u ∈ R
N ,

I(u) = {j ∈ J, ∀F ∈ F(u), 〈ϕj, ψF 〉 = 1}.

The following proposition holds:

Proposition 3 For any u ∈ R
N ,

u ⊂





∑

i∈I(u)

αiϕi, ∀i ∈ I(u), αi ≥ 0 and
∑

i∈I(u)

αi = E(u)




 (5)

and 



∑

i∈I(u)

αiϕi, ∀i ∈ I(u), αi > 0, and
∑

i∈I(u)

αi = E(u)



 ⊂ u.

Proof. In order to prove the first inclusion, we consider v ∈ u. Proposition 1
guarantees that there exists I ⊂ J such that (ϕi)i∈I is a linearly independent
system of vectors and there exists (αi)i∈I ∈ C(v) such that, for all i ∈ I, αi > 0
and

E(v) =
∑

i∈I

αi.

Our goal is to prove that I ⊂ I(u); in order to do so, we assume there exists
i0 ∈ I \ I(u). Under this hypothesis, there exists F ∈ F(u) such that

〈ϕi0 , ψF 〉 < 1.

Therefore, since αi > 0, for all i ∈ I,

〈v, ψF 〉=
∑

i∈I

αi〈ϕi, ψF 〉

<
∑

i∈I

αi = E(v)

This contradicts the hypotheses that v ∈ u. So I ⊂ I(u), and the first inclusion
is proved.

In order to prove the second inclusion, we consider (αi)i∈I(u) ∈ R
I(u) such that

αi > 0, for all i ∈ I(u), and

∑

i∈I(u)

αi = E(u).
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We write
v =

∑

i∈I(u)

αiϕi. (6)

For any F ∈ F(u),

〈v, ψF 〉=
∑

i∈I(u)

αi〈ϕi, ψF 〉

=E(u).

Consider F 6∈ F(u). We require to prove that

〈v, ψF 〉 < E(u).

We know that
〈u, ψF 〉 < E(u). (7)

Now, u obviously belong to u, hence by (5) there exists (α′
i)i∈I(u), such that,

for all i ∈ I(u), α′
i ≥ 0,

u =
∑

i∈I(u)

α′
iϕi,

and
E(u) =

∑

i∈I(u)

α′
i.

So, (7) becomes ∑

i∈I(u)

α′
i〈ϕi, ψF 〉 <

∑

i∈I(u)

α′
i,

which guarantees that there exists i0 ∈ I(u) such that

〈ϕi0 , ψF 〉 < 1.

Finally, we know that, for any F 6∈ F(u), there exists i0 ∈ I(u) such that

〈ϕi0 , ψF 〉 < 1.

Since, in (6), for all i ∈ I(u), αi > 0,

〈v, ψF 〉=
∑

i∈I(u)

αi〈ϕi, ψF 〉

<
∑

i∈I(u)

αi

<E(u).

It follows that v ∈ u, as required. 2
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As a consequence, for any u ∈ R
N , we have the following quality

N − rk(u)=dim(u)

=dim
(
Span(ϕi)i∈I(u)

)
− 1 (8)

Corollary 1 For any u ∈ R
N , there exist I ⊂ J and (αi)i∈I ∈ C(u) such that

#I ≤ N − rk(u) + 1.

Moreover, for HN−rk(u) almost every v ∈ u

N − rk(v) + 1 = min
(αj )j∈J∈C(v)

#{j ∈ J, such that αj 6= 0},

where HN−rk(u) stands for the Hausdorff measure of dimension N − rk(u).

Proof. The first statement is a direct consequence of Proposition 3, Proposition
1 and (8).

The second statement follows from the observation that, if v ∈ u is such that

min
(αj )j∈J∈C(v)

#{j ∈ J, such that αj 6= 0} ≤ N − rk(v),

then v belongs to the intersection of an affine manifold of dimension N−rk(v)
which does not contain 0 (the affine manifold containing u) with a finite union
of affine manifolds of dimension smaller than N − rk(v) containing 0 (all the
affine manifolds with N − rk(v) non-zero coordinates in B).

It follows that v belongs to a subset of u whose HN−rk(u) measure is zero. 2

The above Corollary tell us that, in the context of the Basis Pursuit norm,
the rank is closely related to the notion of sparsity. If the rank is large, there
exists a sparse representation of u, in B.

In order to adapt Theorem 1 to the Basis Pursuit norm, we first define for
L ∈ {1, . . . , N}, τ > 0 and u ∈ ∂LE(τ) the event:

PL(u) ⇐⇒ L = min
(αj)j∈J∈C(u)

#{j ∈ J, such that αj 6= 0}.

In words, the condition PL(u) means: the sparsest decomposition (with posi-
tive coordinates) of u in B has L non-zero coordinates. We also consider the
sets:

SL = {u ∈ ∂LE(τ), such that PL(u) holds},

for L ∈ {1, . . . , N} and τ > 0.
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For u ∈ ∂LE(τ) and L ∈ {1, . . . , N} three different situations might occur,
depending on the value of N − rk(u) + 1 with respect to L.

• If N − rk(u) + 1 < L: we can deduce, from the first statement of Corollary
1, that

u ∩ SL = ∅.

• If N − rk(u) + 1 = L: the second statement of Corollary 1 guarantees that
there exists Zu such that

HN−rk(u) (Zu) = 0

and
u ∩ SL = u \ Zu.

• If N − rk(u) + 1 > L: we trivially have

HN−rk(u) (u ∩ SL) = 0

We deduce that:

SL =
(
∪rk(u)=N−L+1(u \ Zu)

)
∪

(
∪rk(u)>N−L+1Z

′
u

)
(9)

where, for all u such that rk(u) > N − L + 1, HN−rk(u) (Z ′
u) = 0.

We can now state:

Theorem 3 We assume that E and D satisfy the hypotheses given right after
the definition of (P ) (see Section 2).

Let f be a norm on R
N and U be a random variable whose distribution law is

uniform in a set A satisfying

Lf(τ1) ⊂ A ⊂ Lf(τ2),

for τ2 ≥ τ1 > 0.

There exists non-negative real numbers (CL)1≤L≤N such that, for all L ∈
{1, . . . , N},

CLτ
L−1 τ

N−L+1
1

L(A)
+ ◦(τL−1) ≤ P(PL(Us)) ≤ CLτ

L−1 τ
N−L+1
2

L(A)
+ ◦(τL−1)

as τ goes to 0, where L(A) is the Lebesgue measure of A and Us denotes the
solution to (P ) when u0 is a realization of U .

Proof. The theorem follows from Theorem 1 and the last statement of Theorem
3 in [5]. The latter implies that, under the hypotheses of the above theorem,
the probability that Us belongs to any of the sets Zu or Z ′

u (in (9)) is zero. 2
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Theorem 3 tells us that, as τ goes to 0, the solution to (P ) is more and more
likely to be sparse. Again, if one wants to build a model (P ) favoring sparse
solutions, the goal is to design B and D such that, given the data distribution,
the constants CL are large for L small.

Again, the only way to go beyond the probabilities given in the above theorem
is by violating the hypotheses made on (P ).

We would like to conclude with a short remark regarding the following ques-
tion: Writing us for the solution to (P ), what is the likelihood that any
(αj)j∈J ∈ C(us) such that

∑

j∈J

αj = inf
(βj)j∈J∈C(u)

∑

j∈J

βj

is also the sparsest decomposition of us, when u0 is random in a large set?
This remark takes the form of the theorem:

Theorem 4 Let f be a norm on R
N and U be a random variable whose

distribution law is uniform in a set A satisfying

Lf(τ1) ⊂ A ⊂ Lf(τ2),

for τ2 ≥ τ1 > 0. Let τ > 0 be such that LE(τ) ⊂ A.

Suppose that, for every u ∈ R
N , the infimum of

inf
(αj )j∈J∈C(u)

∑

j∈J

αj

is reached at a unique element of C(u). Write Us for the random variable
solving (P ), when u0 is a realisation of U .

With probability 1, the (αj)j∈J provided by the computation of E(Us) is also
the sparsest decomposition, with positive coordinates, of Us in B.

Proof. First, observe that, if u0 ∈ LE(τ), the solution to (P ) is u0. But, for al-
most every u0 ∈ LE(τ), the sparsest decomposition, with positive coordinates,
of us in B, has N non zero coordinates. Proposition 1 and the uniqueness as-
sumption guarantee that the (αj)j∈J provided by the computation of E(u0)
also has N non zero coordinates. It is therefore the sparsest decomposition,
with positive coordinates, of us = u0 in B, for almost every u0 ∈ LE(τ). In
the following, we will therefore focus on the case u0 6∈ LE(τ).

Let L ∈ {1, . . . , N}, using (9) and the fact that the probability that Us belongs
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to Zu (for u such that N −L+ 1 = rk(u)) or Z ′
u (for u such that N −L+ 1 <

rk(u)) is 0 (see the last statement of Theorem 3 in [5]), we know that: with
probability 1,

rk(Us) = N + 1 − min
(αj)j∈J∈C(Us)

#{j ∈ J, αj 6= 0}.

Using (8), we obtain with probability 1

dim
(
Span(ϕi)i∈I(Us)

)
= min

(αj)j∈J∈C(Us)
#{j ∈ J, αj 6= 0}. (10)

Finally, we deduce from (5) and the uniqueness assumption that, for any
realisation us of Us, the unique set of coordinates provided by the computation
of E(us) takes the form (αi)i∈I(us).

Moreover, Proposition 1 and the uniqueness assumption guarantee that

dim
(
Span(ϕi)i∈I(Us)

)
≥ dim

(
Span(ϕi)i∈I(Us) and αi 6=0

)

≥#(ϕi)i∈I(Us) and αi 6=0

≥#{i ∈ J, αi 6= 0}

Together with (10), this yields the statement of the theorem. 2

4 The total variation

This section is mostly independent of the previous one. We focus on an ap-
proximation of the total variation (TV) defined, for u ∈ R

N2

(note that the
ambient space is now of dimension N 2), by

TV (u) =
N∑

i,j=1

g(∇ui,j), (11)

where ∇u stands for a discrete analogue of the gradient of u, and g is a norm
in R

2. We will also assume that g is a norm taking the form

f(d) = maxψ∈D〈d, ψ〉2, ∀d ∈ R
2, (12)

for a dictionary of elements of R
2. Here and throughout the section 〈., .〉2

denotes the usual scalar product in R
2. The notation 〈., .〉 stands for the usual

scalar product in R
N2

.
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As we shall see, such a functional almost satisfies the hypotheses of Theorem
1 and can approximate the standard TV without significantly changing the
results. (Recall that TV is usually defined with g equal to the Euclidean norm.)

One motivation for considering TV comes from its extensive use in image
processing (see [13–16,2], for some examples in image restoration, and [17–
19], for examples in texture discrimination). In these context, we would like
to mention the well known staircasing artifact (see [15,14,20–23]); this artifact
consists in the creation of large homogeneous zones (where ∇u = (0, 0)) in
the solution to (P ), when E equals TV. The link between staircasing and a
notion similar to our rank has already been established in [14,24]. However,
Theorem 1 does not apply in this context and we need to reexamine the link
between rank and staircasing in the framework of Theorem 1.

Another motivation comes from the fact that TV consists of a combination
of two linear analyses (the x and y derivatives); such a combination might
be useful in practice. For instance, the modification of the results we present
here to energies which take the form of a sum of l1 norms in different bases is
straightforward. It corresponds to the situation where g is the l1 norm in R

2.

To relate this to Theorem 1, the problem is to establish a link between the
rank of an element u ∈ R

N2

and some properties of u. As we will see in the
next section, the results are not as straightforward as in the previous section.
We are however able to conclude that the rank of u is large when u contains
staircasing. Since the constant CK in Theorem 1 is a sum over all the u of rank
K, this shows that solutions with large staircasing will be over-represented
when solving (P ) with E = TV . However, we are not able to adapt Theorem
1 completely (as was done for the Basis Pursuit norm) to the current context.
We also mention that, for the 1D total variation, the notions of staircasing
and rank coincide.

4.1 Unit ball of the total variation and polyhedrons

We consider the TV defined by

TV (u) =
N∑

i,j=1

g(∇ui,j),

where u ∈ R
N2

is an image, ∇u stands for a discrete analogue of the gradient
of u, and g is a norm of the form (12) in R

2.

We have, for any u ∈ R
N2

,
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TV (u)=
N∑

i,j=1

maxψ∈D〈∇ui,j, ψ〉2 (13)

=max(ψi,j )1≤i,j≤N∈DN2

N∑

i,j=1

〈∇ui,j, ψi,j〉2

=max(ψi,j )1≤i,j≤N∈DN2

N∑

i,j=1

ui,j div(ψ)i,j.

The div operator is simply the adjoint to the ∇ operator (an example of a div
operator can be found in [25]); it maps (R2)N

2

onto R
N2

. We obtain

TV (u) = maxϕ∈DTV 〈u, ϕ〉N2,

with
DTV =

{
div(ψ), for ψ = (ψi,j)1≤i,j≤N ∈ DN2

}
.

Of course, since D is finite, DTV is finite and LTV (1) is a polyhedron. The fact
that TV is not a norm will be addressed once the results of the next section
have been established.

4.2 A link between rank and staircasing

For a given u ∈ R
N2

, such that TV (u) 6= 0, we define the following sets of
indexes:

I0 = {(i, j), f is differentiable at ∇ui,j},

I1 = {(i, j), f is not differentiable at ∇ui,j and ∇ui,j 6= (0, 0)},

and
I2 = {(i, j),∇ui,j = (0, 0)}.

Of course, we have
I0 ∪ I1 ∪ I2 = {1, . . . , N}2,

and
I0 ∩ I1 = I0 ∩ I2 = I1 ∩ I2 = ∅. (14)

Proposition 4 Let TV be defined by (11) and (12). For any u ∈ R
N2

, such
that TV (u) 6= 0,

#I2 − #I0 ≤ rk(u) ≤ 2#I2 + #I1,

where # denotes the number of elements of a set.

Of course, the total variation, as defined by (11) and (12) does not satisfy the
hypotheses of Theorem 1. Indeed, it fails to be a norm. As a consequence, in
order to apply Theorem 1, we need to add some elements to DTV . We claim
that adding the elements ε11 and −ε11, where ε is a small non-negative number
and 11i,j = 1, for all (i, j) ∈ {1, . . . , N}2, would not significantly modify the
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rank. Depending on u ∈ R
N2

, the rank is either unchanged or increased by one
unit (as is the set of active constraints). This would not significantly modify
the point which we wish to address.

Proof. First, given (12), it is not difficult to see that

I0 = {(i, j), ∃!ψ1
i,j ∈ D, f(∇ui,j) = 〈∇ui,j, ψ

1
i,j〉2}, (15)

where ∃! stands for “there exists a unique”. Also,

I1 = {(i, j), ∃!(ψ1
i,j, ψ

2
i,j) ∈ D2, ψ1

i,j 6= ψ2
i,j

and f(∇ui,j) = 〈∇ui,j, ψ
1
i,j〉2 = 〈∇ui,j, ψ

2
i,j〉2}, (16)

and
I2 = {(i, j), ∀ψ ∈ D, f(∇ui,j) = 〈∇ui,j, ψ〉2}. (17)

For any, (i, j) ∈ I2, we chose two linearly independent elements (ψ1
i,j, ψ

2
i,j) ∈

D2.

In order to obtain the upper bound, we consider

V , {ψ ∈ DN2

, TV (u) = 〈u, div(ψ)〉N2}.

Looking at the definition of the rank, we know that

rk(u)=dim (Span{divψ, ψ ∈ V })

=dim (div (Span(V ))) .

It is not difficult to see that

V = {ψ ∈ DN2

, ∀(i, j) ∈ {1, . . .N}2, 〈∇ui,j, ψi,j〉 = f(∇ui,j)},

which can be written (using (15), (16) and (17)) as

V = {ψ ∈ DN2

,∀(i, j) ∈ I0, ψi,j = ψ1
i,j

,∀(i, j) ∈ I1, ψi,j = ψ1
i,j or ψi,j = ψ2

i,j

,∀(i, j) ∈ I2, ψi,j ∈ D}

We write
ψ1 = (ψ1

i,j)1≤i,j≤N ,

ψ2,i,j ∈ (R2)N
2

, for (i, j) ∈ I1 ∪ I2, such that

ψ
2,i,j
i′,j′ =





(0, 0) , if (i′, j ′) 6= (i, j),

ψ2
i,j − ψ1

i,j , if (i′, j ′) = (i, j),
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and ψ1,i,j ∈ (R2)N
2

, for (i, j) ∈ I2, such that

ψ
1,i,j
i′,j′ =






(0, 0) , if (i′, j ′) 6= (i, j),

ψ1
i,j , if (i′, j ′) = (i, j).

We have

V ⊂ Span
(
{ψ1} ∪ {ψ2,i,j}(i,j)∈I1∪I2 ∪ {ψ1,i,j}(i,j)∈I2

)
.

So

div (Span(V )) ⊂ Span
(
{div

(
ψ1

)
} ∪ {div

(
ψ2,i,j

)
}(i,j)∈I1∪I2 ∪ {div

(
ψ1,i,j

)
}(i,j)∈I2

)
,

which, since div (ψ1) ≡ 0, implies that

rk(u) ≤ 2#I2 + #I1.

In order to obtain the lower bound, we write

F(u) , {ϕ ∈ DTV , TV (u) = 〈u, ϕ〉N2}

and

u , {v ∈ R
N2

,F(v) = F(u) and TV (v) = TV (u)}.

Let us also consider

W , {λv, with λ > 0 and v ∈ u},

= {v ∈ R
N2

,F(v) = F(u)}.

We can easily deduce from the definition of F(u) that u is an open polyhedron
in an affine manifold of dimension N 2 − rk(u). (Indeed, u is defined by rk(u)
independent equalities and a consistent system of strict inequalities.) Since
TV (u) 6= 0, it is not difficult to see that W is contained in an affine manifold
of dimension N2 − rk(u) + 1.

Using again (15), (16), (17), we see that

W ⊂{v, ∀(i, j) ∈ I0, 〈∇vi,j, ψ
1
i,j〉2 = f(∇vi,j)

∀(i, j) ∈ I1, ∃λi,j > 0,∇vi,j = λi,j∇ui,j
∀(i, j) ∈ I2,∇vi,j = (0, 0)}

So,

W ⊂ W ′ , {v, (∇vi,j)1≤i,j≤N ∈ W ′′},
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with

W ′′ = {ϕ ∈ (R2)N
2

, ∀(i, j) ∈ I2, ϕi,j = (0, 0) and

∀(i, j) ∈ I1, ∃λi,j > 0, ϕi,j = λi,j∇ui,j}.

Notice that dim(W ′′) = 2N2 − 2#I2 −#I1 and that dim(W ′′) = dim(W ′)+1.
So,

N2 − rk(u) + 1 = dim(W )

≤ dim(W ′) + 1

≤ 2N2 − 2#I2 − #I1 + 1.

Using the fact that N 2 = #I0 + #I1 + #I2, we finally obtain

#I2 − #I0 ≤ rk(u),

which finishes the proof. 2

Proposition 4 tells us that rk(u) is large, when u is such that #I2 is large
(strong staircasing). Indeed, when #I2 is large, since

#I0 + #I1 + #I2 = N2,

#I0 is small.

Also, combining Theorem 1 and Proposition 4, we know that if the total
variation of a solution u to a model of the form (P ) is small, it is very likely
that rk(u) is large. It is however not possible to interpret this property in
terms of staircasing. The only information we have is that #I1 +2#I2 is likely
to be large too.

It is a classical problem in mathematical papers modelling the staircasing
artifact in images. Our understanding of the staircasing artifact in dimension
2 is not as good as its counterpart for 1 D signals, see [14,20,22]. Most results,
for images, only establish the stability of homogeneous regions, when the initial
datum in the model (P ) already contains staircasing, see [24]. This is of course
not in contradiction with the result proved here. Moreover, when adapted to
1 D signals, Proposition 4 makes a clear link between staircasing (in 1 D) and
the rank of an element. (The modification of the proof of Proposition 4 is
straightforward.)

It seems that the information provided by the rank of an image is not sufficient
to establish the high probability of obtaining a strong staircasing in models
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of the form (P ). This phenomenon has been observed in many different and
independent experiments and can probably be explained though. One way to
do so might be to improve the analysis carried out in [5]. For instance, it could
be useful to estimate, for a given rank K > 0, the relative contribution to CK
of the elements u for which #I2 is large and of elements for which #I1 is large.

However, the proposition guarantees that solutions with a strong staircasing
will be over-represented among solutions to (P ), when E = TV , since they
contribute to CK with K large.

Finally, if one wants to avoid solutions to (P ) with a large rank (maybe in
the expectation of reducing the staircasing artifact), the construction of the
constant CK shows that this can be achieved by improving the data fidelity
term. However, in this context, Theorem 1 tells us that might be of limited
interest. Of course, we can expect to outperform the results predicted by
Theorem 1 when the data fidelity term fails to comply to its hypotheses. Some
experiments on the model described in [2] (they have not yet been published)
show the solutions to such models almost do not contain staircasing. To the
authors knowledge, the impact of the data fidelity term on staircasing has
not yet been exploited by authors working in that field (see [15,21,23] and
references therein).

4.3 Remark

The modification of the proof of Proposition 4 to other energies is straightfor-
ward in certain cases. For instance, a similar statement holds for an energy of
the form

E(u) =
N2∑

k=1

|〈u, ϕk〉N2 |, (18)

for u ∈ R
N2

and a basis (ϕk)1≤k≤N2 of R
N2

.

In this case, we write
I0 = {k, 〈u, ϕk〉N2 = 0}

and
I1 = {k, 〈u, ϕk〉N2 6= 0}.

The proposition becomes:

Proposition 5 Let E be defined by (18). For any u ∈ R
N2

, such that E(u) 6=
0,

rk(u) = #I0 + 1

The proof is a straightforward modification of the proof of Proposition 4.
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The modification of Theorem 1 to this context is straightforward and will not
be stated here. Theorem 1 says that, under quite general assumptions on the
data distribution law and for a quite general class of data fidelity terms: when
τ is small, the solution u to (P ), for E defined by (18), is very likely to be
sparse in the basis (ϕk)1≤k≤N2.

Again, in order to increase the sparsity of the solution in this basis, one should
improve the data fidelity term to get better CK .

Also, this result suggests that it might be possible to extend some theoretical
results which are usually stated for an energy of the form (18) to all the
energies whose level sets are polyhedral. In such cases, the hypotheses on #I0

should be replaced by analogous hypotheses on the rank of u. (For instance
results similar to those presented in [26] can be enriched this way.)

Finally, Proposition 5 is only a small improvement on Corollary 1, when B =
B̃∪{−ϕ, ϕ ∈ B̃}, where B̃ = (ϕ̃k)1≤k≤N2 is the basis such that, for all u ∈ R

N2

,

u =
N2∑

k=1

〈u, ϕk〉N2ϕ̃k.

Also observe that, in dimension 1, the total variation can be approximated by
a functional of the form (18). We only require to modify the way TV deals
with constant images; the modification of Theorem 1 gives a formal statement
saying that, in 1 dimension, when τ is small and E is the total variation, the
solution to (P ) is very likely to contain staircasing.
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