
Mathematical methods for Image Processing

François Malgouyres
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Plan

1 Hands-on session with examples: Image zooming using the TV regularization
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Exercise 1, question 1

Check that C is a closed affine space. Characterize the vector space C′ defining its
direction.
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Exercise 1, question 1

Check that C is a closed affine space. Characterize the vector space C′ defining its
direction.

We have C = u + ker (Q). It is a affine space and C′ = ker (Q).

If w ∈ C, then Q(w − u) = Q(w)− Q(u) = v − v = 0. Therefore,
w ∈ u + ker (Q).

If w ∈ u + ker (Q), let w ′ ∈ ker (Q) such that w = u + w ′. We have

Q(w) = Q(u) + Q(w ′) = v .

Therefore, w ∈ C.

François Malgouyres (IMT) Mathematics for Image Processing Oct. 23–27 3 / 7



Exercise 1, question 2

Check that the operator that maps any w ∈ R
(KN)2 to PC(w) ∈ R

(KN)2 , as defined
by

PC(w)i ,j = wi ,j − Q(w)[ i
K
],[ j

K
] + v[ i

K
],[ j

K
],

where [t] is integer floor function applied to t, corresponds to the orthogonal
projection onto C.
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Exercise 1, question 2

Check that the operator that maps any w ∈ R
(KN)2 to PC(w) ∈ R

(KN)2 , as defined
by

PC(w)i ,j = wi ,j − Q(w)[ i
K
],[ j

K
] + v[ i

K
],[ j

K
],

where [t] is integer floor function applied to t, corresponds to the orthogonal
projection onto C.

We want to prove that

PC(w) = Argminw ′∈C ‖w
′ − w‖2

i.e. we want to prove that

PC(w) ∈ C

∀w ′ ∈ C, ‖w − w ′‖2 ≥ ‖w − PC(w)‖2
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Exercise 1, question 2

We have, for all i , j = 0...N − 1 (Notice [Ki+k
K

] = i and [Kj+l
K

] = j)

Q(PC(w))i ,j =
1

K 2

K−1
∑

k,l=0

PC(w)Ki+k,Kj+l

=
1

K 2

K−1
∑

k,l=0

wKi+k,Kj+l +
1

K 2

K−1
∑

k,l=0

Q(w)i ,j +
1

K 2

K−1
∑

k,l=0

vi ,j

= Q(w)i ,j − Q(w)i ,j + vi ,j = vi ,j

Therefore,
PC(w) ∈ C
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Exercise 1, question 2

Let w ′ ∈ C, we have

〈w − PC(w),w ′ − PC(w)〉

=

N−1
∑

i ,j=0

K−1
∑

k,l=0

(wKi+k,Kj+l − PC(w)Ki+k,Kj+l)(w
′
Ki+k,Kj+l − PC(w)Ki+k,Kj+l )

=

N−1
∑

i ,j=0

K−1
∑

k,l=0

(Q(w)i ,j − vi ,j)(w
′
Ki+k,Kj+l − wKi+k,Kj+l + Q(w)i ,j − vi ,j)

=

N−1
∑

i ,j=0

(Q(w)i ,j − vi ,j)





K−1
∑

k,l=0

(w ′
Ki+k,Kj+l − wKi+k,Kj+l + Q(w)i ,j − vi ,j)




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Exercise 1, question 2

and

K−1
∑

k,l=0

(w ′
Ki+k,Kj+l − wKi+k,Kj+l + Q(w)i ,j − vi ,j)

= K 2Q(w ′)i ,j − K 2Q(w)i ,j + K 2Q(w)i ,j − K 2vi ,j = 0

Therefore, finally for any w ′ ∈ C

〈w − PC(w),w ′ − PC(w)〉 = 0

and

‖w − w ′‖2 = ‖w − PC(w)‖2 + ‖w ′ − PC(w)‖2 + 2〈w − PC(w),w ′ − PC(w)〉

= ‖w − PC(w)‖2 + ‖w ′ − PC(w)‖2

≥ ‖w − PC(w)‖2
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Exercise 1, question 3

Check that all the elements of C have the same mean. Conclude that (P) has a
minimizer. Propose an example in which (P) has several solutions.
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Exercise 1, question 3

For any w ∈ C,

N−1
∑

i ,j=0

K−1
∑

k,l=0

wKi+k,Kj+l =

N−1
∑

i ,j=0

K 2Q(w)i ,j

= K 2
N−1
∑

i ,j=0

vi ,j

Therefore, they all have the same mean. Rewriting

(P) :

{

minimize E (u + w)
under thet constraint w ∈ ker (Q),

E is convex, finite and coercive on ker (Q) ⊂ {w |mean of w is 0}.
(P) has a solution.
Non-uniqueness: Take a 1D example, in which u is an increasing function.
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Exercise 1, question 4

Check that
∇E (w) = 2

(

D∗
x (X ) + D∗

y (Y )
)

,

where D∗
x et D∗

y are as in the Hands-on session 1, and

Xi ,j = ϕ′
β(|∇wi ,j |

2)Dxw i ,j ,

Yi ,j = ϕ′
β(|∇wi ,j |

2)Dyw i ,j
,

for (i , j) ∈ {0, . . . ,KN − 1}2, and where ϕ′
β(t) is the derivative of ϕβ at the point

t.

See lecture on total variation.
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Exercise 1, question 5

Detail a projected gradient algorithm solving (P).
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Exercise 1, question 5

Detail a projected gradient algorithm solving (P).

Algorithm 2 Proximal gradient algorithm

Entry: β, v
Output: Approximation of a solution of (P): w∗

Initialize w

Set L = 8√
β

(see lecture on TV)

While Not converged Do

Compute d = ∇E (w) (see question 4)
Update : w ← PC(w −

1
L
d) (see question 2)

End while
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