Mathematical methods for Image Processing

François Malgouyres

Institut de Mathématiques de Toulouse, France

invitation by
Jidesh P., NITK Surathkal

funding
Global Initiative on Academic Network

Oct. 23-27

Plan

(1) Hands-on session with examples: Image zooming using the TV regularization

Exercise 1, question 1

Check that \mathcal{C} is a closed affine space. Characterize the vector space \mathcal{C}^{\prime} defining its direction.

Exercise 1, question 1

Check that \mathcal{C} is a closed affine space. Characterize the vector space \mathcal{C}^{\prime} defining its direction.

We have $\mathcal{C}=u+\operatorname{ker}(Q)$. It is a affine space and $\mathcal{C}^{\prime}=\operatorname{ker}(Q)$.

- If $w \in \mathcal{C}$, then $Q(w-u)=Q(w)-Q(u)=v-v=0$. Therefore, $w \in u+\operatorname{ker}(Q)$.
- If $w \in u+\operatorname{ker}(Q)$, let $w^{\prime} \in \operatorname{ker}(Q)$ such that $w=u+w^{\prime}$. We have

$$
Q(w)=Q(u)+Q\left(w^{\prime}\right)=v .
$$

Therefore, $w \in \mathcal{C}$.

Exercise 1, question 2

Check that the operator that maps any $w \in \mathbb{R}^{(K N)^{2}}$ to $P_{\mathcal{C}}(w) \in \mathbb{R}^{(K N)^{2}}$, as defined by

$$
P_{\mathcal{C}}(w)_{i, j}=w_{i, j}-Q(w)_{\left[\frac{i}{k}\right],\left[\frac{j}{k}\right]}+v_{\left[\frac{1}{k}\right],\left[\frac{j}{k}\right]},
$$

where $[t]$ is integer floor function applied to t, corresponds to the orthogonal projection onto \mathcal{C}.

Exercise 1, question 2

Check that the operator that maps any $w \in \mathbb{R}^{(K N)^{2}}$ to $P_{\mathcal{C}}(w) \in \mathbb{R}^{(K N)^{2}}$, as defined by

$$
P_{\mathcal{C}}(w)_{i, j}=w_{i, j}-Q(w)_{\left[\frac{i}{k}\right],[\dot{k}]}+v_{\left[\frac{1}{k}\right],[\dot{k}]},
$$

where $[t]$ is integer floor function applied to t, corresponds to the orthogonal projection onto \mathcal{C}.

We want to prove that

$$
P_{\mathcal{C}}(w)=\operatorname{Argmin}_{w^{\prime} \in \mathcal{C}}\left\|w^{\prime}-w\right\|^{2}
$$

i.e. we want to prove that

- $P_{\mathcal{C}}(w) \in \mathcal{C}$
- $\forall w^{\prime} \in \mathcal{C},\left\|w-w^{\prime}\right\|^{2} \geq\left\|w-P_{\mathcal{C}}(w)\right\|^{2}$

Exercise 1, question 2

We have, for all $i, j=0 \ldots N-1\left(\right.$ Notice $\left[\frac{K_{i+k}}{K}\right]=i$ and $\left.\left[\frac{K j+l}{K}\right]=j\right)$

$$
\begin{aligned}
Q\left(P_{\mathcal{C}}(w)\right)_{i, j} & =\frac{1}{K^{2}} \sum_{k, l=0}^{K-1} P_{\mathcal{C}}(w)_{K i+k, K_{j}+l} \\
& =\frac{1}{K^{2}} \sum_{k, l=0}^{K-1} w_{K i+k, K j+l}+\frac{1}{K^{2}} \sum_{k, l=0}^{K-1} Q(w)_{i, j}+\frac{1}{K^{2}} \sum_{k, l=0}^{K-1} v_{i, j} \\
& =Q(w)_{i, j}-Q(w)_{i, j}+v_{i, j}=v_{i, j}
\end{aligned}
$$

Therefore,

$$
P_{\mathcal{C}}(w) \in \mathcal{C}
$$

Exercise 1, question 2

Let $w^{\prime} \in \mathcal{C}$, we have

$$
\begin{aligned}
& \left\langle w-P_{\mathcal{C}}(w), w^{\prime}-P_{\mathcal{C}}(w)\right\rangle \\
= & \sum_{i, j=0}^{N-1} \sum_{k, l=0}^{K-1}\left(w_{K i+k, K j+l}-P_{\mathcal{C}}(w)_{K i+k, K j+l}\right)\left(w_{K i+k, K j+l}^{\prime}-P_{\mathcal{C}}(w)_{K i+k, K j+l}\right) \\
= & \sum_{i, j=0}^{N-1} \sum_{k, l=0}^{K-1}\left(Q(w)_{i, j}-v_{i, j}\right)\left(w_{K i+k, K j+I}^{\prime}-w_{K i+k, K j+l}+Q(w)_{i, j}-v_{i, j}\right) \\
= & \sum_{i, j=0}^{N-1}\left(Q(w)_{i, j}-v_{i, j}\right)\left(\sum_{k, l=0}^{K-1}\left(w_{K i+k, K j+l}^{\prime}-w_{K i+k, K j+l}+Q(w)_{i, j}-v_{i, j}\right)\right)
\end{aligned}
$$

Exercise 1, question 2

and

$$
\begin{aligned}
& \sum_{k, l=0}^{K-1}\left(w_{K i+k, K j+l}^{\prime}-w_{K i+k, K j+l}+Q(w)_{i, j}-v_{i, j}\right) \\
= & K^{2} Q\left(w^{\prime}\right)_{i, j}-K^{2} Q(w)_{i, j}+K^{2} Q(w)_{i, j}-K^{2} v_{i, j}=0
\end{aligned}
$$

Therefore, finally for any $w^{\prime} \in \mathcal{C}$

$$
\left\langle w-P_{\mathcal{C}}(w), w^{\prime}-P_{\mathcal{C}}(w)\right\rangle=0
$$

and

$$
\begin{aligned}
\left\|w-w^{\prime}\right\|^{2} & =\left\|w-P_{\mathcal{C}}(w)\right\|^{2}+\left\|w^{\prime}-P_{\mathcal{C}}(w)\right\|^{2}+2\left\langle w-P_{\mathcal{C}}(w), w^{\prime}-P_{\mathcal{C}}(w)\right\rangle \\
& =\left\|w-P_{\mathcal{C}}(w)\right\|^{2}+\left\|w^{\prime}-P_{\mathcal{C}}(w)\right\|^{2} \\
& \geq\left\|w-P_{\mathcal{C}}(w)\right\|^{2}
\end{aligned}
$$

Exercise 1, question 3

Check that all the elements of \mathcal{C} have the same mean. Conclude that (P) has a minimizer. Propose an example in which (P) has several solutions.

Exercise 1, question 3

For any $w \in \mathcal{C}$,

$$
\begin{aligned}
\sum_{i, j=0}^{N-1} \sum_{k, l=0}^{K-1} w_{K i+k, K j+l} & =\sum_{i, j=0}^{N-1} K^{2} Q(w)_{i, j} \\
& =K^{2} \sum_{i, j=0}^{N-1} v_{i, j}
\end{aligned}
$$

Therefore, they all have the same mean. Rewriting

$$
(P):\left\{\begin{array}{l}
\text { minimize } E(u+w) \\
\text { under thet constraint } w \in \operatorname{ker}(Q),
\end{array}\right.
$$

E is convex, finite and coercive on $\operatorname{ker}(Q) \subset\{w \mid$ mean of w is 0$\}$.
(P) has a solution.
Non-uniqueness: Take a 1D example, in which u is an increasing function.

Exercise 1, question 4

Check that

$$
\nabla E(w)=2\left(D_{x}^{*}(X)+D_{y}^{*}(Y)\right),
$$

where D_{x}^{*} et D_{y}^{*} are as in the Hands-on session 1 , and

$$
\begin{aligned}
& X_{i, j}=\varphi_{\beta}^{\prime}\left(\left|\nabla w_{i, j}\right|^{2}\right) D_{x} w_{i, j}, \\
& Y_{i, j}=\varphi_{\beta}^{\prime}\left(\left|\nabla w_{i, j}\right|^{2}\right) D_{y} w_{i, j},
\end{aligned}
$$

for $(i, j) \in\{0, \ldots, K N-1\}^{2}$, and where $\varphi_{\beta}^{\prime}(t)$ is the derivative of φ_{β} at the point t.

See lecture on total variation.

Exercise 1, question 5

Detail a projected gradient algorithm solving (P).

Exercise 1, question 5

Detail a projected gradient algorithm solving (P).

Algorithm 2 Proximal gradient algorithm

Entry: β, v

Output: Approximation of a solution of (P) : w^{*}

Initialize w
Set $L=\frac{8}{\sqrt{\beta}}$
(see lecture on TV)
While Not converged Do
Compute $d=\nabla E(w)$
Update $: w \leftarrow P_{\mathcal{C}}\left(w-\frac{1}{L} d\right)$
End while
(see question 4)
(see question 2)

