Mathematical methods for Image Processing

François Malgouyres

Institut de Mathématiques de Toulouse, France

invitation by
Jidesh P., NITK Surathkal

funding
Global Initiative on Academic Network

Oct. 23-27

INSTITUT
de MATHEMATIQUES

Plan

(1) Image restoration-Applications

Image Restoration: Linear inverse problems

Let

$$
u=H v+b
$$

where

$$
H: \mathbb{R}^{N^{2}} \longrightarrow \mathbb{R}^{P}
$$

We know u and H. We look for an estimate of v. We minimize the Rudin-Osher-Fatemi (ROF) model

$$
\min _{w \in \mathbb{R}^{N^{2}}} E(w)
$$

where

$$
E(w)=T V_{\varepsilon}(w)+\lambda\|H w-u\|_{2}^{2}
$$

To do so, we implement a gradient descent algorithm and need to calculate

$$
\nabla E(w)
$$

Image Restoration: Linear inverse problems

Let $w, w^{\prime} \in \mathbb{R}^{N^{2}}$, we have

$$
\begin{aligned}
\left\|H\left(w+w^{\prime}\right)-u\right\|_{2}^{2}= & \left\langle(H w-u)+H w^{\prime},(H w-u)+H w^{\prime}\right\rangle \\
= & \langle H w-u, H w-u\rangle+2\left\langle H w^{\prime}, H w-u\right\rangle \\
& +\left\langle H w^{\prime}, H w^{\prime}\right\rangle \\
= & \|H w-u\|_{2}^{2}+\left\langle w^{\prime}, 2 H^{*}(H w-u)\right\rangle+o\left(\left\|w^{\prime}\right\|\right)
\end{aligned}
$$

where H^{*} is the adjoint of H.
We therefore have ${ }^{1}$

$$
\nabla E(w)=\nabla T V_{\varepsilon}(w)+2 \lambda H^{*}(H w-u)
$$

It is easy to compute as soon as we can compute H and H^{*}.
${ }^{1}$ Remember

$$
E(w)=T V_{\varepsilon}(w)+\lambda\|H w-u\|_{2}^{2} .
$$

Image Restoration, denoising : $H=H^{*}=l d$

Top: noisy images; Bottom: denoised images .

Image Restoration, denoising : $H=H^{*}=l d$

Figure: Denoising : $\sigma=20$ and $\lambda=+\infty, 0.5,0.05,0.017$ and 0.005 . Clean image.

Image Restoration, deblurring : H is a convolution

We have for all $w \in \mathbb{R}^{N^{2}}$

$$
(H w)_{m, n}=(h * w)_{m, n}=\sum_{m^{\prime}, n^{\prime}=0}^{N-1} h_{m-m^{\prime}, n-n^{\prime}} w_{m^{\prime}, n^{\prime}}
$$

for known convolution kernel $h \in \mathbb{R}^{N^{2}}$.
There are many algorithms to compute H.

Image Restoration, deblurring: H is a convolution

For w and $w^{\prime} \in \mathbb{R}^{N^{2}}$, we have

$$
\begin{aligned}
\left\langle H w, w^{\prime}\right\rangle & =\sum_{m, n=0}^{N-1}(H w)_{m, n} w_{m, n}^{\prime} \\
& =\sum_{m, n=0}^{N-1} \sum_{m^{\prime}, n^{\prime}=0}^{N-1} h_{m-m^{\prime}, n-n^{\prime}} w_{m^{\prime}, n^{\prime}} w_{m, n}^{\prime} \\
& =\sum_{m^{\prime}, n^{\prime}=0}^{N-1} w_{m^{\prime}, n^{\prime}} \sum_{m, n=0}^{N-1} h_{m-m^{\prime}, n-n^{\prime}} w_{m, n}^{\prime} \\
& =\sum_{m^{\prime}, n^{\prime}=0} w_{m^{\prime}, n^{\prime}}\left(\tilde{h} * w^{\prime}\right)_{m^{\prime}, n^{\prime}}
\end{aligned}
$$

where $\tilde{h}_{x, y}=h_{-x,-y}$, for all $x, y \in \mathbb{Z}$.
So

$$
\left(H^{*} w^{\prime}\right)_{m, n}=\left(\tilde{h} * w^{\prime}\right)_{m, n} \quad, \forall(m, n) \in\{0, \ldots, N-1\}
$$

Image Restoration, deblurring : H is a convolution

Top: blurred image; Bottom: restored and ideal image.

Image Restoration, inpainting : H multiplies by a mask

We know an image in a region $\mathcal{C} \subset\{0, \ldots, N-1\}^{2}$. We set for all $w \in \mathbb{R}^{N^{2}}$

$$
(H w)_{m, n}=M_{m, n} \cdot w_{m, n}
$$

for known mask

$$
M_{m, n}= \begin{cases}1 & , \text { if }(m, n) \in \mathcal{C} \\ 0 & , \text { otherwise }\end{cases}
$$

Computing Hw is straightforward.

Image Restoration, inpainting : H multiplies by a mask

For w and $w^{\prime} \in \mathbb{R}^{N^{2}}$, we have

$$
\begin{aligned}
\left\langle H w, w^{\prime}\right\rangle & =\sum_{m, n=0}^{N-1}(H w)_{m, n} w_{m, n}^{\prime} \\
& =\sum_{m, n=0}^{N-1}\left(M_{m, n} w_{m, n}\right) w_{m, n}^{\prime} \\
& =\sum_{m, n=0}^{N-1} w_{m, n}\left(M_{m, n} w_{m, n}^{\prime}\right) \\
& =\left\langle w, H w^{\prime}\right\rangle
\end{aligned}
$$

So $H^{*}=H$.

Image Restoration, inpainting : H multiplies by a mask

Top: Image with missing pixels; Bottom: restored and ideal image
\qquad

Image Restoration: Zooming in

We consider the composition

$$
H=S \circ C
$$

of a convolution $C: \mathbb{R}^{(K N)^{2}} \longrightarrow \mathbb{R}^{(K N)^{2}}$ and sampling $S: \mathbb{R}^{(K N)^{2}} \longrightarrow \mathbb{R}^{N^{2}}$ defined by

$$
(S w)_{m, n}=w_{K m, K n} \quad, \text { for all } m, n=0 . . N-1
$$

We have

$$
(S \circ C)^{*}=C^{*} \circ S^{*} .
$$

We only need to calculate $S^{*}: \mathbb{R}^{N^{2}} \longrightarrow \mathbb{R}^{(K N)^{2}}$.

Image Restoration: Zooming in

For $w \in \mathbb{R}^{(K N)^{2}}$ and $w^{\prime} \in \mathbb{R}^{N^{2}}$, we have

$$
\begin{aligned}
\left\langle S w, w^{\prime}\right\rangle & =\sum_{m, n=0}^{N-1}(S w)_{m, n} w_{m, n}^{\prime} \\
& =\sum_{m, n=0}^{N-1} w_{K m, K n} w_{m, n}^{\prime} \\
& =\sum_{m, n=0}^{N-1} \sum_{k, l=0}^{K-1} w_{K m+k, K n+l}\left(S^{*} w^{\prime}\right)_{K m+k, K n+l} \\
& =\left\langle w, S^{*} w^{\prime}\right\rangle
\end{aligned}
$$

with

$$
\left(S^{*} w^{\prime}\right)_{K m+k, K n+l}= \begin{cases}w_{m, n}^{\prime} & , \text { if }(k, l)=(0,0) \\ 0 & , \text { otherwise }\end{cases}
$$

S^{*} zooms the image by interlacing 0 . The result $S^{*} w^{\prime}$ is a kind of "Dirac comb".

Image Restoration: Zooming in

Un-zoomed; zoomed ($\times 4$) by two methods

Image Restoration: De-compression

The lossy part of the compression of an image u consists in

- Compute $W u$, where W is a unitary matrix or transform (JPEG 2000 ; wavelet, JPG : local cosine)
- Quantize every entry
- Encode the quantization interval

Therefore for any entry i of $W u$ we only know that

$$
\tau_{i}^{-} \leq(W u)_{i}<\tau_{i}^{+}
$$

where τ_{i}^{-}and τ_{i}^{+}are the known bounds of the quantization interval. We estimate u by solving

$$
\left\{\begin{array}{l}
\min _{w} T V_{\varepsilon}(w) \\
\operatorname{such} \text { that } \tau_{i}^{-} \leq(W w)_{i} \leq \tau_{i}^{+} \quad, \forall i .
\end{array}\right.
$$

Solved by a projected gradient descent algorithm (i.e. proximal gradient algorithm).

Image Restoration: De-compression

We denote

$$
\mathcal{C}=\left\{w \in \mathbb{R}^{N^{2}} \mid \forall i, \tau_{i}^{-} \leq(W w)_{i} \leq \tau_{i}^{+}\right\}
$$

We denote $P_{\mathcal{C}}(w)$ the projection of any $w \in \mathbb{R}^{N^{2}}$ onto \mathcal{C} and have

$$
\begin{aligned}
P_{\mathcal{C}}(w) & =\operatorname{Argmin}_{w^{\prime} \in \mathcal{C}}\left\|w-w^{\prime}\right\|^{2} \\
& =\operatorname{Argmin}_{\forall i, \tau_{i}^{-} \leq\left(W w^{\prime}\right)_{i} \leq \tau_{i}^{+}} \sum_{i}\left(\left(W w^{\prime}\right)_{i}-(W w)_{i}\right)^{2}
\end{aligned}
$$

We can prove that

$$
\left(W P_{\mathcal{C}}(w)\right)_{i}=\operatorname{Argmin}_{\tau_{i}^{-} \leq t \leq \tau_{i}^{+}}\left(t-(W w)_{i}\right)^{2}
$$

and therefore

$$
\left(W P_{\mathcal{C}}(w)\right)_{i}= \begin{cases}\tau_{i}^{+} & , \text {if } \tau_{i}^{+} \leq(W w)_{i} \\ (W w)_{i} & , \text { if } \tau_{i}^{-} \leq(W w)_{i} \leq \tau_{i}^{+} \\ \tau_{i}^{-} & , \text {if }(W w)_{i} \leq \tau_{i}^{-}\end{cases}
$$

Image Restoration: De-compression

Top: compressed images (for differents compression level). Bottom: restored images
de MATHEMATIQUES deTOWOUSE

