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1 Image restoration–Applications
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Image Restoration: Linear inverse problems

Let
u = Hv + b

where
H : RN2

−→ R
P

We know u and H . We look for an estimate of v .
We minimize the Rudin-Osher-Fatemi (ROF) model

min
w∈RN2

E (w),

where
E (w) = TVε(w) + λ‖Hw − u‖22.

To do so, we implement a gradient descent algorithm and need to calculate

∇E (w).
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Image Restoration: Linear inverse problems

Let w , w ′ ∈ R
N2

, we have

‖H(w + w ′)− u‖22 = 〈(Hw − u) + Hw ′ , (Hw − u) + Hw ′〉

= 〈Hw − u,Hw − u〉+ 2〈Hw ′,Hw − u〉

+〈Hw ′,Hw ′〉

= ‖Hw − u‖22 + 〈w ′, 2H∗(Hw − u)〉+ o(‖w ′‖)

where H∗ is the adjoint of H .
We therefore have1

∇E (w) = ∇TVε(w) + 2λH∗(Hw − u).

It is easy to compute as soon as we can compute H and H∗.

1Remember
E(w) = TVε(w) + λ‖Hw − u‖22.
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Image Restoration, denoising : H = H
∗ = Id

Top: noisy images; Bottom: denoised images .
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Image Restoration, denoising : H = H
∗ = Id

Figure: Denoising : σ = 20 and λ = +∞, 0.5, 0.05, 0.017 and 0.005. Clean image.
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Image Restoration, deblurring : H is a convolution

We have for all w ∈ R
N2

(Hw)m,n = (h ∗ w)m,n =

N−1
∑

m′,n′=0

hm−m′,n−n′wm′,n′

for known convolution kernel h ∈ R
N2

.
There are many algorithms to compute H .
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Image Restoration, deblurring : H is a convolution

For w and w ′ ∈ R
N2

, we have

〈Hw ,w ′〉 =

N−1
∑

m,n=0

(Hw)m,nw
′
m,n

=

N−1
∑

m,n=0

N−1
∑

m′,n′=0

hm−m′,n−n′wm′,n′w
′
m,n

=

N−1
∑

m′,n′=0

wm′,n′

N−1
∑

m,n=0

hm−m′,n−n′w
′
m,n

=

N−1
∑

m′,n′=0

wm′,n′(h̃ ∗ w ′)m′,n′

where h̃x,y = h−x,−y , for all x , y ∈ Z.
So

(H∗w ′)m,n = (h̃ ∗ w ′)m,n , ∀(m, n) ∈ {0, . . . ,N − 1}.
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Image Restoration, deblurring : H is a convolution

Top: blurred image; Bottom: restored and ideal image.
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Image Restoration, inpainting : H multiplies by a mask

We know an image in a region C ⊂ {0, . . . ,N − 1}2. We set for all w ∈ R
N2

(Hw)m,n = Mm,n . wm,n

for known mask

Mm,n =

{

1 , if (m, n) ∈ C
0 , otherwise

Computing Hw is straightforward.
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Image Restoration, inpainting : H multiplies by a mask

For w and w ′ ∈ R
N2

, we have

〈Hw ,w ′〉 =

N−1
∑

m,n=0

(Hw)m,nw
′
m,n

=

N−1
∑

m,n=0

(

Mm,nwm,n

)

w ′
m,n

=
N−1
∑

m,n=0

wm,n

(

Mm,nw
′
m,n

)

= 〈w ,Hw ′〉

So H∗ = H .
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Image Restoration, inpainting : H multiplies by a mask

Top: Image with missing pixels; Bottom: restored and ideal image
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Image Restoration: Zooming in

We consider the composition
H = S ◦ C

of a convolution C : R(KN)2 −→ R
(KN)2 and sampling S : R(KN)2 −→ R

N2

defined
by

(Sw)m,n = wKm,Kn , for all m, n = 0..N − 1.

We have
(S ◦ C )∗ = C∗ ◦ S∗.

We only need to calculate S∗ : RN2

−→ R
(KN)2 .
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Image Restoration: Zooming in

For w ∈ R
(KN)2 and w ′ ∈ R

N2

, we have

〈Sw ,w ′〉 =
N−1
∑

m,n=0

(Sw)m,nw
′
m,n

=

N−1
∑

m,n=0

wKm,Knw
′
m,n

=

N−1
∑

m,n=0

K−1
∑

k,l=0

wKm+k,Kn+l(S
∗w ′)Km+k,Kn+l

= 〈w , S∗w ′〉

with

(S∗w ′)Km+k,Kn+l =

{

w ′
m,n , if (k , l) = (0, 0)

0 , otherwise

S∗ zooms the image by interlacing 0. The result S∗w ′ is a kind of ”Dirac comb”.
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Image Restoration: Zooming in

Un-zoomed; zoomed (x4) by two methods
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Image Restoration: De-compression

The lossy part of the compression of an image u consists in

Compute Wu, where W is a unitary matrix or transform (JPEG 2000 ;
wavelet, JPG : local cosine)

Quantize every entry

Encode the quantization interval

Therefore for any entry i of Wu we only know that

τ−i ≤ (Wu)i < τ+i

where τ−i and τ+i are the known bounds of the quantization interval.
We estimate u by solving

{

minw TVε(w)
such that τ−i ≤ (Ww)i ≤ τ+i , ∀i .

Solved by a projected gradient descent algorithm (i.e. proximal gradient
algorithm).
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Image Restoration: De-compression

We denote
C = {w ∈ R

N2

|∀i , τ−i ≤ (Ww)i ≤ τ+i }

We denote PC(w) the projection of any w ∈ R
N2

onto C and have

PC(w) = Argminw ′∈C ‖w − w ′‖2

= Argmin
∀i ,τ

−

i
≤(Ww ′)i≤τ

+
i

∑

i

((Ww ′)i − (Ww)i )
2

We can prove that

(WPC(w))i = Argmin
τ
−

i
≤t≤τ

+
i
(t − (Ww)i )

2

and therefore

(WPC(w))i =







τ+i , if τ+i ≤ (Ww)i
(Ww)i , if τ−i ≤ (Ww)i ≤ τ+i
τ−i , if (Ww)i ≤ τ−i
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Image Restoration: De-compression

Top: compressed images (for differents compression level). Bottom: restored
images
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