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1 Image restoration
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Image Restoration

We look for a perfect image v ∈ R
N

2

(or RN×N) from noise corrupted linear
measurements u ∈ R

P :
u = Hv + b

where
H : RN

2 −→ R
P

and b ∈ R
P is some error (e.g. Gaussian noise of standard deviation σ).

Examples: H is the identity (denoising), a convolution, a sampling operator
(in a transformed space or not), . . .

Applications : Camera, Remote sensing imaging, Medical imaging (CT,
IRM...), Biological imaging (many new microscopy acquisition devices), . . .
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Ill-posed problems by the example

Assume
H : RN×N −→ R

N×N

is a convolution with h ∈N×N .
u = h ∗ v + b becomes, in Fourier domain,

ûk,l = ĥk,l v̂k,l + b̂k,l , ∀k , l = 0..N − 1.

If ĥk,l = 0,
v̂k,l is lost

If ĥk,l 6= 0,

v̂k,l =
ûk,l

ĥk,l
− b̂k,l

ĥk,l

The noise is amplified by a factor 1
ĥk,l
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Regularize the solution

Choose R that is

small for the typical data you are restoring

large for ”H−1 of the error/noise”

and solve
{

w∗ = Argminw R(w)
under the constraint ‖Hw − u‖2 ≤ τ

or an unconstrained version:

w∗ = Argmin
w∈RN2 R(w) + λ‖Hw − u‖22.

These problem can be obtained as MAP estimates (Bayesian framework)

Can lead to bounds on the error ‖w∗ − v‖ ≤ ... (”Compressed sensing”
framework, developed Wednesday and Thursday)
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Bayesian Modeling
Assume images are distributed according to the prior

P(w) ∝ e−µR(w).

Assume b is i.i.d. centered Gaussian noise of standard deviation σ > 0 :

P(b) ∝ e−
‖b‖22
2σ2 .

We have, for the data u obtained from w

P(u|w) ∝ e−
‖u−Hw‖22

2σ2 .

Applying Bayes law, we get the posterior distribution

P(w |u) =
P(u|w)P(w)

P(u)
,

∝ P(u|w)P(w),

∝ e−
‖u−Hw‖22

2σ2 e−µR(w).
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Bayesian Modeling

The Maximum A Posteriori (MAP) estimate

maximize P(w |u)

equivalently
minimize − log (P(w |u))

This leads to

wMAP = Argminw∈W

‖u − Hw‖22
2σ2

+ µR(w).

Identical to
w∗ = Argmin

w∈RN2 R(w) + λ‖Hw − u‖22,

when λ = 2σ2µ.
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Bayesian Modeling: Comments

Assumption on R is often very wrong

Differ from the ”compressed sensing” approach because R is built
independently of the noise and H .

Powerful for designing models when many variables interact

Leads to well founded strategies to tune the parameters (λ, in the example):
See Expectation-Maximization algorithms.
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The total variation

Definition

Let w ∈ L1
(

[0,N ]2
)

, if the following supremum is finite, we say w is of bounded

variation, denote w ∈ BV
(

[0,N ]2
)

and define

TV (w) = sup

{

∫

[0,N ]2
w divϕ dxdy , ϕ ∈ C 1

(

]0,N [2,R2
)

et |ϕ| ≤ 1

}

< +∞

Above C 1
(

]0,N [2,R2
)

contains C 1 functions from ]0,N [2 into R
2, |.| is the

Euclidean norm in R
2 and |ϕ| ≤ 1 means

|(ϕ1(x , y), ϕ2(x , y))| ≤ 1 , ∀(x , y) ∈]0,N [2.

i.e ϕ1(x , y)
2 + ϕ2(x , y)

2 ≤ 1 , ∀(x , y) ∈]0,N [2.
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The total variation, Example 1 : when w is C 1

For any ϕ = (ϕ1, ϕ2) ∈ C 1
(

]0,N [2,R2
)

, tel que |ϕ| ≤ 1

∫

[0,N ]2
w divϕ dxdy =

∫

[0,N ]2
w

(

∂ϕ1

∂x
+

∂ϕ2

∂y

)

dxdy ,

= −
∫

[0,N ]2

∂w

∂x
ϕ1 +

∂w

∂y
ϕ2 dxdy ,

= −
∫

[0,N ]2
∇w . ϕ dxdy ,

≤
∫

[0,N ]2
|∇w | dxdy . (1)

where ∇w . ϕ is the inner product in R
2.
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The total variation, Example 1 : when w is C 1

We have, for all ϕ ∈ C 1
(

]0,N [2,R2
)

such that |ϕ| ≤ 1

∫

[0,N ]2
w divϕ dxdy ≤

∫

[0,N ]2
|∇w | dxdy ,

and therefore

TV (w) ≤
∫

[0,N ]2
|∇w | dxdy .

In fact, we can prove the converse inequality and state:

Proposition

If w ∈ BV
(

[0,N ]2
)

and w is C 1, we have

TV (w) =

∫

[0,N ]2
|∇w | dxdy .
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The total variation, Example 2: Characteristic function of

a set

Theorem

If E ⊂ [0,N ]2 is an open set with a smooth boundary (For instance Lipschitz) and
if w = 1|E then w ∈ BV

(

[0,N ]2
)

and

TV (w) = H1(∂E ),

where H1 is the Hausdorffa measure of dimension 1.

aThe Haussdorf measure of dimension 1 of a set is the lenght of this set, if the set
is ”1D”; it is 0, if the dimension of the set is strictily smaller than 1; it is+∞, if it is of
dimension strictly larger than 1.
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The total variation, Co-area formula

For a function w ∈ L1
(

[0,N ]2
)

and t ∈ R, we denote the t level set of w by:

Lw (t) = {(x , y) ∈ [0,N ]2,w(x , y) ≥ t}.

Theorem (Co-area formula)

If w ∈ BV
(

[0,N ]2
)

, then

for almost every t ∈ R,
TV

(

1Lw (t)

)

< ∞;

the function
t 7−→ TV

(

1Lw (t)

)

is measurable;

and

TV (w) =

∫ ∞

−∞

TV
(

1Lw (t)

)

dt.
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The total variation, Example 3: if w is a non-decreasing

signal

If w ∈ BV ([0,N ]) is non-decreasing and C 1,

TV (w) =

∫

N

0

|w ′| dx

=

∫

N

0

w ′ dx

= w(N)− w(0).
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The total variation, Example 3: if w is a non-decreasing

signal

0 N x

w1

w2

w3
w4

wi(x)

TV (w1) = TV (w2) = TV (w3) = TV (w4)
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The total variation, on the grid

For any w ∈ R
N

2

, we set

TV (w) =
N
∑

m,n=1

|∇wm,n|,

where |.| is the Euclidean norm in R
2,

∇wm,n =

(

∂mwm,n

∂nwm,n

)

=

(

wm+1,n − wm,n

wm,n+1 − wm,n,

)

(We assume w periodic.)
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The total variation, on the grid

TV (w) =

N
∑

m,n=1

|∇wm,n|,

Good properties : continuous, convexe, a semi-norm over RN
2

, a norm over
{w ∈ R

N
2

,
∑

N

m,n=1 wm,n = 0}
Bad properties :

◮ Not coercive over RN
2

(TV (w + c) = TV (w)) : Not a problem as long as
the data fidelity term does not make the image mean diverge.

◮ Not differentiable, as soon as there is (m, n) ∈ {1, . . . ,N}2 such that

|∇wm,n| = 0.

Many ways to avoid this problem. In this lecture, we smooth TV

TVε(w) =

N∑

m,n=1

ϕε(|∇wm,n|2),

where ε > 0 is small and ϕε(t) =
√
t + ε, for t > 0.
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The total variation, on the grid: Computing ∇TVε(w)

For
ϕε(t) =

√
t + ε , ∀t > 0,

we have

ϕ′
ε
(t) =

1

2
√
t + ε

, ∀t > 0. (1)

We denote the finite difference operators :

∂m : RN
2 −→ R

N
2

,

(wm,n)1≤m,n≤N 7−→ (wm+1,n − wm,n)1≤m,n≤N ,

and

∂n : RN
2 −→ R

N
2

,

(wm,n)1≤m,n≤N 7−→ (wm,n+1 − wm,n)1≤m,n≤N .
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The total variation, on the grid: Computing ∇TVε(w)

For any w , w ′ ∈ R
N

2

we have

〈w , ∂mw
′〉 =

N
∑

m,n=1

wm,n

(

w ′
m+1,n − w ′

m,n

)

,

=

N
∑

m,n=1

wm,nw
′
m+1,n −

N
∑

m,n=1

wm,nw
′
m,n,

=
N
∑

m,n=1

wm−1,nw
′
m,n

−
N
∑

m,n=1

wm,nw
′
m,n

,

=
N
∑

m,n=1

(wm−1,n − wm,n)w
′
m,n

,

= 〈∂∗
m
w ,w ′〉.

Therefore
∂∗
mwm,n = wm−1,n − wm,n , ∀(m, n) ∈ {1, . . . ,N}2.
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The total variation, on the grid: Computing ∇TVε(w)

TVε(w + w ′)− TVε(w)

=

N
∑

m,n=1

ϕε

(

|∇(w + w ′)m,n|2
)

− ϕε

(

|∇wm,n|2
)

,

=

N
∑

m,n=1

ϕε

(

|∇wm,n|2 + 2(∂mwm,n∂mw
′
m,n

+ ∂nwm,n∂nw
′
m,n

) + o(|∇w ′
m,n

|)
)

−ϕε

(

|∇wm,n|2
)

,

=

N
∑

m,n=1

2 ϕ′
ε

(

|∇wm,n|2
)

(∂mwm,n∂mw
′
m,n + ∂nwm,n∂nw

′
m,n) + o(|∇w ′

m,n|).

We denote X ∈ R
N

2

and Y ∈ R
N

2

such that

Xm,n = 2 ϕ′
ε

(

|∇wm,n|2
)

∂mwm,n and Ym,n = 2 ϕ′
ε

(

|∇wm,n|2
)

∂nwm,n,
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The total variation, on the grid: Computing ∇TVε(w)

We get

TVε(w + w ′)− TVε(w) =
N
∑

m,n=1

Xm,n∂mw
′
m,n

+
N
∑

m,n=1

Ym,n∂nw
′
m,n

+

N
∑

m,n=1

o(|∇w ′
m,n

|)

= 〈X , ∂mw
′〉+ 〈Y , ∂nw

′〉+ o(‖∇w ′‖1),
= 〈∂∗

mX + ∂∗
nY ,w ′〉+ o(‖w ′‖2).

since
N
∑

m,n=1

|∇w ′
m,n

| ≤
N
∑

m,n=1

|∇w ′
m,n

|1 ≤ 4

N
∑

m,n=1

|w ′
m,n

| ≤ 4N‖w ′‖2.
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The total variation, on the grid: Computing ∇TVε(w)

Finally,
∇TVε(w) = ∂∗

m
X + ∂∗

n
Y ,

with

Xm,n = 2 ϕ′
ε

(

|∇wm,n|2
)

∂mwm,n and Ym,n = 2 ϕ′
ε

(

|∇wm,n|2
)

∂nwm,n,

We also have (admitted), for all w and w ′

‖∇TVε(w
′)−∇TVε(w)‖ ≤ 8√

ε
‖w ′ − w‖
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The total variation : To go further

Non-local Total Variation: see Li-Malgouyres-Zeng

Numerical methods: Based on Graph cuts (see Chambolle and Darbon),
primal-dual approach (see Chambolle, Chambolle-Pock)

Staircase effect: see Nikolova

Theoretical Justification: Compressed sensing with Co-sparse/Analysis prior
(see Gribonval)
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