Mathematical methods for Image Processing

François Malgouyres

Institut de Mathématiques de Toulouse, France

invitation by
Jidesh P., NITK Surathkal

funding
Global Initiative on Academic Network

Oct. 23-27

Plan

(1) Image restoration
F institut
de MATHEMATIQUES

Image Restoration

We look for a perfect image $v \in \mathbb{R}^{N^{2}}$ (or $\mathbb{R}^{N \times N}$) from noise corrupted linear measurements $u \in \mathbb{R}^{P}$:

$$
u=H v+b
$$

where

$$
H: \mathbb{R}^{N^{2}} \longrightarrow \mathbb{R}^{P}
$$

and $b \in \mathbb{R}^{P}$ is some error (e.g. Gaussian noise of standard deviation σ).

- Examples: H is the identity (denoising), a convolution, a sampling operator (in a transformed space or not), ...
- Applications : Camera, Remote sensing imaging, Medical imaging (CT, IRM...), Biological imaging (many new microscopy acquisition devices), ...

III-posed problems by the example

Assume

$$
H: \mathbb{R}^{N \times N} \longrightarrow \mathbb{R}^{N \times N}
$$

is a convolution with $h \in^{N \times N}$.
$u=h * v+b$ becomes, in Fourier domain,

$$
\hat{u}_{k, l}=\hat{h}_{k, l} \hat{v}_{k, l}+\hat{b}_{k, l} \quad, \forall k, I=0 . . N-1 .
$$

- If $\hat{h}_{k, l}=0$,

$$
\hat{v}_{k, l} \text { is lost }
$$

- If $\hat{h}_{k, l} \neq 0$,

$$
\hat{v}_{k, l}=\frac{\hat{u}_{k, l}}{\hat{h}_{k, l}}-\frac{\hat{b}_{k, l}}{\hat{h}_{k, l}}
$$

The noise is amplified by a factor $\frac{1}{h_{k}, l}$

Regularize the solution

Choose R that is

- small for the typical data you are restoring
- large for " H^{-1} of the error/noise"
and solve

$$
\left\{\begin{array}{l}
w^{*}=\operatorname{Argmin}_{w} R(w) \\
\text { under the constraint }\|H w-u\|_{2} \leq \tau
\end{array}\right.
$$

or an unconstrained version:

$$
w^{*}=\operatorname{Argmin}_{w \in \mathbb{R}^{N^{2}}} R(w)+\lambda\|H w-u\|_{2}^{2} .
$$

- These problem can be obtained as MAP estimates (Bayesian framework)
- Can lead to bounds on the error $\left\|w^{*}-v\right\| \leq \ldots$ (" Compressed sensing" framework, developed Wednesday and Thursday)

Bayesian Modeling

Assume images are distributed according to the prior

$$
\mathbb{P}(w) \propto e^{-\mu R(w)}
$$

Assume b is i.i.d. centered Gaussian noise of standard deviation $\sigma>0$:

$$
\mathbb{P}(b) \propto e^{-\frac{\|b\|_{2}^{2}}{2 \sigma^{2}}}
$$

We have, for the data u obtained from w

$$
\mathbb{P}(u \mid w) \propto e^{-\frac{\|u-H w\|_{2}^{2}}{2 \sigma^{2}}} .
$$

Applying Bayes law, we get the posterior distribution

$$
\begin{aligned}
\mathbb{P}(w \mid u) & =\frac{\mathbb{P}(u \mid w) \mathbb{P}(w)}{\mathbb{P}(u)}, \\
& \propto \mathbb{P}(u \mid w) \mathbb{P}(w), \\
& \propto e^{-\frac{\|u-H w\|_{2}^{2}}{2 \sigma^{2}}} e^{-\mu R(w)} .
\end{aligned}
$$

Bayesian Modeling

The Maximum A Posteriori (MAP) estimate

$$
\text { maximize } \mathbb{P}(w \mid u)
$$

equivalently

$$
\text { minimize }-\log (\mathbb{P}(w \mid u))
$$

This leads to

$$
w^{M A P}=\operatorname{Argmin}_{w \in w} \frac{\|u-H w\|_{2}^{2}}{2 \sigma^{2}}+\mu R(w) .
$$

Identical to

$$
w^{*}=\operatorname{Argmin}_{w \in \mathbb{R}^{N^{2}}} R(w)+\lambda\|H w-u\|_{2}^{2},
$$

when $\lambda=2 \sigma^{2} \mu$.

Bayesian Modeling: Comments

- Assumption on R is often very wrong
- Differ from the "compressed sensing" approach because R is built independently of the noise and H.
- Powerful for designing models when many variables interact
- Leads to well founded strategies to tune the parameters (λ, in the example): See Expectation-Maximization algorithms.

The total variation

Definition

Let $w \in L^{1}\left([0, N]^{2}\right)$, if the following supremum is finite, we say w is of bounded variation, denote $w \in B V\left([0, N]^{2}\right)$ and define

$$
T V(w)=\sup \left\{\int_{[0, N]^{2}} w \operatorname{div} \varphi d x d y, \varphi \in C^{1}(] 0, N\left[^{2}, \mathbb{R}^{2}\right) \text { et }|\varphi| \leq 1\right\}<+\infty
$$

Above $C^{1}(] 0, N\left[^{2}, \mathbb{R}^{2}\right)$ contains C^{1} functions from $] 0, N\left[^{2}\right.$ into $\mathbb{R}^{2},|$.$| is the$ Euclidean norm in \mathbb{R}^{2} and $|\varphi| \leq 1$ means

$$
\begin{array}{rll}
& \left|\left(\varphi_{1}(x, y), \varphi_{2}(x, y)\right)\right| \leq 1 & , \forall(x, y) \in] 0, N\left[^{2} .\right. \\
\text { i.e } & \varphi_{1}(x, y)^{2}+\varphi_{2}(x, y)^{2} \leq 1 & , \forall(x, y) \in] 0, N\left[^{2} .\right.
\end{array}
$$

The total variation, Example 1 : when w is C^{1}

For any $\varphi=\left(\varphi_{1}, \varphi_{2}\right) \in C^{1}(] 0, N\left[^{2}, \mathbb{R}^{2}\right)$, tel que $|\varphi| \leq 1$

$$
\begin{align*}
\int_{[0, N]^{2}} w \operatorname{div} \varphi d x d y & =\int_{[0, N]^{2}} w\left(\frac{\partial \varphi_{1}}{\partial x}+\frac{\partial \varphi_{2}}{\partial y}\right) d x d y, \\
& =-\int_{[0, N]^{2}} \frac{\partial w}{\partial x} \varphi_{1}+\frac{\partial w}{\partial y} \varphi_{2} d x d y, \\
& =-\int_{[0, N]^{2}} \nabla w \cdot \varphi d x d y, \\
& \leq \int_{[0, N]^{2}}|\nabla w| d x d y . \tag{1}
\end{align*}
$$

where $\nabla w . \varphi$ is the inner product in \mathbb{R}^{2}.

The total variation, Example 1: when w is C^{1}

We have, for all $\varphi \in C^{1}(] 0, N\left[^{2}, \mathbb{R}^{2}\right)$ such that $|\varphi| \leq 1$

$$
\int_{[0, N]^{2}} w \operatorname{div} \varphi d x d y \leq \int_{[0, N]^{2}}|\nabla w| d x d y
$$

and therefore

$$
T V(w) \leq \int_{[0, N]^{2}}|\nabla w| d x d y .
$$

In fact, we can prove the converse inequality and state:

Proposition

If $w \in B V\left([0, N]^{2}\right)$ and w is C^{1}, we have

$$
T V(w)=\int_{[0, N]^{2}}|\nabla w| d x d y .
$$

The total variation, Example 2: Characteristic function of

 a set
Theorem

If $E \subset[0, N]^{2}$ is an open set with a smooth boundary (For instance Lipschitz) and if $w=\mathbf{1}_{\mid E}$ then $w \in B V\left([0, N]^{2}\right)$ and

$$
T V(w)=\mathcal{H}^{1}(\partial E)
$$

where \mathcal{H}^{1} is the Hausdorff measure of dimension 1.
${ }^{\text {a }}$ The Haussdorf measure of dimension 1 of a set is the lenght of this set, if the set is " 1 D "; it is 0 , if the dimension of the set is strictily smaller than 1 ; it is $+\infty$, if it is of dimension strictly larger than 1.

The total variation, Co-area formula

For a function $w \in L^{1}\left([0, N]^{2}\right)$ and $t \in \mathbb{R}$, we denote the t level set of w by:

$$
\mathcal{L}_{w}(t)=\left\{(x, y) \in[0, N]^{2}, w(x, y) \geq t\right\}
$$

Theorem (Co-area formula)
If $w \in B V\left([0, N]^{2}\right)$, then

- for almost every $t \in \mathbb{R}$,

$$
T V\left(\mathbf{1}_{\mathcal{L}_{w}(t)}\right)<\infty ;
$$

- the function

$$
t \longmapsto T V\left(\mathbf{1}_{\mathcal{L}_{w}(t)}\right) \quad \text { is measurable; }
$$

- and

$$
T V(w)=\int_{-\infty}^{\infty} T V\left(\mathbf{1}_{\mathcal{L}_{w}(t)}\right) d t
$$

The total variation, Example 3: if w is a non-decreasing signal

If $w \in B V([0, N])$ is non-decreasing and C^{1},

$$
\begin{aligned}
T V(w) & =\int_{0}^{N}\left|w^{\prime}\right| d x \\
& =\int_{0}^{N} w^{\prime} d x \\
& =w(N)-w(0) .
\end{aligned}
$$

The total variation, Example 3: if w is a non-decreasing signal

The total variation, on the grid

For any $w \in \mathbb{R}^{N^{2}}$, we set

$$
T V(w)=\sum_{m, n=1}^{N}\left|\nabla w_{m, n}\right|
$$

where |.| is the Euclidean norm in \mathbb{R}^{2},

$$
\nabla w_{m, n}=\binom{\partial_{m} w_{m, n}}{\partial_{n} w_{m, n}}=\binom{w_{m+1, n}-w_{m, n}}{w_{m, n+1}-w_{m, n}}
$$

(We assume w periodic.)

INSTITUT
de MATHEMATIQUES

The total variation, on the grid

$$
T V(w)=\sum_{m, n=1}^{N}\left|\nabla w_{m, n}\right|
$$

- Good properties : continuous, convexe, a semi-norm over $\mathbb{R}^{N^{2}}$, a norm over $\left\{w \in \mathbb{R}^{N^{2}}, \sum_{m, n=1}^{N} w_{m, n}=0\right\}$
- Bad properties :
- Not coercive over $\mathbb{R}^{N^{2}}(T V(w+c)=T V(w))$: Not a problem as long as the data fidelity term does not make the image mean diverge.
- Not differentiable, as soon as there is $(m, n) \in\{1, \ldots, N\}^{2}$ such that

$$
\left|\nabla w_{m, n}\right|=0 .
$$

Many ways to avoid this problem. In this lecture, we smooth TV

$$
T V_{\varepsilon}(w)=\sum_{m, n=1}^{N} \varphi_{\varepsilon}\left(\left|\nabla w_{m, n}\right|^{2}\right)
$$

where $\varepsilon>0$ is small and $\varphi_{\varepsilon}(t)=\sqrt{t+\varepsilon}$, for $t>0$.

The total variation, on the grid: Computing $\nabla T V_{\varepsilon}(w)$

For

$$
\varphi_{\varepsilon}(t)=\sqrt{t+\varepsilon} \quad, \forall t>0
$$

we have

$$
\begin{equation*}
\varphi_{\varepsilon}^{\prime}(t)=\frac{1}{2 \sqrt{t+\varepsilon}} \quad, \forall t>0 \tag{1}
\end{equation*}
$$

We denote the finite difference operators :

$$
\begin{aligned}
\partial_{m}: \mathbb{R}^{N^{2}} & \longrightarrow \mathbb{R}^{N^{2}}, \\
\left(w_{m, n}\right)_{1 \leq m, n \leq N} & \longmapsto\left(w_{m+1, n}-w_{m, n}\right)_{1 \leq m, n \leq N},
\end{aligned}
$$

and

$$
\begin{aligned}
\partial_{n}: \mathbb{R}^{N^{2}} & \longrightarrow \mathbb{R}^{N^{2}}, \\
\left(w_{m, n}\right)_{1 \leq m, n \leq N} & \longmapsto\left(w_{m, n+1}-w_{m, n}\right)_{1 \leq m, n \leq N} .
\end{aligned}
$$

The total variation, on the grid: Computing $\nabla T V_{\varepsilon}(w)$

For any $w, w^{\prime} \in \mathbb{R}^{N^{2}}$ we have

$$
\begin{aligned}
\left\langle w, \partial_{m} w^{\prime}\right\rangle & =\sum_{m, n=1}^{N} w_{m, n}\left(w_{m+1, n}^{\prime}-w_{m, n}^{\prime}\right) \\
& =\sum_{m, n=1}^{N} w_{m, n} w_{m+1, n}^{\prime}-\sum_{m, n=1}^{N} w_{m, n} w_{m, n}^{\prime} \\
& =\sum_{m, n=1}^{N} w_{m-1, n} w_{m, n}^{\prime}-\sum_{m, n=1}^{N} w_{m, n} w_{m, n}^{\prime} \\
& =\sum_{m, n=1}^{N}\left(w_{m-1, n}-w_{m, n}\right) w_{m, n}^{\prime} \\
& =\left\langle\partial_{m}^{*} w, w^{\prime}\right\rangle
\end{aligned}
$$

Therefore

$$
\partial_{m}^{*} w_{m, n}=w_{m-1, n}-w_{m, n} \quad, \forall(m, n) \in\{1, \ldots, N\}^{2} .
$$

The total variation, on the grid: Computing $\nabla T V_{\varepsilon}(w)$

$$
\begin{aligned}
& T V_{\varepsilon}\left(w+w^{\prime}\right)-T V_{\varepsilon}(w) \\
= & \sum_{m, n=1}^{N} \varphi_{\varepsilon}\left(\left|\nabla\left(w+w^{\prime}\right)_{m, n}\right|^{2}\right)-\varphi_{\varepsilon}\left(\left|\nabla w_{m, n}\right|^{2}\right), \\
= & \sum_{m, n=1}^{N} \varphi_{\varepsilon}\left(\left|\nabla w_{m, n}\right|^{2}+2\left(\partial_{m} w_{m, n} \partial_{m} w_{m, n}^{\prime}+\partial_{n} w_{m, n} \partial_{n} w_{m, n}^{\prime}\right)+o\left(\left|\nabla w_{m, n}^{\prime}\right|\right)\right) \\
& \quad-\varphi_{\varepsilon}\left(\left|\nabla w_{m, n}\right|^{2}\right), \\
= & \sum_{m, n=1}^{N} 2 \varphi_{\varepsilon}^{\prime}\left(\left|\nabla w_{m, n}\right|^{2}\right)\left(\partial_{m} w_{m, n} \partial_{m} w_{m, n}^{\prime}+\partial_{n} w_{m, n} \partial_{n} w_{m, n}^{\prime}\right)+o\left(\left|\nabla w_{m, n}^{\prime}\right|\right)
\end{aligned}
$$

We denote $X \in \mathbb{R}^{N^{2}}$ and $Y \in \mathbb{R}^{N^{2}}$ such that

$$
X_{m, n}=2 \varphi_{\varepsilon}^{\prime}\left(\left|\nabla w_{m, n}\right|^{2}\right) \partial_{m} w_{m, n} \quad \text { and } \quad Y_{m, n}=2 \varphi_{\varepsilon}^{\prime}\left(\left|\nabla w_{m, n}\right|^{2}\right) \partial_{n} w_{m, n}
$$

The total variation, on the grid: Computing $\nabla T V_{\varepsilon}(w)$

We get

$$
\begin{aligned}
T V_{\varepsilon}\left(w+w^{\prime}\right)-T V_{\varepsilon}(w)= & \sum_{m, n=1}^{N} X_{m, n} \partial_{m} w_{m, n}^{\prime}+\sum_{m, n=1}^{N} Y_{m, n} \partial_{n} w_{m, n}^{\prime} \\
& +\sum_{m, n=1}^{N} o\left(\left|\nabla w_{m, n}^{\prime}\right|\right) \\
& =\left\langle X, \partial_{m} w^{\prime}\right\rangle+\left\langle Y, \partial_{n} w^{\prime}\right\rangle+o\left(\left\|\nabla w^{\prime}\right\|_{1}\right) \\
& =\left\langle\partial_{m}^{*} X+\partial_{n}^{*} Y, w^{\prime}\right\rangle+o\left(\left\|w^{\prime}\right\|_{2}\right)
\end{aligned}
$$

since

$$
\sum_{m, n=1}^{N}\left|\nabla w_{m, n}^{\prime}\right| \leq \sum_{m, n=1}^{N}\left|\nabla w_{m, n}^{\prime}\right|_{1} \leq 4 \sum_{m, n=1}^{N}\left|w_{m, n}^{\prime}\right| \leq 4 N\left\|w^{\prime}\right\|_{2}
$$

The total variation, on the grid: Computing $\nabla T V_{\varepsilon}(w)$

Finally,

$$
\nabla T V_{\varepsilon}(w)=\partial_{m}^{*} X+\partial_{n}^{*} Y
$$

with

$$
X_{m, n}=2 \varphi_{\varepsilon}^{\prime}\left(\left|\nabla w_{m, n}\right|^{2}\right) \partial_{m} w_{m, n} \quad \text { and } \quad Y_{m, n}=2 \varphi_{\varepsilon}^{\prime}\left(\left|\nabla w_{m, n}\right|^{2}\right) \partial_{n} w_{m, n}
$$

We also have (admitted), for all w and w^{\prime}

$$
\left\|\nabla T V_{\varepsilon}\left(w^{\prime}\right)-\nabla T V_{\varepsilon}(w)\right\| \leq \frac{8}{\sqrt{\varepsilon}}\left\|w^{\prime}-w\right\|
$$

The total variation : To go further

- Non-local Total Variation: see Li-Malgouyres-Zeng
- Numerical methods: Based on Graph cuts (see Chambolle and Darbon), primal-dual approach (see Chambolle, Chambolle-Pock)
- Staircase effect: see Nikolova
- Theoretical Justification: Compressed sensing with Co-sparse/Analysis prior (see Gribonval)

