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Image Restoration

We look for a perfect image v € RV (or RV*N) from noise corrupted linear
measurements u € R”:
u=Hv+b

where ,
H:RV — RP

and b € RP is some error (e.g. Gaussian noise of standard deviation o).

o Examples: H is the identity (denoising), a convolution, a sampling operator
(in a transformed space or not), ...

o Applications : Camera, Remote sensing imaging, Medical imaging (CT,
IRM...), Biological imaging (many new microscopy acquisition devices), ...
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lll-posed problems by the example

H - RNXN N RNXN

Assume
is a convolution with h eNVxN,
u= hx* v+ b becomes, in Fourier domain,
ﬁk,/ = hk,/\l}k,l aF bk’/ ,Vk,I=0.N—1.
o If hk,/ = O,
Uk, is lost
o If hk,/ 75 O,
o (k) bry
k)=~ — =
her hiy
1
hie,i

The noise is amplified by a factor
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Regularize the solution

Choose R that is
@ small for the typical data you are restoring
@ large for " H~! of the error/noise”

and solve
w* = Argmin, R(w)
under the constraint ||[Hw — uljo < 7

or an unconstrained version:
w* = Argmin _pve R(w) + A||Hw — ull3.

@ These problem can be obtained as MAP estimates (Bayesian framework)

@ Can lead to bounds on the error ||w* — v|| < ... (" Compressed sensing”
framework, developed Wednesday and Thursday)
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Bayesian Modeling

Assume images are distributed according to the prior
P(w) ox e HRW),

Assume b is i.i.d. centered Gaussian noise of standard deviation o > 0 :

L
P(b) x e 252 .
We have, for the data u obtained from w
lu—Hw||3

P(ulw) o< e 202
Applying Bayes law, we get the posterior distribution

P (u|w)P(w)
Plu)
P(u|w)P(w),

P(wlu) =

R

l|u—Hw |13
x e 2T S HR(W)
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Bayesian Modeling

The Maximum A Posteriori (MAP) estimate

maximize P(w/|u)

equivalently
minimize — log (P(w|u))
This leads to | 2
. u— Hw

wMAP _ Argmin,, cy T2 + pR(w).
Identical to

w* = Argmin _pve R(w) + A||Hw — ull3,
when X\ = 202,
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Bayesian Modeling: Comments

@ Assumption on R is often very wrong

@ Differ from the " compressed sensing” approach because R is built
independently of the noise and H.

9 Powerful for designing models when many variables interact

@ Leads to well founded strategies to tune the parameters (J, in the example):
See Expectation-Maximization algorithms.
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The total variation

Definition

Let w € L ([0, N]?), if the following supremum is finite, we say w is of bounded
variation, denote w € BV ([0, N]?) and define

TV(w) = sup {/ w dive dxdy , ¢ e C'(]0, N[, R?) et || < 1} < 400
[0,N]2

Above C! (]0, N[?,R?) contains C! functions from ]0, N[? into R?, |.| is the
Euclidean norm in R? and || < 1 means

v

[(p1(x,¥), p2(x, y))

|<1 Y(x,y) €10, N[>
e o1(x,y) +e2(x,y)? <1

Y(x,y) €10, N[2.

Frangois Malgouyres (IMT) Mathematics for Image Processing Oct. 23-27 8 /21



The total variation, Example 1 : when w is C!

For any ¢ = (1, ¢2) € C? (]0, N[Q,]Rz), tel que || <1

/ w div ¢ dxdy / w <% + %) dxdy,
[0,N]2 [0,N]? Ox dy

ow ow
= —/ —= P11+ 5= 2 dxdy,
[

0,N]? Ox 6)/
= Vw . ¢ dxdy,
[0, N]?
< / |Vw| dxdy. (1)
[0,N]?

where Vw . ¢ is the inner product in R2.
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The total variation, Example 1 : when w is C!

We have, for all ¢ € C* (]0, N[?,R?) such that |¢| <1
/ w div @ dxdy S/ |[Vw| dxdy ,
[0,NT? [0,NT?

and therefore

TV(w) < / |[Vw| dxdy.
[0,N]?

In fact, we can prove the converse inequality and state:

If w e BV ([0, N]?) and w is C*, we have

TV(w) =/ |[Vw| dxdy.
[0,N]?
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The total variation, Example 2: Characteristic function of
a set

Theorem

If E C [0, N]? is an open set with a smooth boundary (For instance Lipschitz) and
if w=1¢ then w € BV ([0, N]?) and

TV(w) = HY(JE),

where H is the HausdorfP measure of dimension 1.

The Haussdorf measure of dimension 1 of a set is the lenght of this set, if the set
is "1D"; it is O, if the dimension of the set is strictily smaller than 1; it is4-oco, if it is of
dimension strictly larger than 1.
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The total variation, Co-area formula

For a function w € L! ([0, N]?) and t € R, we denote the t level set of w by:

Lo (t) = {(x,y) € [0, N, w(x,y) > t}.

Theorem (Co-area formula)

If we BV ([O, N]2), then
@ for almost every t € R,
TV (1z,(1) < oo;
@ the function
t— TV (1,(0) is measurable;

@ and

TV(W) = / TV (lﬂw(t))dt.
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The total variation, Example 3: if w is a non-decreasing
signal

If w € BV ([0, N]) is non-decreasing and C?,
N
TV(w) = / |w'| dx
0

N
= / w' dx
0

= w(N)— w(0).
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The total variation, Example 3: if w is a non-decreasing
signal

w;(x)

Wo

TV(wm) = TV(w2) = TV(w3) = TV (wa)
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The total variation, on the grid

For any w € RV, we set

N
V(W)= Y [VWmal,

m,n=1

where |.| is the Euclidean norm in R?,

\V/ _ 6me,n _ Wm+1,n — Wm,n
Wm,n = o = _
nWm,n Wm,n+1 Wm,n,

(We assume w periodic.)
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The total variation, on the grid

N
V(W)= Y [VWmal,

m,n=1

. . o 2
@ Good properties : continuous, convexe, a semi-norm over RV, a norm over
N? N
{W €eR ’Em,n:l Wm,n = 0}
@ Bad properties :

> Not coercive over RV (TV(w + ¢) = TV(w)) : Not a problem as long as
the data fidelity term does not make the image mean diverge.
> Not differentiable, as soon as there is (m, n) € {1, ..., N}? such that

|V Wm,n| = 0.

Many ways to avoid this problem. In this lecture, we smooth TV

N
TVe(w) = Y @e(|VWmal*),
m,n=1
where € > 0 is small and ¢.(t) = V/t + ¢, for t > 0. ;E ST
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The total variation, on the grid: Computing V TV.(w)

For
we(t) =vt+e ,Vt>0,

we have
1

o) = 2Jite

We denote the finite difference operators :

,Vt > 0.

RV — RV,

(Wm,n)lgm,ngN — (Wm+1,n_Wm,n)1§m,n§N7

and
2 2
On: RV — RV,
(Wm,n)lgm,ngN ? (Wm,n+1 - Wm,n)lgm,n§N~
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The total variation, on the grid: Computing V TV.(w)

For any w, w’ € RN we have

N
’ ’ ’
<W’ 8’"W > = E : Wm,n (Wm+1,n - Wm,n) )
m,n=1
N N
— / /
— E Win,nWim 1.0 — E Win,n Wi s
m,n=1 m,n=1
N N
— / /
= § Wm—1,nWpm n — E Wm,nWm ns
m,n=1 m,n=1
N
_ E /
- (Wm_11" - Wm,n) Wm,n>
m,n=1
/
= (Ohw,w').
Therefore
3 2
ame,n: Wm—1,n — Wm,n ,V(m, n) € {1,,N} .
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The total variation, on the grid: Computing V TV.(w)

TV.(w+w') — TV (w)

= XN: Ve (|V(W aF W/)m,n|2) — Pe (|VWm,n|2)a

m,n=1
N
>~ (1YWl + 20 W10 Why, 4 O Win, a0, ) + 01V W, o))

m,n=1

_806(|VWm,n|2)7

N
Z 2 90/6 (|VWm,n|2> (ame,namern,n + anWm,nanWr/n,n) + O(|vwr/n,n|)'

m,n=1
We denote X € RV and Y € RV’ such that

Xinn =2 L <|Vwm7,,|2> OmWmn and Yy, =2 <pfs(|VWm7n|2> OnWim,ns
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The total variation, on the grid: Computing V TV.(w)

We get
N N
TV.(w+w')— TV.(w) = Z Xm,,,amwrlmn + Z Ym,,,a,,wr’mn
m,n=1 m,n=1
+ Z L (7)
m,n=1

= (X, 0mw') +(Y,0,w') + o([|VW[1),

= (DX +0rY,w) + o(||w]2).
since

N N N
Do VWl < D VWi <4 ) (wp ) < AN[Wl2.

m,n=1 m,n=1 m,n=1
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The total variation, on the grid: Computing V TV.(w)

Finally,
VTV.(w)=09:X+0rY,
with

Ximn =2 @l (|Vwm7n|2) OmWm.n and Yy, =2 <p'€(|VWm,n|2) O Wi, n,

We also have (admitted), for all w and w’

8
IVTVe(w') = VTVe(w)l| < $IIW' — v
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The total variation : To go further

@ Non-local Total Variation: see Li-Malgouyres-Zeng

@ Numerical methods: Based on Graph cuts (see Chambolle and Darbon),
primal-dual approach (see Chambolle, Chambolle-Pock)

@ Staircase effect: see Nikolova

@ Theoretical Justification: Compressed sensing with Co-sparse/Analysis prior
(see Gribonval)
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