# Mathematical methods for Image Processing

#### François Malgouyres

Institut de Mathématiques de Toulouse, France

invitation by Jidesh P., NITK Surathkal

funding Global Initiative on Academic Network

Oct. 23-27



# Plan



 $Smooth\ optimization:\ the\ gradient\ descent\ algorithm$ 



We look for

$$w^* \in Argmin_{w \in W} E(w)$$

The function E is usually assumed

- Continuously differentiable : Its gradient is  $\nabla E(w) \in W$ .
- With a Lipschitz Gradient of parameter L > 0:

$$\forall w, w' \in W, \qquad \|\nabla E(w') - \nabla E(w)\| \le L\|w' - w\|$$

- Proper and convex (can be relaxed)
- Optional hypothesis guaranteeing the convergence of the iterates :
  - ▶ Strongly convex (also called elliptic) of parameter  $\alpha > 0$

$$\forall w, w' \in W, \qquad \langle \nabla E(w') - \nabla E(w), w' - w \rangle \ge \alpha \|w' - w\|^2$$

equivalently

$$\forall w, w' \in W, \qquad E(w') \ge E(w) + \langle \nabla E(w), w' - w \rangle + \frac{\alpha}{2} \|w' - w\|^2$$



**Entry:** Entry needed for computing E and  $\nabla E$  **Output:** Approximation of a minimizer :  $w^*$ 

Initialize w

While Not converged **Do** 

Compute  $d = \nabla E(w)$ 

Compute a step-size  $t \ge 0$ 

Update :  $w \leftarrow w - t d$ 

**End while** 

• **Require**: to calculate and implement a function to compute  $\nabla E(w)$  and E(w-td)



**Entry:** Entry needed for computing E and  $\nabla E$  **Output:** Approximation of a minimizer :  $w^*$ 

Initialize wWhile Not converged  $\mathbf{Do}$ Compute  $d = \nabla E(w)$ Compute a step-size  $t \geq 0$ Update:  $w \leftarrow w - t d$ End while

• Convergence criterion: Usually no need to be extremely accurate



**Entry:** Entry needed for computing E and  $\nabla E$  **Output:** Approximation of a minimizer :  $w^*$ 

Initialize wWhile Not converged **Do**Compute  $d = \nabla E(w)$ Compute a step-size  $t \ge 0$ Update:  $w \leftarrow w - t d$ End while

#### Initialization:

- Does not affect the quality of the limit point.
- Affects computational time.



**Entry:** Entry needed for computing E and  $\nabla E$  **Output:** Approximation of a minimizer :  $w^*$ 

Initialize w

While Not converged **Do** 

Compute  $d = \nabla E(w)$ 

Compute a step-size  $t \ge 0$ 

Update :  $w \leftarrow w - t d$ 

**End while** 

 Step-size: Many step-size rule exists (constant step-size, steepest descent, Armijo criterion etc)



# Theorem (Convergence of the Gradient algorithm)

Let  $E: W \longrightarrow \mathbb{R}$  be

• strongly convex with constant  $\alpha > 0$ 

$$\forall w, w' \in W, \qquad \langle \nabla E(w') - \nabla E(w), w' - w \rangle \ge \alpha \|w' - w\|^2$$

• differentiable, with a Lipschitz gradient of constant L > 0

$$\forall w, w' \in W, \qquad \|\nabla E(w') - \nabla E(w)\| \le L\|w' - w\|$$

Assume, there exists a and b such that the step-size t always satisfies

$$0 < a \le t \le b < \frac{2\alpha}{L^2}.$$

Then, the gradient algorithm converges. Its limit-point  $w^* = \operatorname{Argmin}_{w \in W} E(w)$  and the sequence  $w_k$  is such that

$$\|w^k - w^*\|_2 \le \beta^k \|w^0 - w^*\|_2$$

for some  $\beta < 1$ , where  $w^k$  is the k iterate.

For instance, if we take 
$$t = \frac{\alpha}{L^2}$$
, we have  $\beta = \sqrt{1 - \frac{\alpha^2}{L^2}}$ .

### Comments:

- ullet Convergence of the iterate  $w^k \underset{k \to +\infty}{\longrightarrow} w^*$  is stronger than
  - $\triangleright E(w^k) E(w^*) \xrightarrow[k \to +\infty]{} 0$
  - $||\nabla E(w^k)|| \underset{k \to +\infty}{\longrightarrow} 0$
- "Linear convergence rate" :  $\ldots \leq \beta^k \|w^0 w^*\|_2$  is better than many others
  - ▶ convergence in  $1/k^2$  : . . .  $\leq \frac{C}{k^2}$ , for some constante C > 0.
  - ▶ convergence in 1/k : . . .  $\leq \frac{C}{k}$ , for some constante C > 0.
- The enemy is the conditioning of *E* :
  - if  $\frac{\alpha}{I} \sim 1 \implies \beta \sim 0$ : extremely fast convergence
  - if  $\frac{\alpha}{L}\sim 0 \implies \beta \sim 1$ : can be very slow



E strongly convex  $\implies E$  strictly convex and coercive  $\implies E$  has a unique global minimizer  $w^*$ 

Moreover,  $\nabla E(w^*) = 0$ 



7 / 9

#### Therefore

$$||w^{k+1} - w^*||_2^2 = ||(w^k - t\nabla E(w^k)) - w^*||_2^2$$

$$= ||w^k - w^* - t(\nabla E(w^k) - \nabla E(w^*))||_2^2$$

$$= ||w^k - w^*||_2^2 - 2t\langle w^k - w^*, \nabla E(w^k) - \nabla E(w^*)\rangle$$

$$+ t^2 ||\nabla E(w^k) - \nabla E(w^*)||_2^2$$

$$\leq (1 - 2\alpha t + L^2 t^2) ||w^k - w^*||_2^2$$

#### We remind

 $\bullet$  strongly convex with constant  $\alpha>0$  :

$$\forall w, w' \in W, \qquad \langle \nabla E(w') - \nabla E(w), w' - w \rangle \ge \alpha \|w' - w\|^2$$

lacktriangle differentiable, with a Lipschitz gradient of constant L>0:

$$\forall w, w' \in W, \qquad \|\nabla E(w') - \nabla E(w)\| \le L\|w' - w\|$$



$$\|w^{k+1} - w^*\|_2^2 \le (1 - 2\alpha t + L^2 t^2) \|w^k - w^*\|_2^2$$

Let  $f(t) = 1 - 2\alpha t + L^2 t^2$ . We look for t such that  $f(t) \le \beta < 1$ .







lf

$$0 < a \le t \le b < \frac{2\alpha}{L^2},$$

then

$$f(t) \leq \max(f(a), f(b)).$$



7 / 9

Therefore for  $0 < a \le t \le b < \frac{2\alpha}{L^2}$ 

$$\|w^{k+1} - w^*\|_2 \le \sqrt{f(t)} \|w^k - w^*\|_2$$
  
  $\le \beta \|w^k - w^*\|_2,$ 

where  $\beta = \sqrt{\max(f(a), f(b))}$ .

By induction, we obtain

$$\|w^{k+1} - w^*\|_2 \le \beta^{k+1} \|w^0 - w^*\|_2.$$

The last state comes from  $f(\frac{\alpha}{L^2}) = 1 - \frac{\alpha^2}{L^2}$ .



## Theorem (Other convergence result)

Let  $E: W \longrightarrow \mathbb{R}$  be

- lower-semicontinuous, convex and coercive
- differentiable, with a Lipschitz gradient of constant L > 0

$$\forall w, w' \in W, \qquad \|\nabla E(w') - \nabla E(w)\| \le L\|w' - w\|$$

if  $t < \frac{1}{L}$  then  $(E(w^k))_{k \in \mathbb{N}}$  converges. Moreover

$$0 \le E(w^k) - E(w^*) \le \frac{L}{2k} \|w^0 - w^*\|_2.$$

The proof comes later.



# To go further

• **Relax the hypotheses on** *E*: non-differentiable (next lecture), non-convex (See statements based on Kurdyka-Lojasiewicz criterion),

#### • Change the algorithm:

- ► Heavy-ball algorithm
- Accelerated gradient algorithm (Nesterov): Convergence in  $o(\frac{1}{k^2})$  (Dossal Attouch), ease of implementation.
- Quasi-Newton algorithm (BFGS): Good empirical convergence but requires to approximate the inverse of the Hessian matrix.

#### • Adapt to problem structure:

 $\blacktriangleright$  W, data or both are huge : By block algorithms, stochastic gradient methods, online algorithms. (See F. Bach, E. Mouline work.)

