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Plan

a Smooth optimization : the gradient descent algorithm
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We look for
w* € Argmin, o\, E(w)

The function E is usually assumed

@ Continuously differentiable : Its gradient is VE(w) € W.
@ With a Lipschitz Gradient of parameter L > 0:

Yw,w' € W, |[VE(w') — VE(w)|| < L||w' — w|

@ Proper and convex (can be relaxed)
@ Optional hypothesis guaranteeing the convergence of the iterates :
> Strongly convex (also called elliptic) of parameter o > 0

Yw,w' € W, (VE(W') = VE(w),w' —w) > a|w’ — w|)?
equivalently

Vw,w' e W,  E(W) > E(w)+ (VE(w),w —w) + %HW’ — |
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Algorithm 1 Gradient Algorithm
Entry: Entry needed for computing E and VE
Output: Approximation of a minimizer : w*

Initialize w

While Not converged Do
Compute d = VE(w)
Compute a step-size t > 0
Update: w+ w — td

End while

@ Require: to calculate and implement a function to compute VE(w) and
E(w — td)
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Algorithm 1 Gradient Algorithm
Entry: Entry needed for computing E and VE
Output: Approximation of a minimizer : w*

Initialize w

While Not converged Do
Compute d = VE(w)
Compute a step-size t > 0
Update: w+ w — td

End while

@ Convergence criterion: Usually no need to be extremely accurate
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Algorithm 1 Gradient Algorithm

Entry: Entry needed for computing E and VE
Output: Approximation of a minimizer : w*

Initialize w

While Not converged Do
Compute d = VE(w)
Compute a step-size t > 0
Update: w+ w — td

End while

@ Initialization:

» Does not affect the quality of the limit point.
» Affects computational time.
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Algorithm 1 Gradient Algorithm

Entry: Entry needed for computing E and VE
Output: Approximation of a minimizer : w*

Initialize w

While Not converged Do
Compute d = VE(w)
Compute a step-size t > 0
Update: w+ w — td

End while

@ Step-size: Many step-size rule exists (constant step-size, steepest descent,
Armijo criterion etc)
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Theorem (Convergence of the Gradient algorithm)
Let E: W — R be

@ strongly convex with constant o > 0
Vw,w' € W, (VE(W') — VE(w),w —w) > a|w — w|?
@ differentiable, with a Lipschitz gradient of constant L > 0
Vw,w' € W, |[VE(w') — VE(w)|| < L||jw" — wl|

Assume, there exists a and b such that the step-size t always satisfies
2a

Then, the gradient algorithm converges. lts limit-point w* = Argmin,, .\, E(w)
and the sequence wy is such that

lw' — w2 < W — w*|2,

for some 3 < 1, where wX is the k iterate.

For instance, if we take t = 3, we have 3 = /1 — (Z_j
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Comments :

k —— w* is stronger than

@ Convergence of the iterate w
k—+o00

> E(wX) — E(w*) 0

—+o0
> IVEWH)I,—_0
@ "Linear convergence rate” : ... < BX||w® — w*||, is better than many others
> convergence in 1/k2 % oo K k_62 for some constante C > 0.
> convergence in 1/k : ... < € for some constante C > 0.

o
@ The enemy is the conditioning of E :
» if 7 ~1 = B~ 0: extremely fast convergence
» if 7 ~0 = B~ 1: can be very slow
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Proof :

E strongly convex = E strictly convex and coercive

= E has a unique global minimizer w*

Moreover, VE(w*) =0
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Proof :

Therefore
[w = w5 = (WK = tVE(wWH) — w3
= Wk~ w* — t(VE(w*) — VE(w")I3
= |wk— w3 —2t(wk — w*, VE(w¥) — VE(w"))
F|VE(WH) — VE(wH)|2
< (1-2at+ L22)[lwk — w*[3
We remind

@ strongly convex with constant o > 0 :
Yw,w' €W,  (VEW') - VE(w),w' —w) > allw’ - w|?
@ differentiable, with a Lipschitz gradient of constant L > 0 :
Yw,w' e W,  |VE(W') = VEW)| < Ll|w" — w]|
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Proof :
Wk — w3 < (1 — 20t + L22) |w* — w*|3

Let f(t) =1 — 2at + L2t2. We look for t such that f(t) < 8 < 1.

2
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Proof :

{(t, £(t)), t € [a, b]}

f(a
F(b
()
0o 5 b 2 t
z =
If )
O<a<t<b< L—(;,
then £ err
£(£) < max(f(a), F(b)). .t o
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Proof :

Thereforefor0 < a<t<b< 2L—2‘

ks

VD)W — w2

Bllw" — w2,

— w2

IAINA

where 8 = y/max(f(a), f(b)).

By induction,we obtain
||Wk+1 _ W*||2 S ﬁk+1||WO _ W*||2

The last state comes from f(3) =1 — . O
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Theorem (Other convergence result)
Let E: W — R be
@ lower-semicontinuous, convex and coercive

@ differentiable, with a Lipschitz gradient of constant L > 0
Yw,w' € W, I[VE(w') — VE(w)| < L|jw" — w||

if t < 1 then (E(w*))xen converges. Moreover

L
0 < E(w") — E(w*) < o [[w® — w*||2.
2k
The proof comes later.
S
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To go further

@ Relax the hypotheses on E: non-differentiable (next lecture), non-convex
(See statements based on Kurdyka-Lojasiewicz criterion),
@ Change the algorithm:

» Heavy-ball algorithm
> Accelerated gradient algorithm (Nesterov): Convergence in o(.%) (Dossal -
Attouch), ease of implementation.
> Quasi-Newton algorithm (BFGS): Good empirical convergence but requires to
approximate the inverse of the Hessian matrix.
@ Adapt to problem structure:

» W, data or both are huge : By block algorithms, stochastic gradient methods,
online algorithms. (See F. Bach, E. Mouline work.)
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