Mathematical methods for Image Processing

François Malgouyres

Institut de Mathématiques de Toulouse, France

invitation by Jidesh P., NITK Surathkal

funding Global Initiative on Academic Network

Oct. 23-27

Plan

1 Hands-on session : Image dequantization using the H^1 regularization

Exercise 1, question 2.a

Calculate the derivatives of

$$arphi_{ au}(t) = \left(extsf{sup}\left(|t| - rac{ au}{2}, 0
ight)
ight)^2.$$

(You may distinguish the three cases: $t \leq -\frac{\tau}{2}$, $-\frac{\tau}{2} < t < \frac{\tau}{2}$ and $\frac{\tau}{2} \leq t$.)

Exercise 1, question 2.a

Calculate the derivatives of

$$arphi_{ au}(t) = \left(\mathsf{sup}\left(|t| - rac{ au}{2}, 0
ight)
ight)^2.$$

(You may distinguish the three cases: $t \leq -\frac{\tau}{2}$, $-\frac{\tau}{2} < t < \frac{\tau}{2}$ and $\frac{\tau}{2} \leq t$.)

• If
$$t < -rac{ au}{2}$$
, then $arphi_{ au}(t) = (-t - rac{ au}{2})^2$ and $arphi_{ au}'(t) = 2(t + rac{ au}{2})$

• If
$$-\frac{\tau}{2} < t < \frac{\tau}{2}$$
, then $\varphi_{ au}(t) = 0$ and $\varphi_{ au}'(t) = 0$

• If
$$\frac{\tau}{2} < t$$
, then $\varphi_{\tau}(t) = (t - \frac{\tau}{2})^2$ and $\varphi_{\tau}'(t) = 2(t - \frac{\tau}{2})$

Therefore

$$arphi_{ au}'(t) = \left\{egin{array}{c} 2(t+rac{ au}{2}) & ext{, if } t < -rac{ au}{2} \ 0 & ext{, if } -rac{ au}{2} \leq t \leq rac{ au}{2} \ 2(t-rac{ au}{2}) & ext{, otherwise} \end{array}
ight.$$

Exercise 1, question 2.b

Deduce from the previous question and the Hands-on session 1-2, the gradient of

$$F_{\lambda}(w) = E(w) + \lambda \sum_{i,j=0}^{N-1} \varphi_{\tau} \left(w_{i,j} - v_{i,j} \right).$$

Exercise 1, question 2.b

Deduce from the previous question and the Hands-on session 1-2, the gradient of

$$F_{\lambda}(w) = E(w) + \lambda \sum_{i,j=0}^{N-1} \varphi_{\tau} \left(w_{i,j} - v_{i,j} \right).$$

For w and $w' \in \mathbb{R}^{N^2}$, we have

$$\varphi_{\tau}\left(w_{i,j}+w_{i,j}'-v_{i,j}\right)=\varphi_{\tau}\left(w_{i,j}-v_{i,j}\right)+\varphi_{\tau}'\left(w_{i,j}-v_{i,j}\right)w_{i,j}'+o(|w_{i,j}'|)$$

Therefore, we compute

$$X = \left(\varphi_{\tau}'\left(w_{i,j} - v_{i,j}\right)\right)_{0 \le i,j < N}$$

and have

$$\nabla F_{\lambda}(w) = D_x^* D_x w + D_y^* D_y w + \lambda X$$

Exercise 2, question 1

Let $w \in \mathbb{R}^{N^2}$. What are the coordinates of $\Pi(w)$ (the projection of w onto $\overline{\mathbb{C}}$). (Begin with a proof arguing that we can compute N^2 projections: We project independently every $w_{i,j}$ onto the interval $[v_{i,j} - \frac{\tau}{2}, v_{i,j} + \frac{\tau}{2}]$.)

Exercise 2, question 1

Let $w \in \mathbb{R}^{N^2}$. What are the coordinates of $\Pi(w)$ (the projection of w onto $\overline{\mathbb{C}}$). (Begin with a proof arguing that we can compute N^2 projections: We project independently every $w_{i,j}$ onto the interval $[v_{i,j} - \frac{\tau}{2}, v_{i,j} + \frac{\tau}{2}]$.)

Writing
$$\tau_{i,j}^- = v_{i,j} - \frac{\tau}{2}$$
 and $\tau_{i,j}^+ = v_{i,j} + \frac{\tau}{2}$, we have

$$\Pi(w) = \operatorname{Argmin}_{w':\forall i,j\tau_{i,j}^- \leq w'_{i,j} \leq \tau_{i,j}^+} \|w' - w\|^2$$

Let

$$w^*_{i,j} = \operatorname{Argmin}_{ au^-_{i,j} \leq t \leq au^+_{i,j}} (t - w_{i,j})^2$$

and $w^* = (w^*_{i,j})_{0 \le i,j < N}$. We have $w^* \in \overline{C}$. Moreover, for any $w' \in \overline{C}$, and any i, j

$$(w_{i,j}^* - w_{i,j})^2 \leq (w_{i,j}' - w_{i,j})^2$$

and therefore

$$\|w^* - w\|^2 = \sum_{i,j=0}^{N-1} (w_{i,j}^* - w_{i,j})^2 \le \sum_{i,j=0}^{N-1} (w_{i,j}' - w_{i,j})^2 = \|w' - w\|^2$$

Exercise 2, question 1

Therefore

$$\Pi(w)_{i,j} = \begin{cases} \tau_{i,j}^{+} & , \text{ if } w_{i,j} \ge \tau_{i,j}^{+} \\ w_{i,j} & , \text{ if } \tau_{i,j}^{+} \ge w_{i,j} \ge \tau_{i,j}^{-} \\ \tau_{i,j}^{-} & , \text{ if } \tau_{i,j}^{+} \ge w_{i,j} \end{cases}$$

Thank you to

the GIAN Scheme of MHRD Government of India

for his financial support

to the students, faculty and chair of the

Department of Mathematical and Cumputational Sciences, National Institute of Technology

for facilitating the event

Thank you to the organizers !

Dr Jidesh P.

and the team Shivaram, Sreedeep, Febin and Manasa

Thank you for your attention !

I wish you the best !

