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a Introduction to image processing and mathematical optimization
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Introduction to image processing

Applications:

> Pictures and movies
medical imaging (CT, TEP, MRI...)
Biological image (microscopy)
Earth observation (security, climat. . .)
Surveillance, safety (problem detection. . .)
Astronomy, astrophysics
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Tools:
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Compression
Restoration
Segmentation
Registration
Indexation
Editing
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Taylored Image compression
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Taylored Image compression and visualisation

Cell nuclei in a mouse cerebellum
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Image segmentation

Original image and seed points; Computed segmentation
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Image segmentation

Segmentation of a lung tumor
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Image segmentation

Seeds for segmenting lung tumors (lines contain several slice of 3D CT image).
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Image segmentation

Segmentation: Correct (yellow), expert only (red), system only (blue)
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Image registration

Registration of consecutive images in a movie
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Image restoration : denoising

Top: noisy images; Bottom: denoised images .
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Image restoration : deblurring

Top: blurred image; Bottom: restored and ideal image.
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Image restoration : inpainting

i

Top: Image with missing pixels; Bottom: restored and ideal image
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Image restoration : zooming

Un-zoomed; zoomed (x4) by two methods
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Restoration of compressed images

Top: compressed images (for differents compression level). Bottom: restored
images
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Introduction to optimization

Let W be a Euclidean space (usually W = RV*N), we denote
@ (w,w’) : the inner product between w and w’ € W
@ ||w||: the norm of w
Let
E:W—R

we want to find w* such that

E(w™) < E(w) , forall w e W.

We write: w* € Argmin,, .\, E(w).

£ insTinur
SEVATEMATIQUES

Frangois Malgouyres (IMT) Mathematics for Image Processing Oct. 23-27 16 / 26



Introduction to optimization: Examples

Below V is a finite difference operator and T is a "sparsifying transform”

@ H! regularization

N—-1
E(w)= > [VWmnl + AMw — uf?

m,n=0
9 Total variation regularization

N—-1
Ew)= Y [Vl + Allw — u|f?

m,n=0
@ /! minimisation
E(w) = [wllz 4+ M| Tw — ul|?
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Introduction to optimization

The design of
E-W—R

is crucial. We want:
@ Guarantee that w* is close to the targeted ideal image
» statistics, compressed sensing

£ insTinur
SEVATEMATIUES

Frangois Malgouyres (IMT) Mathematics for Image Processing Oct. 23-27 18 / 26



Introduction to optimization

The design of
E-W—R

is crucial. We want:
9 Guarantee that w* is close to the targeted ideal image
> statistics, compressed sensing

@ w™ exists and can be numericaly approximated in a reasonable amount of
time
» Mathematical optimization
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Introduction to optimization: basic properties of functions

Let E: W — R
@ E is proper iif
» VYw € W, we have E(w) > —co
> there exists w € W such that E(w) < 400

@ E is lower-semicontinuous iif Vw € W, Ve > 0 there is a neighborhood of
w such that Yw' € U, E(w') > E(w) — ¢
o E is coercive iif lim,| 100 E(W) = 400
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Introduction to optimization: basic properties of functions

Let t € R, we call t-levelset of E:
Le(t) ={we W|E(w) <t}

Let E: W — R

@ If E is proper, lower-semicontinuous and coercive, then

for every t € R, L (t) Iis compact

@ If E is proper, lower-semicontinuous and coercive then

Argmin,,c, E(w) # 0.
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Introduction to optimization: basic properties of functions

Definition
We say that C C W is convex iif

tw+(1l—t)w' e C  ,Yw,w' € C,Vt €[0,1]
Definition

Let E: W — R
@ E is convex iif

E(tw + (1 — t)w') < tE(w) + (1 — t)E(w') Yw,w' € W, Vt € [0,1]
@ E s strictly convex jif
E(tw+ (1 —t)w') < tE(w)+ (1 —t)E(w') ,Yw#w' € W, Vt € (0,1)
@ IfE is Ct, E is strongly convex (also called elliptic) of modulus o > 0 iif
Vw,w' € W, (VE(W') — VE(w),w —w) > a|w — w|?
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Introduction to optimization: basic properties of functions

@ If E is convex then,
for all t € R, Lg (t) is convex.

9 If E is convex then
Argmin,,cy, E(w) is convex.

o If E is strictly convex and Argmin,, ¢, E(w) # () then
Argmin, c, E(w) is reduced to a unique w*.

We write w* = Argmin,, cy, E(w).
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Introduction to optimization: basic properties of functions
Proposition
If E is convex, then E is continuous on the interior of
Dom (E) = {w € W|E(w) < +oo}.
Proposition

If E is Ct,

@ E is convex iif
Yw,w' € W, E(w') > E(w) + (VE(w),w —w)
@ E is strongly convex of modulus o > 0 iif

Ywow' € W,  E(W) > E(w)+ (VE(wW),w — w) + %Hw/ —w|?

9 If E is strongly convex then E is strictly convex and coercive.
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Introduction to optimization: basic properties of functions

Let E be convex. For any w € W we call sub-gradient of E at w

OE(w)={ge W|Vw' € W,E(w') > E(w) + (g,w — w)}

Let E be convex.
@ IfE is C then

OE(w) = {VE(w)}.
o w* € Argmin, ¢\, E(w) iif0 € OE(w*).
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Introduction to optimization: basic properties of functions

Definition
Let L > 0, we say that E has Lipschitz gradient of parameter L iif

Vw,w' € W, IVE(w') — VE(w)|| < L||w" — w]|

Proposition
If E is C? (its Hessian is denoted V?E(w)):

@ E is strongly convex of modulus o > 0 iif the smallest eigenvalue of V?E(w)
is larger than «, for all w € W.

@ E has a L-Lipschitz gradient iif the largest eigenvalue of V2E(w) is smaller
than L, for all w € W.
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Introduction to optimization: To go further

@ "Introductory lectures on convex optimization: A basic course”, Yurii
Nesterov

@ "Convex Analysis”, Ralph T. Rockafellar
@ "Non linear programming”, Dimitri Bertzekas
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