Mathematical methods for Image Processing

François Malgouyres

Institut de Mathématiques de Toulouse, France

invitation by
Jidesh P., NITK Surathkal

funding
Global Initiative on Academic Network

Oct. 23-27

INSTITUT
de MATHEMATIQUES

Plan

(1) Introduction to image processing and mathematical optimization

Introduction to image processing

Applications:

- Pictures and movies
- medical imaging (CT, TEP, MRI. . .)
- Biological image (microscopy)
- Earth observation (security, climat...)
- Surveillance, safety (problem detection...)
- Astronomy, astrophysics

Tools:

- Compression
- Restoration
- Segmentation
- Registration
- Indexation
- Editing

INSTITUT
de MATHEMATIQUES

Taylored Image compression

Surface temperature and surface elevation

Taylored Image compression and visualisation

Cell nuclei in a mouse cerebellum

Image segmentation

Original image and seed points; Computed segmentation

Image segmentation

Segmentation of a lung tumor

Image segmentation

Seeds for segmenting lung tumors (lines contain several slice of 3D CT image).

Image segmentation

Segmentation: Correct (yellow), expert only (red), system only (blue)

Image registration

Registration of consecutive images in a movie

Image restoration : denoising

Top: noisy images; Bottom: denoised images .

Image restoration : deblurring

Top: blurred image; Bottom: restored and ideal image.

Image restoration : inpainting

Top: Image with missing pixels; Bottom: restored and ideal image
\qquad

Image restoration : zooming

Un-zoomed; zoomed ($\times 4$) by two methods

Restoration of compressed images

Top: compressed images (for differents compression level). Bottom: restored images

Introduction to optimization

Let W be a Euclidean space (usually $W=\mathbb{R}^{N \times N}$), we denote

- $\left\langle w, w^{\prime}\right\rangle$: the inner product between w and $w^{\prime} \in W$
- $\|w\|$: the norm of w

Let

$$
E: W \longrightarrow \mathbb{R}
$$

we want to find w^{*} such that

$$
E\left(w^{*}\right) \leq E(w) \quad, \text { for all } w \in W .
$$

We write: $w^{*} \in \operatorname{Argmin}_{w \in W} E(w)$.

Introduction to optimization: Examples

Below ∇ is a finite difference operator and T is a "sparsifying transform"

- H^{1} regularization

$$
E(w)=\sum_{m, n=0}^{N-1}\left|\nabla w_{m, n}\right|^{2}+\lambda\|w-u\|^{2}
$$

- Total variation regularization

$$
E(w)=\sum_{m, n=0}^{N-1}\left|\nabla w_{m, n}\right|+\lambda\|w-u\|^{2}
$$

- ℓ^{1} minimisation

$$
E(w)=\|w\|_{1}+\lambda\|T w-u\|^{2}
$$

Introduction to optimization

The design of

$$
E: W \longrightarrow \mathbb{R}
$$

is crucial. We want:

- Guarantee that w^{*} is close to the targeted ideal image
- statistics, compressed sensing

Introduction to optimization

The design of

$$
E: W \longrightarrow \mathbb{R}
$$

is crucial. We want:

- Guarantee that w^{*} is close to the targeted ideal image
- statistics, compressed sensing
- w^{*} exists and can be numericaly approximated in a reasonable amount of time
- Mathematical optimization

Introduction to optimization: basic properties of functions

Definition

Let $E: W \longrightarrow \mathbb{R}$

- E is proper iif
- $\forall w \in W$, we have $E(w)>-\infty$
- there exists $w \in W$ such that $E(w)<+\infty$
- E is lower-semicontinuous iif $\forall w \in W, \forall \varepsilon>0$ there is a neighborhood of w such that $\forall w^{\prime} \in U, E\left(w^{\prime}\right) \geq E(w)-\varepsilon$
- E is coercive iif $\lim _{\|w\| \rightarrow+\infty} E(w)=+\infty$

Introduction to optimization: basic properties of functions

Definition

Let $t \in \mathbb{R}$, we call t-levelset of E :

$$
\mathcal{L}_{E}(t)=\{w \in W \mid E(w) \leq t\}
$$

Proposition

Let $E: W \longrightarrow \mathbb{R}$

- If E is proper, lower-semicontinuous and coercive, then

$$
\text { for every } t \in \mathbb{R}, \mathcal{L}_{E}(t) \text { is compact }
$$

- If E is proper, lower-semicontinuous and coercive then

$$
\operatorname{Argmin}_{w \in W} E(w) \neq \emptyset .
$$

Introduction to optimization: basic properties of functions

Definition

We say that $C \subset W$ is convex iif

$$
t w+(1-t) w^{\prime} \in C \quad, \forall w, w^{\prime} \in C, \forall t \in[0,1]
$$

Definition

Let $E: W \longrightarrow \mathbb{R}$

- E is convex iif

$$
E\left(t w+(1-t) w^{\prime}\right) \leq t E(w)+(1-t) E\left(w^{\prime}\right) \quad, \forall w, w^{\prime} \in W, \forall t \in[0,1]
$$

- E is strictly convex iif

$$
E\left(t w+(1-t) w^{\prime}\right)<t E(w)+(1-t) E\left(w^{\prime}\right) \quad, \forall w \neq w^{\prime} \in W, \forall t \in(0,1)
$$

- If E is C^{1}, E is strongly convex (also called elliptic) of modulus $\alpha>0$ iif

$$
\forall w, w^{\prime} \in W, \quad\left\langle\nabla E\left(w^{\prime}\right)-\nabla E(w), w^{\prime}-w\right\rangle \geq \alpha\left\|w^{\prime}-w\right\|^{2}
$$

Introduction to optimization: basic properties of functions

Proposition

- If E is convex then,

$$
\text { for all } t \in \mathbb{R}, \mathcal{L}_{E}(t) \text { is convex. }
$$

- If E is convex then
$\operatorname{Argmin}_{w \in W} E(w)$ is convex.
- If E is strictly convex and $\operatorname{Argmin}_{w \in W} E(w) \neq \emptyset$ then

$$
\operatorname{Argmin}_{w \in W} E(w) \text { is reduced to a unique } w^{*}
$$

We write $w^{*}=\operatorname{Argmin}_{w \in W} E(w)$.

Introduction to optimization: basic properties of functions

Proposition

If E is convex, then E is continuous on the interior of

$$
\operatorname{Dom}(E)=\{w \in W \mid E(w)<+\infty\} .
$$

Proposition

If E is C^{1},

- E is convex iif

$$
\forall w, w^{\prime} \in W, \quad E\left(w^{\prime}\right) \geq E(w)+\left\langle\nabla E(w), w^{\prime}-w\right\rangle
$$

- E is strongly convex of modulus $\alpha>0$ iif

$$
\forall w, w^{\prime} \in W, \quad E\left(w^{\prime}\right) \geq E(w)+\left\langle\nabla E(w), w^{\prime}-w\right\rangle+\frac{\alpha}{2}\left\|w^{\prime}-w\right\|^{2}
$$

- If E is strongly convex then E is strictly convex and coercive.

Introduction to optimization: basic properties of functions

Definition

Let E be convex. For any $w \in W$ we call sub-gradient of E at w

$$
\partial E(w)=\left\{g \in W \mid \forall w^{\prime} \in W, E\left(w^{\prime}\right) \geq E(w)+\left\langle g, w^{\prime}-w\right\rangle\right\}
$$

Proposition

Let E be convex.

- If E is C^{1} then

$$
\partial E(w)=\{\nabla E(w)\} .
$$

- $w^{*} \in \operatorname{Argmin}_{w \in W} E(w)$ iif $0 \in \partial E\left(w^{*}\right)$.

Introduction to optimization: basic properties of functions

Definition

Let $L>0$, we say that E has Lipschitz gradient of parameter L iif

$$
\forall w, w^{\prime} \in W, \quad\left\|\nabla E\left(w^{\prime}\right)-\nabla E(w)\right\| \leq L\left\|w^{\prime}-w\right\|
$$

Proposition

If E is C^{2} (its Hessian is denoted $\nabla^{2} E(w)$):

- E is strongly convex of modulus $\alpha>0$ iif the smallest eigenvalue of $\nabla^{2} E(w)$ is larger than α, for all $w \in W$.
- E has a L-Lipschitz gradient iif the largest eigenvalue of $\nabla^{2} E(w)$ is smaller than L, for all $w \in W$.

Introduction to optimization: To go further

- "Introductory lectures on convex optimization: A basic course", Yurii Nesterov
- "Convex Analysis", Ralph T. Rockafellar
- "Non linear programming", Dimitri Bertzekas

