Mathematical methods for Image Processing

François Malgouyres

Institut de Mathématiques de Toulouse, France

invitation by Jidesh P., NITK Surathkal

funding Global Initiative on Academic Network

Oct. 23-27

Plan

Introduction to image processing

Applications:

- Pictures and movies
- medical imaging (CT, TEP, MRI...)
- Biological image (microscopy)
- Earth observation (security, climat...)
- Surveillance, safety (problem detection...)
- Astronomy, astrophysics

Tools:

- Compression
- Restoration
- Segmentation
- Registration
- Indexation
- Editing

Taylored Image compression

Surface temperature and surface elevation

Taylored Image compression and visualisation

Cell nuclei in a mouse cerebellum

Original image and seed points; Computed segmentation

Segmentation of a lung tumor

François Malgouyres (IMT)

Seeds for segmenting lung tumors (lines contain several slice of 3D CT image).

Segmentation: Correct (yellow), expert only (red), system only (blue)

Image registration

Registration of consecutive images in a movie

François Malgouyres (IMT)

Image restoration : denoising

Top: noisy images; Bottom: denoised images .

Image restoration : deblurring

Top: blurred image; Bottom: restored and ideal image.

Image restoration : inpainting

Top: Image with missing pixels; Bottom: restored and ideal image

Image restoration : zooming

Un-zoomed; zoomed (x4) by two methods

Restoration of compressed images

Top: compressed images (for differents compression level). Bottom: restored images

Introduction to optimization

Let W be a Euclidean space (usually $W = \mathbb{R}^{N \times N}$), we denote

- $\langle w, w'
 angle$: the inner product between w and $w' \in W$
- ||w||: the norm of w

Let

$$E: W \longrightarrow \mathbb{R}$$

we want to find w^* such that

$${\sf E}(w^*) \leq {\sf E}(w)$$
 , for all $w \in {\sf W}.$

We write: $w^* \in \operatorname{Argmin}_{w \in W} E(w)$.

ŀ

Introduction to optimization: Examples

Below ∇ is a finite difference operator and T is a "sparsifying transform" • H^1 regularization

$$E(w) = \sum_{m,n=0}^{N-1} |\nabla w_{m,n}|^2 + \lambda ||w - u||^2$$

• Total variation regularization

$$E(w) = \sum_{m,n=0}^{N-1} |\nabla w_{m,n}| + \lambda ||w - u||^2$$

• ℓ^1 minimisation

$$E(w) = ||w||_1 + \lambda ||Tw - u||^2$$

Introduction to optimization

The design of

$E: W \longrightarrow \mathbb{R}$

is crucial. We want:

- Guarantee that w^* is close to the targeted ideal image
 - statistics, compressed sensing

Introduction to optimization

The design of

$$E: W \longrightarrow \mathbb{R}$$

is crucial. We want:

- Guarantee that w^* is close to the targeted ideal image
 - statistics, compressed sensing
- w^* exists and can be numerically approximated in a reasonable amount of time
 - Mathematical optimization

Definition

- Let $E: W \longrightarrow \mathbb{R}$
 - E is proper iif
 - $\forall w \in W$, we have $E(w) > -\infty$
 - there exists $w \in W$ such that $E(w) < +\infty$
 - E is lower-semicontinuous iif ∀w ∈ W, ∀ε > 0 there is a neighborhood of w such that ∀w' ∈ U, E(w') ≥ E(w) − ε
 - *E* is coercive iif $\lim_{\|w\| \to +\infty} E(w) = +\infty$

Definition

Let $t \in \mathbb{R}$, we call t-levelset of E:

$$\mathcal{L}_{E}(t) = \{w \in W | E(w) \leq t\}$$

Proposition

Let $E: W \longrightarrow \mathbb{R}$

• If E is proper, lower-semicontinuous and coercive, then

for every $t \in \mathbb{R}$, $\mathcal{L}_{E}(t)$ is compact

• If E is proper, lower-semicontinuous and coercive then

 $\operatorname{Argmin}_{w \in W} E(w) \neq \emptyset.$

Definition

We say that $C \subset W$ is convex iif

$$tw + (1-t)w' \in C$$
, $\forall w, w' \in C, \forall t \in [0,1]$

Definition

- Let $E: W \longrightarrow \mathbb{R}$
 - E is convex iif

$$E(tw + (1-t)w') \leq tE(w) + (1-t)E(w')$$
, $\forall w, w' \in W, \forall t \in [0,1]$

• E is strictly convex iif

E(tw + (1-t)w') < tE(w) + (1-t)E(w'), $\forall w \neq w' \in W, \forall t \in (0,1)$

• If E is C^1 , E is strongly convex (also called elliptic) of modulus $\alpha > 0$ iif

$$\forall w, w' \in W, \qquad \langle \nabla E(w') - \nabla E(w), w' - w \rangle \geq \alpha \|w' - w\|^2$$

Proposition

• If E is convex then,

for all
$$t \in \mathbb{R}, \mathcal{L}_{\mathsf{E}}\left(t
ight)$$
 is convex.

• If E is convex then

Argmin_{$w \in W$} E(w) is convex.

• If E is strictly convex and $\operatorname{Argmin}_{w \in W} E(w) \neq \emptyset$ then

Argmin_{$w \in W$} E(w) is reduced to a unique w^* .

We write $w^* = \operatorname{Argmin}_{w \in W} E(w)$.

Proposition

If E is convex, then E is continuous on the interior of

$$\mathsf{Dom}\,(E) = \{w \in W | E(w) < +\infty\}.$$

Proposition

- If E is C^1 ,
 - E is convex iif

$$\forall w, w' \in W, \qquad E(w') \ge E(w) + \langle \nabla E(w), w' - w \rangle$$

• E is strongly convex of modulus $\alpha > 0$ iif

$$orall w,w'\in W,\qquad E(w')\geq E(w)+\langle
abla E(w),w'-w
angle+rac{lpha}{2}\|w'-w\|^2$$

• If E is strongly convex then E is strictly convex and coercive.

Definition

Let E be convex. For any $w \in W$ we call sub-gradient of E at w

$$\partial E(w) = \{g \in W | \forall w' \in W, E(w') \ge E(w) + \langle g, w' - w \rangle \}$$

Proposition

Let E be convex.

• If E is C^1 then

 $\partial E(w) = \{\nabla E(w)\}.$

• $w^* \in \operatorname{Argmin}_{w \in W} E(w)$ iif $0 \in \partial E(w^*)$.

Definition

Let L > 0, we say that E has Lipschitz gradient of parameter L iif

$$\forall w, w' \in W, \qquad \|\nabla E(w') - \nabla E(w)\| \leq L \|w' - w\|$$

Proposition

If E is C^2 (its Hessian is denoted $\nabla^2 E(w)$):

- E is strongly convex of modulus α > 0 iif the smallest eigenvalue of ∇²E(w) is larger than α, for all w ∈ W.
- E has a L-Lipschitz gradient if the largest eigenvalue of ∇²E(w) is smaller than L, for all w ∈ W.

Introduction to optimization: To go further

- "Introductory lectures on convex optimization: A basic course", Yurii Nesterov
- "Convex Analysis", Ralph T. Rockafellar
- "Non linear programming", Dimitri Bertzekas

