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1 Introduction to image processing and mathematical optimization
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Introduction to image processing

Applications:

◮ Pictures and movies
◮ medical imaging (CT, TEP, MRI. . . )
◮ Biological image (microscopy)
◮ Earth observation (security, climat. . . )
◮ Surveillance, safety (problem detection. . . )
◮ Astronomy, astrophysics

Tools:

◮ Compression
◮ Restoration
◮ Segmentation
◮ Registration
◮ Indexation
◮ Editing
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Taylored Image compression

Surface temperature and surface elevation
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Taylored Image compression and visualisation

Cell nuclei in a mouse cerebellum
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Image segmentation

Original image and seed points; Computed segmentation
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Image segmentation

Segmentation of a lung tumor
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Image segmentation

Seeds for segmenting lung tumors (lines contain several slice of 3D CT image).
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Image segmentation

Segmentation: Correct (yellow), expert only (red), system only (blue)
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Image registration

Registration of consecutive images in a movie
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Image restoration : denoising

Top: noisy images; Bottom: denoised images .
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Image restoration : deblurring

Top: blurred image; Bottom: restored and ideal image.
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Image restoration : inpainting

Top: Image with missing pixels; Bottom: restored and ideal image
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Image restoration : zooming

Un-zoomed; zoomed (x4) by two methods
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Restoration of compressed images

Top: compressed images (for differents compression level). Bottom: restored
images
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Introduction to optimization

Let W be a Euclidean space (usually W = R
N×N), we denote

〈w ,w ′〉 : the inner product between w and w ′ ∈ W

‖w‖: the norm of w

Let
E : W −→ R

we want to find w∗ such that

E (w∗) ≤ E (w) , for all w ∈ W .

We write: w∗ ∈ Argmin
w∈W

E (w).
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Introduction to optimization: Examples

Below ∇ is a finite difference operator and T is a ”sparsifying transform”

H1 regularization

E (w) =

N−1∑

m,n=0

|∇wm,n|
2 + λ‖w − u‖2

Total variation regularization

E (w) =

N−1∑

m,n=0

|∇wm,n|+ λ‖w − u‖2

ℓ1 minimisation
E (w) = ‖w‖1 + λ‖Tw − u‖2
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Introduction to optimization

The design of
E : W −→ R

is crucial. We want:

Guarantee that w∗ is close to the targeted ideal image
◮ statistics, compressed sensing
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Introduction to optimization

The design of
E : W −→ R

is crucial. We want:

Guarantee that w∗ is close to the targeted ideal image
◮ statistics, compressed sensing

w∗ exists and can be numericaly approximated in a reasonable amount of
time

◮ Mathematical optimization
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Introduction to optimization: basic properties of functions

Definition

Let E : W −→ R

E is proper iif
◮ ∀w ∈ W, we have E(w) > −∞

◮ there exists w ∈ W such that E(w) < +∞

E is lower-semicontinuous iif ∀w ∈ W , ∀ε > 0 there is a neighborhood of
w such that ∀w ′ ∈ U ,E (w ′) ≥ E (w)− ε

E is coercive iif lim‖w‖→+∞ E (w) = +∞
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Introduction to optimization: basic properties of functions

Definition

Let t ∈ R, we call t-levelset of E :

LE (t) = {w ∈ W |E (w) ≤ t}

Proposition

Let E : W −→ R

If E is proper, lower-semicontinuous and coercive, then

for every t ∈ R,LE (t) is compact

If E is proper, lower-semicontinuous and coercive then

Argminw∈W E (w) 6= ∅.
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Introduction to optimization: basic properties of functions

Definition

We say that C ⊂ W is convex iif

tw + (1− t)w ′ ∈ C , ∀w ,w ′ ∈ C , ∀t ∈ [0, 1]

Definition

Let E : W −→ R

E is convex iif

E (tw + (1 − t)w ′) ≤ tE (w) + (1− t)E (w ′) , ∀w ,w ′ ∈ W , ∀t ∈ [0, 1]

E is strictly convex iif

E (tw + (1− t)w ′) < tE (w) + (1− t)E (w ′) , ∀w 6= w ′ ∈ W , ∀t ∈ (0, 1)

If E is C 1, E is strongly convex (also called elliptic) of modulus α > 0 iif

∀w ,w ′ ∈ W , 〈∇E (w ′)−∇E (w),w ′ − w〉 ≥ α‖w ′ − w‖2
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Introduction to optimization: basic properties of functions

Proposition

If E is convex then,

for all t ∈ R,LE (t) is convex.

If E is convex then
Argminw∈W E (w) is convex.

If E is strictly convex and Argmin
w∈W

E (w) 6= ∅ then

Argminw∈W E (w) is reduced to a unique w∗.

We write w∗ = Argminw∈W E (w).
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Introduction to optimization: basic properties of functions

Proposition

If E is convex, then E is continuous on the interior of

Dom(E ) = {w ∈ W |E (w) < +∞}.

Proposition

If E is C 1,

E is convex iif

∀w ,w ′ ∈ W , E (w ′) ≥ E (w) + 〈∇E (w),w ′ − w〉

E is strongly convex of modulus α > 0 iif

∀w ,w ′ ∈ W , E (w ′) ≥ E (w) + 〈∇E (w),w ′ − w〉+
α

2
‖w ′ − w‖2

If E is strongly convex then E is strictly convex and coercive.
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Introduction to optimization: basic properties of functions

Definition

Let E be convex. For any w ∈ W we call sub-gradient of E at w

∂E (w) = {g ∈ W |∀w ′ ∈ W ,E (w ′) ≥ E (w) + 〈g ,w ′ − w〉}

Proposition

Let E be convex.

If E is C 1 then
∂E (w) = {∇E (w)}.

w∗ ∈ Argminw∈W E (w) iif 0 ∈ ∂E (w∗).
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Introduction to optimization: basic properties of functions

Definition

Let L > 0, we say that E has Lipschitz gradient of parameter L iif

∀w ,w ′ ∈ W , ‖∇E (w ′)−∇E (w)‖ ≤ L‖w ′ − w‖

Proposition

If E is C 2 (its Hessian is denoted ∇2E (w)):

E is strongly convex of modulus α > 0 iif the smallest eigenvalue of ∇2E (w)
is larger than α, for all w ∈ W.

E has a L-Lipschitz gradient iif the largest eigenvalue of ∇2E (w) is smaller
than L, for all w ∈ W.
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Introduction to optimization: To go further

”Introductory lectures on convex optimization: A basic course”, Yurii
Nesterov

”Convex Analysis”, Ralph T. Rockafellar

”Non linear programming”, Dimitri Bertzekas

François Malgouyres (IMT) Mathematics for Image Processing Oct. 23–27 26 / 26


	Introduction to image processing and mathematical optimization

