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Université de Toulouse
Région Midi-Pyrénées

Centre National de la Recherche Scientifique
Fondation ISAE-SUPAERO

Institut National des Sciences Appliquées de Toulouse
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Takahashi Takéo, INRIA, Nancy, takeo8@gmail.com,
Tiago Jorge, IST - Lisbon, Portugal, jftiago@math.ist.utl.pt,
Tort Jacques, Univ. de Toulouse, jacques.tort@math.univ-toulouse.fr,
Tucsnak Marius, Institut Elie Cartan, Nancy, Marius.Tucsnak@iecn.u-nancy.fr,
Vancostenoble Judith, Univ. de Toulouse, Judith.Vancostenoble@math.univ-toulouse.fr,
Vogelius Michael, Rutgers University, NJ, USA, vogelius@math.rutgers.edu,
Weller-Calvo Jessie, IMFT - Univ. de Toulouse, jweller@imft.fr,
Yamamoto Masahiro, University of Tokyo, Tokyo, Japan, myama@ms.u-tokyo.ac.jp,
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Mini course

Small inhomogeneities, cloaking and
approximate cloaking

Michael Vogelius
Rutgers University (New Jersey, USA)

In this set of lectures I shall first attempt to give a brief overview of a wide body of work
concerning representation formulas for the electromagnetic effect of small inhomogeneities
inside a known reference medium. Such representation formulas have a wide range of appli-
cations, and I shall try to illustrate some of these. One particular recent application concerns
the area of “cloaking”. In this context I shall describe in detail a particular scheme of
“approximate cloaking by mapping” and show how estimates for the effect of small inho-
mogeneities lead to very precise estimates for the degree of approximate cloaking.
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Parameter identification for a simplified model of
the respiratory tract

Muriel Boulakia
Pierre and Marie Curie University (Paris, France)

In this lecture, we are interested by the Stokes system. We assume that we have measure-
ments of the solution on a part of the boundary where Neumann conditions are prescribed
and we want to recover a Robin coefficient which appears in the Robin boundary conditions
prescribed on some non accessible part of the boundary. This model can be viewed as a
simplified model for the respiratory tract and the Robin coefficient corresponds to the resis-
tance of the airways. We will first study the identifiability of the Robin coefficient and then
establish a stability estimate of logarithm type.
This work is a common work with Anne-Claire Egloffe and Céline Grandmont.
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An “exterior approach” to solve the inverse
obstacle problem for the Laplace equation/Stokes

system
Laurent Bourgeois
ENSTA (Paris, France)

We consider in this talk the problem of finding a Dirichlet obstacle in a homogeneous
medium governed by the Laplace equation or the Stokes system, from a single pair of
Cauchy data on a subpart of the boundary of such medium. In the case of the Stokes sys-
tem, for example, such problem models the identification of a hard obstacle immersed in a
fluid from the knowledge of both the velocity and the normal stress on a subpart of the fluid
surface.
Our iterative approach consists in coupling a method of quasi-reversibility and a level set
method:

• For an obstacle obtained at a given iteration, the method of quasi-reversibility is used
to update the solution outside the obstacle.

• For a solution obtained at a given iteration, the level set method is used to update the
boundary of the obstacle.

The main feature of such approach is that it does not rely on a minimization process.
During the talk, we will first introduce the two main ingredients of the above approach,
this is the quasi-reversibility method and a new type of level set method based on a simple
Poisson equation. Then we will prove the convergence of the method of quasi-reversibility
on the one hand and the convergence of the level set method on the other hand. Lastly, the
efficiency of our exterior approach will be illustrated by some numerical results based on a
finite element method.
This work is a collaboration with Jérémi Dardé. Some references concerning the case of
Laplace equation are given below while a paper in the case of the Stokes system is in prepa-
ration.

Bibliography
[1] L. BOURGEOIS, J. DARDÉ. A quasi-reversibility approach to solve the inverse obsta-

cle problem. Inverse Problems and Imaging, 4(3), 2010.

[2] L. BOURGEOIS, J. DARDÉ. A duality-based method of quasi-reversibility to solve the
Cauchy problem in the presence of noisy data. Inverse Problems, 26(9), 095016, 21,
2010.

16



Toulouse Workshop 2012

Controllability and Lipschitz stability for
Grushin-type operators

Piermarco Cannarsa
University of Rome Tor Vergata (Italy)

The Baouendi-Grushin operator is an important example of a degenerate elliptic operator
that has strong connections with almost-Riemannian structures. It is also the infinitesimal
generator of a strongly continuous semigroup on Lebesgue spaces with very interesting
properties from the point of view of control theory. Such properties will be discussed in
this lecture, starting with approximate and null controllability for parabolic control systems
associated with Grushin-type operators on a bounded two-dimensional domain. We will
then address the inverse source problem for these operators deriving a Lipschitz stability
result.
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Systems of linear and nonlinear parabolic
equations: two different approaches for the

reconstruction of coefficients

Michel Cristofol
LATP, Aix-Marseille University (France)

In this talk I am interested to give an overview of recent results concerning the reconstruc-
tion of one or several coefficients associated to systems of linear and non linear parabolic
equations.
The main goal is to obtain these results minimizing the observations. The first results (see
[1], [2], [3] and [4]), involve Carleman inequalities and give Lipschitz stability results, but
a measurement of the components of the system on all the domain is necessary. The last
result (see [5]) avoids this constraint and concerns a uniqueness result for a strong non lin-
ear parabolic system (Lotka Volterra type). The use of the initial condition u0 = u(0, .) is a
partial answer to a longstanding open problem.

Bibliography
[1] M Cristofol, P Gaitan, and H Ramoul. Inverse problems for a two by two reaction-

diffusion system using a Carleman estimate with one observation. Inverse Problems,
22:1561–1573, 2006.

[2] A Benabdallah, M Cristofol, P Gaitan, and M Yamamoto. Inverse problem for a
parabolic system with two components by measurements of one component. Appli-
cable Analysis, 88(5):683–710, 2009.

[3] A Benabdallah, M Cristofol, P Gaitan, and L De Teresa. A new Carleman inequality
for parabolic systems with a single observation and applications. Comptes Rendus
Mathematique, 348:25–29, 2010.

[4] M Cristofol, P Gaitan, H Ramoul, and M Yamamoto. Identification of two indepen-
dant coefficients with one observation for a nonlinear parabolic system. Applicable
Analysis, in press.

[5] M Cristofol and L Roques. The inverse problem of determining several coefficients in
a nonlinear Lotka-Volterra system, submitted in Inverse Problems.
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Cellular motility: mechanical bases and
control-theoretic point of view

Antonio De Simone
SISSA (Trieste, Italy)

We will discuss the mechanical bases of cellular motility by swimming and crawling. Start-
ing from observations of biological self-propulsion, we will analyze the geometric structure
underlying motility at small scales, the swimming strategies available to microscopic swim-
mers, and recipes to optimize their strokes.

On the steady motion of a coupled system
solid-liquid

Giovanni Paolo Galdi
University of Pittsburgh (Pennsylvania, USA)

The main topic of this talk is centered around the unconstrained (free) motion of an elastic
solid, B, in a Navier-Stokes liquid, L, occupying the whole space outside B, under the
assumption that a constant body force is acting on B. More specifically, we are interested
in the steady motion of the coupled system {B, L}, which means that there exists a frame
with respect to which the relevant governing equation possess a time-independent solution.
We discuss the existence of such a frame and of corresponding steady solutions, and show
that they actually exist, provided some smallness restrictions are imposed on the physical
parameters, and the reference configuration of B satisfies suitable geometric properties.
Part of this work is in collaboration with Josef Bemelmans (RWTH Aachen) and Mads Keyd
(TU Darmstadt).
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Uniqueness of weak solutions of
two-dimensional fluid-rigid body systems

Olivier Glass
Paris Dauphine University (Paris, France)

I will discuss two different systems describing the interaction of a rigid body and an in-
compressible fluid in the plane. In the first case, the fluid is inviscid and described by the
incompressible Euler equation. In the second case, the fluid is viscous and described by the
incompressible Navier-Stokes equation. I will explain uniqueness results for weak solutions
of these systems: uniqueness of the “Yudovich” solutions for the first system, and of the
“Leray” solutions for the second one.
This is a joint work with Franck Sueur.

Some existence results for fluid-structure
interaction problems

Céline Grandmont
INRIA Paris-Rocquencourt (Le Chesnay, France)

In this talk we will review some known existence results concerning a fluid interacting with
a thin structure located on one part of the fluid boundary domain. We will consider a three
dimensional (resp. two dimensional) viscous incompressible fluid governed by the Navier-
Stokes equations and interacting with an elastic plate or membrane (resp. beam or rod).
The deformation of the fluid domain, which depends on the displacement of the structure,
is not neglected, leading to geometrical non linearities. For this kind of non linear coupled
problems, we will review existence results of strong or weak solutions for the steady case
as well as the unsteady one. We will also discuss the need of damping terms for the elastic
part as well as investigate the question of contact between the moving structure and the rigid
boundary.
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On the inverse problems for the coupled
continuum pipe flow model for flows in karst

aquifers

Shuai Lu
School of Mathematical Sciences, Fudan University (Shanghai, China)

We investigate two inverse problems for the coupled continuum pipe flow (CCPF) model
which describes the fluid flows in karst aquifers. After generalizing the well-posedness of
the forward problem to the anisotropic exchange rate case which is a space-dependent vari-
able, we present the uniqueness of this parameter by measuring the Cauchy data. Besides,
the uniqueness of the geometry of the conduit by the Cauchy data is verified as well. These
results enhance the practicality of the CCPF model.
It is a joint work with Xinming Wu, Jin Cheng (Fudan University) and Philipp Kügler (Aus-
trian Academy of Science).

Separation and bifurcation phenomena for
flows interacting with a boundary

Marco Sammartino
University of Palermo (Italy)

In this talk we shall review some rigorous and numerical results on the evolution of boundary
layers for the incompressible Navier-Stokes equations. The possibility of interpreting the
phenomena leading to separation of the boundary layer in terms of bifurcation of equilibria
will be explored.
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Stability results for nonlinear parabolic systems.
Application to fluid-structure interaction systems

Takéo Takahashi
INRIA Nancy - Grand Est (France)

We present some abstract results on the stabilization of nonlinear parabolic systems. More
precisely, we show how a natural unique continuation property is sufficient to obtain the
feedback stabilization of some nonlinear parabolic systems with a finite number of con-
trollers. We can apply such a criterion to many systems such as the classical Navier–Stokes
system.
We also use this abstract method to some fluid-structure interaction systems: a 1d simplified
model composed by a particle and where the fluid motion is modeled by the viscous Burgers
equation and the 2d/3d model corresponding to the coupling between Navier–Stokes equa-
tions and the motion of a rigid body. In that case, one of the difficulty consists in handling
the moving domain of the fluid equations by using an appropriate change of variables.
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Time optimal control of infinite dimensional
linear systems

Marius Tucsnak
Institut Élie Cartan, Henri Poincaré University (Nancy, France)

We consider the time optimal control problem, with a point target, for infinite dimensional
time invariant linear systems. We first consider systems with a dynamics governed by an
abstract Schrödinger type equation, with bounded control operator. The main results estab-
lish a Pontryagyn type maximum principle and give sufficient conditions for the bang-bang
property of optimal controls. The results are then applied to some systems governed by par-
tial differential equations. We discuss possible extensions and we state some open problems
concerning time reversible systems.
We next consider systems which are not time reversible and in particular the heat equa-
tions. The fact that the time optimal controls for parabolic equations have the bang-bang
property has been recently proved for controls distributed inside the considered domain (in-
terior control). The main result in this article asserts that the boundary controls for the heat
equation have the same property, at least in rectangular domains. This result is proved by
combining methods from traditionally distinct fields: the Lebeau-Robbiano strategy for null
controllability and estimates of the controllability cost in small time for parabolic systems,
on one side, and a Remez-type inequality for Müntz spaces and a generalization of Turán’s
inequality, on the other side.

Keywords: Heat and Schrödinger equations, time optimal control, maximum principle,
bang-bang.
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Uniqueness results by partial Cauchy data on
arbitrary subboundary for 2-dimensional elliptic

systems

Masahiro Yamamoto
Graduate School of Mathematical Sciences, The University of Tokyo (Japan)

I will present our recent results on the uniqueness in determining coefficients in various 2-
dimensional elliptic systems by all the set of Cauchy data with Dirichlet data supported on
arbitrary subboundary Γ and Neumann data on Γ. The classical Dirichlet-to-Neumann map
corresponds to a special case where Γ is the whole boundary, and our results are the best
possible uniqueness results in two dimensions within some smoothness assumptions.
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Reduced number of controls for N-coupled
systems of PDE’s

Fatiha Alabau-Boussouira
LMAM, Inria Equipe-projet CORIDA, University of Lorraine (Metz, France)

Systems of PDE’s describe in general complex interactions between several unknowns which
characterize the state of the physical devices under study. In a first approximation some of
these interactions may be neglected so that the system reduces to decoupled scalar equa-
tions. Here we focus on “fully” coupled systems of PDE’s. One of the main challenging
issue since more than a decade is the question of their controllability/observability by a re-
duced number of controls/observations. This means that the number of controls is strictly
less than the number of unknowns/equations which is a more difficult situation in control
questions. We shall present a general approach based on a two-level energy method and its
generalization for handling this issue.

We consider two classes of coupled systems, namely: 2-coupled symmetric systems (cou-
pling two symmetric evolution PDE’s by symmetric lower order coupling terms) and N -
coupled cascade systems (coupling N evolution PDE’s in a lower or upper matrix form).
We present several positive boundary or localized controllability/observability results by a
reduced number of controls for these two classes of systems in a multi-dimensional frame-
work. Moreover we shall focus on geometrical situations for which the regions of local-
ization of the controls/observations do not meet the regions of localization of the couplings
terms. This situation is richer and more complex to study than the one for which these
regions meet.

We shall also give several examples of applications to coupled wave, heat or Schrödinger
equations. The striking property is that the lower order coupling terms allow to transfer
information from the controlled/observed PDE to the uncontrolled/unobserved ones even if
the corresponding control/observation and coupling regions are away from each other. This
shows that the interactions between the different state components may contain very useful
properties and have important geometrical characteristics in the context of control theory so
that they should not be neglected.

Keywords: Control theory. Coupled systems of evolution PDE’s. Reduced number of
controls. Hyperbolic equations. Diffusive equations. Heat equations.

Bibliography
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Optimal time for the null controllability of
parabolic systems: the effect of the condensation

index of complex sequences

Assia Benabdallah
Aix-Marseille University (France)

(joint work with F. Ammar Khodja, M. González-Burgos and L. de Teresa)

This talk studies the relation between the condensation index of a sequence of complex num-
bers, with positive real part, and the null controllability of parabolic systems. In particular
we show that a minimal time is required for controllability. We present illustrative examples
of the null controllability problem associated with coupled parabolic equations.
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Positive and negative results on the control of
fluids with memory

Enrique Fernández-Cara
Dpto. EDAN, University of Sevilla (Spain)

Abstract: The goal of this contribution is to present some results concerning the controlla-
bility of fluids where memory effects are important. We consider linear visco-elastic models
of the Maxwell and Jeffreys kinds and some other similar systems.

Keywords: Null and approximate controllability, visco-elastic fluids, memory effects.

Positive results for Maxwell fluids
First, we analyze the controllability properties of systems which provide a description, at
first approximation, of a kind of viscoelastic fluids. We consider linear Maxwell fluids. We
establish the large time approximate-finite dimensional controllability of the system, with
distributed or boundary controls supported by arbitrary small sets. Then, we prove the large
time exact controllability of fluids of the same kind, with controls supported by suitable large
sets. The proofs of these results rely on classical arguments. In particular, the approximate
controllability result is implied by appropriate unique continuation properties, while exact
controllability is a consequence of observability (inverse) inequalities. We also discuss some
other questions concerning to the controllability of viscoelastic fluids and some related open
problems. These results have been taken from [2].

Positive results for Jeffreys fluids
We analyze the control of vicoelastic fluids of the Jeffreys kind, also known as Oldroyd
models. We present the interesting problems, with special emphasis in the difficulties that
they involve. Then, we will consider appropriate linear approximations and we will establish
some partial approximate-finite dimensional controllability results in arbitrarily small time,
with distributed or boundary controls supported by arbitrarily small sets. The proofs rely
on some specific unique continuation properties which are implied by the structure of the
solutions; see [1,3].
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Negative results for fluids where viscosity and memory ef-
fects co-exist
Here, we deal with the boundary null controllability problem for the Stokes system with a
memory term. For any positive final time T , with controls acting on the whole boundary,
we show that there exist initial conditions such that the null controllability property fails.
This is closely related to the results and arguments in [4], where the authors consider heat
equations with memory terms.

Other similar problems and results
We also present other similar results obtained by other authors, not necessarily concerning
memory effects. In particular, we take a look to the role of compressibility in the context of
controllability problems.
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Exact controllability for a system of coupled wave
equations on a compact manifold

Belhassen Dehman
University of Tunis El Manar (Tunisia)

(joint work with Matthieu Léautaud and Jérôme Le Rousseau)

Let (M, g) be a compact connected n-dimensional Riemannian manifold without boundary.
We take two smooth functions bω and b on M and we consider the controllability problem
for the system of coupled wave equations





(∂2
t −∆)u1 + b(x) u2 = 0 in (0, T )×M,

(∂2
t −∆)u2 = bω(x) f in (0, T )×M.

Initial Data in (H2 ×H1)× (H1 × L2)

(S)

Here, the state of the system is (u1, u2, ∂tu1, ∂tu2) and f is our control function, localized
on {bω 6= 0}.
For most results proved in this paper, we shall assume that the function b is non-negative
on M , and denote by ω = {bω 6= 0} the control set and by O = {b 6= 0} the coupling set
(which is the indirect control set for the first equation).
A natural necessary and sufficient condition to have controllability for wave equations is
to suppose that the control set satisfies the Geometric Control Condition (GCC) defined in
Bardos-Lebeau-Rauch. For ω ⊂ M and T > 0, we shall say that (ω, T ) satisfies GCC
if every geodesic traveling at speed one in M meets ω in a time t < T . We say that ω
satisfies GCC if there exists T > 0 such that (ω, T ) satisfies GCC. Note that in the situation
of system (S), a necessary condition is that both sets ω and O satisfy GCC.

Definition: Assume that the setsO and ω satisfy GCC. We define Tω→O→ω to be the infimum
of times T > 0 for which the following assertion is satisfied:
every geodesic traveling at speed one in M meets ω in a time t0 < T, meets O in a time
t1 ∈ (t0, T ) and meets again ω in a time t2 ∈ (t1, T ).

Theorem 1: Assume that ω and O both satisfy GCC. Then system (S) is controllable if
T > Tω→O→ω and is not controllable if T < Tω→O→ω.

On the other hand, by a change of functional spaces and a well adapted splitting, one can
work in the space H = L2

+(M) × C4, where L2
+ is the subspace of L2functions with non

zero frequencies.
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Theorem 2: Under GCC and in the splitting above, the HUM control operator is, up to a
smoothing operator, an elliptic pseudodifferential operator with zero order.

We also consider the case of two different speeds, i.e we study exact controllability of the
following system, with γ 6= 0, 1 :

{
(∂2
t −∆)u1 + b(x) u2 = 0

(∂2
t − γ2∆)u2 = bω(x) f

(Sγ)

Theorem 3: Assume that ω∩O satisfies GCC. Then (Sγ) is controllable in the space (H3×
H2)× (H1 × L2), in any time T > max(T 1

ω∩O, T
γ
ω∩O).

The tools used in the proofs are essentially of microlocal nature. For Th.1, we use propa-
gation properties of microlocal defect measures attached to bounded sequences of solutions
of the adjoint system. Th.2 is based on Egorov Theorem, and finally Th.3 uses in a crucial
way smoothing properties of system Sγ for γ 6= 1.
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Lagrangian controllability of some fluid models

Thierry Horsin
CNAM (Paris, France)

I will present the notion of Lagrangian controllability. Specific results concerning mainly the
Euler equations will be given describing how to settle the main definition of this notion will
be given as well as a comparison with the controllability in Eulerian descriptions. Works
in progress on numerics and other fluid models will be discussed according to their state
at the present time of the conference. All results presented are in common with Olivier
Glass. More precisely I will describe the results proven in [1] and [2]. I will also describe
difficulties arising in numerical issues as shown by G. Legendre in a work in progress ([3]).
Ideally, it would be certainly a great progress to transpose the already proven results to
the case of multifluids. In order to motivate a possible scheme, I will give some ideas on
quasistatic motions of fluids.

Bibliography
[1] OLIVIER GLASS, THIERRY HORSIN, Approximate Lagrangian controllability for the

2-d Euler equations. application to the control of the shape of vortex patch., J. Math.
Pures Appl., 93:61–90, 2010

[2] OLIVIER GLASS, THIERRY HORSIN, Prescribing the motion of a set of particles in a
3d perfect fluid., (2011) submitted.

[3] OLIVIER GLASS, THIERRY HORSIN, OTARED KAVIAN, GUILLAUME LEGENDRE,
Lagrangian controllability of inviscid perfect incompressible fluids: a constructive ap-
proach, work in progress.

34



Toulouse Workshop 2012

Inverse problems for elliptic PDEs and Hardy
classes of generalized analytic functions

Juliette Leblond
INRIA Sophia-Antipolis (France)

(joint work with Laurent Baratchart and Yannick Fischer)

Abstract: Issues concerning solutions to boundary inverse problems from partial overde-
termined Dirichlet-Neumann data for Laplace, conductivity or Schrödinger equations in
smooth plane domains are approached in normed Hardy classes of generalized holomorphic
complex valued functions.

Keywords: Inverse problems, Cauchy-type problems, Hardy classes, Holomorphic func-
tions, Best constrained approximation issues.

Whenever Ω is a smooth domain in R2, solutions to families of elliptic partial differen-
tial equations –like Laplace, conductivity or Schrödinger PDEs– can be described as (real
or imaginary parts) of holomorphic or generalized holomorphic functions of the complex
variable [1] (solutions to ∂̄ equations, also called pseudo-holomorphic [7]).
Weak assumptions on available Dirichlet or Neumann boundary data can then be formulated
as boundedness conditions in Hardy norm. This leads to the introduction of associated
Hardy classes of generalized analytic functions [2, 3].
Both direct and boundary inverse recovery problems can be stated and solved as best (con-
strained) approximation issues in these classes. This leads to well-posed approximate for-
mulations of Cauchy-type inverse problems from partial overdetermined Dirichlet-Neumann
data [5]. On the way, unique continuation and Runge density properties are established. Fur-
ther, constructive recovery schemes and algorithms are available in a number of situations,
where complete families of solutions are available. This namely holds for Laplace equations
[6] and for particular conductivity coefficients that arise in physical applications related to
plasma confinement [4], stemming from Maxwell equations.
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On the controllability of driftless swimmers

Alexandre Munnier
Institut Élie Cartan, Henri Poincaré University (Nancy, France),

CORIDA Project, Numerics, SOLEIL project
(Joint work with Thomas Chambrion, Marc Fuentes, Jérôme Lohéac and Bruno Pinçon)

The modeling of swimming usually leads to a complex system of equations coupling PDEs
(governing the fluid flow) and ODEs (governing the motion of the swimmer). In this talk,
I will address two particular cases referred to as “driftless models”. The first one (called
“resistive model”) is relevant for microswimmers (like microorganisms) and consists in ne-
glecting the inertial effects in the modeling. The second one (called “reactive model”) is
obtained by neglecting instead the viscous forces and is supposed to be relevant for swim-
mers with elongated bodies (like eels). Surprisingly, the dynamics are very similar in both
cases.
I will state some (generic) controllability results for these models and give the taste of the
proofs, which relies deeply on the analyticity of the dynamics. The Orbit Theorem (of
Nagano-Sussman) and its Corollary (referred to as Rashevsky-Chow theorem) play a crucial
role as well.
Time permitting, I will show some numerical simulations from the SOLEIL project (Solveur
d’Équations Intégrales pour la Locomotion). SOLEIL is a set of Matlab functions to study
fish locomotion. More details are available on the web page http://soleil.gforge.
inria.fr/.
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Carleman estimate for Zaremba boundary
condition

Luc Robbiano
University of Versailles (France)

Le problème de Zaremba est un problème elliptique avec une condition mixte au bord. Plus
précisément, d’un côté d’une hypersurface du bord on impose la condition de Dirichlet et
de l’autre la condition de Neumann. Pour ce problème nous démontrons une inégalité de
Carleman près du bord. Dans l’exposé nous essaierons de donner les grandes lignes de
la preuve. Celle-ci consiste à se restreindre au bord. Cela donne une équation pseudo-
différentielle sur le bord qui permet d’estimer les traces de la solution en fonction des
données. L’application qui a motivé notre travail est un problème de stabilisation. Cette
inégalité peut aussi s’appliquer pour le contrôle de l’équation de la chaleur.

Control and mixing for 2D Navier-Stokes
equations with space-time localised force

Armen Shirikyan
University of Cergy-Pontoise (France)

We consider 2D Navier-Stokes equations in a bounded domain with smooth boundary and
discuss the interconnection between controllability for the deterministic problem and mixing
properties of the associated random dynamics. Namely, we first consider the problem of
stabilisation of a given non-stationary solution, assuming that the control is localised in
space and time and is finite-dimensional as a function of both variables. We next replace
the control by a random force and prove that the resulting random dynamical system is
exponentially mixing in the Kantorovich-Wasserstein distance.
Some of the results of this talk are obtained in collaboration with V. Barbu and S. Rodrigues.
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New finite dimensional observer for the boundary
control of fluid flows

Jean-Marie Buchot
Institut de Mathématiques de Toulouse, Paul Sabatier University (France)

(Joint work with Laleh Ravanbod and Jean-Pierre Raymond)

We present a new finite dimension estimator for infinite dimensional systems with discrete
spectrum and finitely many eigenvalues in Re(s) > −δ for all δ > 0 [1].
The existence of a finite dimensional compensator for stabilizing such systems was first
proved by Schumacher [2, 3]. The considered class included parabolic systems with bounded
control and observation operators. Subsequently, Curtain in [4, 5, 6] proposed an alterna-
tive scheme applicable to a general class of parabolic or hyperbolic systems with Neumann
or Dirichlet boundary conditions and bounded or unbounded control and observation op-
erators. It was named integral dynamic output feedback control and it was based on the
relocation of the eigenvalues. All these approaches share the common disadvantage that the
dynamics corresponding to an infinite number of eigenvalues in Re(s) < −δ are neglected
in the estimator equations.
The approach proposed by Fujii in [7] seems to overcome this problem. There, a functional
observer of Luenberger type was presented. The solution of linear parabolic initial bound-
ary value problem was decomposed into the solution when the control input was zero and
the solution when the initial condition was zero. The observation law, then, included the
convolution integral of these decomposed solutions with the solution of the state feedback
control law. However, the resulting observer was of infinite dimension.
Here, we propose and analyse a new observer of finite dimension, coupled with a finite di-
mensional feedback controller. As in [2, 3, 4, 5, 6], we still express the dynamics in terms
of a stable and an unstable part. In our new approach, we take advantage of the fact that the
stable part can be decomposed as in [8]. This is the new trick which enables us to determine
our observer.

Our numerical test concerns the stabilization of two-dimensional linearized Navier-Stokes
equations by a boundary control and using boundary observations of velocity and of pres-
sure in the case of a flow around a circular cylinder. We show also that the new estimator
remains efficient above an acceptable Signal to Noise Ratio for the nonlinear Navier-Stokes
equations.
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Stabilization of a fluid-solid system, by the
deformation of the self-propelled solid

Sébastien Court
Institut de Mathématiques de Toulouse, Paul Sabatier University (France)

Abstract: We consider a deformable solid immersed in a viscous incompressible fluid fill-
ing a bounded domainO of R2 or R3. The solid’s position, the fluid’s velocity and the fluid’s
pressure are assumed to satisfy a given coupled system. We explain how this fluid-solid sys-
tem can be stabilized to zero, in acting on the proper solid’s deformation.

Keywords: Fluid-structure interactions, Navier-Stokes equations, Stabilization.

Presentation
The solid occupies the domain S(t), and the fluid occupies F(t) = O \ S(t). The fluid’s
velocity u, its pressure p, and the solid’s position given by h and ω are assumed to satisfy
the following coupled system

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = 0, x ∈ F(t), t ∈ [0, T ], (1)

div u = 0, x ∈ F(t), t ∈ [0, T ], (2)

u = 0, x ∈ ∂O, t ∈ [0, T ], (3)
u = h′(t) + ω(t) ∧ (x− h(t)) + w(x, t), x ∈ ∂S(t), t ∈ [0, T ], (4)

Mh′′(t) = −
∫

∂S(t)

σ(u, p)ndΓ, t ∈ [0, T ], (5)

(Iω)′ 1.(t) = −
∫

∂S(t)

(x− h(t)) ∧ σ(u, p)ndΓ, t ∈ [0, T ], (6)

u(y, 0) = u0(y), y ∈ F(0), h(0) = h0 ∈ Rd, h′(0) = h1 ∈ Rd, ω(0) = ω0 ∈ R3. (7)

The angular velocity ω is associated with a rotation R. The control is seen through the
velocity w, defined as

w(x, t) = R(t) w∗
(
R(t)T (x− h(t)), t

)
, x ∈ S(t). (8)
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The Eulerian velocity w∗ can be chosen as the control, but also the Lagrangian flow X∗

associated with w∗ and defined as

∂X∗

∂t
(y, t) = w∗(X∗(y, t), t), X∗(y, 0) = y − h0, y ∈ S(0). (9)

The mapping X∗ must be a C1-diffeomorphism. It defines S(t), as

S(t) = h(t) + R(t)X∗ (S(0), t) ,

and must satisfies some constraints that guarantee the self-propelled character of the solid.

The main result
System (1)-(7) is linearized, and the corresponding linear system is the following

∂U

∂t
− ν∆U +∇P = 0, in (0, T )×F , (10)

div U = 0, in (0, T )×F , (11)

U = 0, in (0, T )× ∂O, (12)

U = H ′(t) + Ω(t) ∧ y +
∂X∗

∂t
(y, t), y ∈ ∂S, t ∈ [0, T ], (13)

MH ′′(t) = −
∫

∂S
σ(U, P )ndΓ, t ∈ [0, T ], (14)

I0Ω′(t) = −
∫

∂S
y ∧ σ(U, P )ndΓ, t ∈ [0, T ], (15)

U(y, 0) = u0(y), y ∈ F , H ′(0) = h1 ∈ Rd, Ω(0) = ω0 ∈ R3. (16)

Theorem. For all λ > 0, and all (u0, h1, ω0) ∈ Hcc, there exists X∗ ∈ W0,m(0, T ;S), such
that the solution to system (10)-(16) obeys

‖(U,H ′,Ω)‖L2(0,∞;Hcc) < C exp(−λt).
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Ideas of the proof
1. We show that system (10)-(16) can be written through an operator, which acts on (U,H ′,Ω),
and which defines an analytic semigroup. Thus the unstable modes of this operator are in
finite number, and they define a finite-dimensional system for which approximate controlla-
bility implies stabilizability.

2. Introducing an adjoint system (associated with system (10)-(16)), whose unknowns are
(Φ, ψ, k′, r), the approximate controllability of system (10)-(16) is reduced to a unique con-
tinuation problem for which we have

∫ T

0

∫

∂S

∂X∗

∂t
· σ(Φ, ψ)ndΓ = 0.

3. We choose X∗ as the solution of a modified Lamé system, with a nonhomogeneous
Dirichlet condition, such that X∗ satisfies constraints which make the solid self-propelled,
and such that the equality (17) leads us to

σ(Φ, ψ)n = 0.

This boundary condition (combined to the a Dirichlet one) enables us to get (Φ, ψ) = 0.

Remark.
1. A similar result is obtained for the nonlinear system (1)-(7).
2. One of the main difficulty lies in the fact that the regularity of the control X∗ is limited.
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Lipschitz stability estimate for the Stokes system
with mixed boundary conditions

Anne-Claire Egloffe
INRIA Rocquencourt - Laboratoire Jacques Louis Lions, Paris 6

Abstract: We consider the Stokes system and we assume that mixed Dirichlet, Neumann
and Robin boundary conditions are prescribed. We are interested here in identifiability
and stability properties for the inverse problem of identifying a Robin coefficient on some
non accessible part of the boundary from available measurements on another part of the
boundary. We provide a Lipschitz stability estimate under the further a priori assumption
that the Robin coefficient is piecewise constant.

Keywords: Inverse problem, Stokes system, Lipschitz stability estimate.

Introduction
Let d ∈ N∗ and Ω ⊂ Rd be a Lipschitz connected bounded open set such that ∂Ω =
Γ0 ∪ Γe ∪ Γl. Let Γ ⊂ Γe. We assume that Γ and Γ0 are of class C∞. We are interested in
the following Stokes system:





−∆u+∇p = 0, in Ω,
∇ · u = 0, in Ω,
u = 0, in Γl,

∇u · n− pn = g, on Γe,
∇u · n− pn+ qu = 0, on Γ0.

(1)

We want to identify the Robin coefficient q defined on Γ0 from measurements available
on Γ. Such problems can be viewed as a generalization of some inverse problems which
appear naturally in the modeling of some biological problems, like for instance blood flow
in the cardiovascular system (see [1] or the airflow in the lungs (see [2]). Analogous inverse
problems for the Stokes system have already been studied in [3, 4]. In both papers, logarithm
stability estimates are obtained. Note that E. Sincich obtained in [6] a Lipschitz stability
estimate for a similar inverse problem but concerning the Laplace equation.

Main results
Uniqueness result concerning this inverse problem can be obtained as a corollary of C. Fabre
and G. Lebeau unique continuation result for the Stokes equations (see [5]). It states that,
under some regularity assumption on the data g, if the velocities are equal on Γ, then the
Robin coefficients are equal on Γ0.
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Henceforth, we assume that q is piecewise constant on Γ0. As regards the stability estimate,
we are going to prove a Lipschitz stability estimate. Let us be more precise: we consider,
for i = 1, 2, (ui, pi) solution of (1) associated with qi. We obtain that there exists C > 0
such that:

‖q1 − q2‖L∞(Γ0)

≤ C

(
‖u1 − u2‖L2(Γ) +

∥∥∥∥
∂u1

∂n
− ∂u2

∂n

∥∥∥∥
L2(Γ)

+ ‖p1 − p2‖L2(Γ) +

∥∥∥∥
∂p1

∂n
− ∂p2

∂n

∥∥∥∥
L2(Γ)

)
.

(2)

It is interesting to compare identifiability and stability results. In the identifiability result,
we need to have equality of the velocities together with equality of the normal component
of the constraints on Γ. In the stability estimate, the constraint is divided into two terms:∥∥∂u1
∂n
− ∂u2

∂n

∥∥
L2(Γ)

in one hand and ‖p1 − p2‖L2(Γ) in the other hand. Moreover, in inequal-

ity (2), there is also an additional term:
∥∥∂p1
∂n
− ∂p2

∂n

∥∥
L2(Γ)

. Therefore, it might be interesting
to know if it is possible to obtain a stability inequality with less measurement terms and in
particular, if it is possible to get rid of the gradient term ∂p1

∂n
− ∂p2

∂n
.
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Influence of boundary on the motility of
micro-swimmers

Laetitia Giraldi
CMAP, École Polytechnique (France)
(Joint work with François Alouges)

Abstract: Swimming, i.e., being able to advance in the absence of external forces by per-
forming cyclic shape changes, is particularly demanding at low Reynolds numbers which
is the regime of interest for micro-organisms and micro-robots. We focus on self-propelled
stokesian robots composed of assemblies of balls and we prove that the presence of a wall
has an effect on their motility. To rest on what has been done in [1] for such system swim-
ming on R3, we demonstrate that a controllable swimmer remains controllable in a half
space whereas the reachable set of a non fully controllable one is affected by the presence
of a wall.

Keywords: Control theory, Biological and artificial micro-swimmers, Self propulsion, Move-
ment and locomotion, Low-Reynolds-number, Stokes equation, Boundary effect.

Self-propulsion at low Reynolds number is a problem of considerable biological and biomed-
ical relevance which has also great appeal from the point of view of fundamental science.
Many applications are concerned as for example the creation of micro devices be able to
swim in a narrow channel. Swimming in a geometrically confined environment is a subject
of growing interest. Since the sixties, experiments proved that in confined geometries, mi-
croorganisms are attracted by the boundaries, as for example the study of Rothschild in [4]
on bull spermatozoa. On a more theoretical side, R. Zagar, A. Najafi and M. Miri proved
in [2] that the dynamic of the Three-sphere swimmer, a model introduced by A. Najafi and
R.Golestanian in [3], is affected by the plane wall. We attack the same problem (the influ-
ence of a plane wall in the motion of this swimmer) by means of control theory. The question
that we want to address is whether the presence of the plane wall modifies the controllabil-
ity of specific swimmers as such studied in the whole space by F. Alouges, A. Desimone,
L. Heltai, A. Lefebvre-Lepot and B. Merlet in [1]. The main results are applied on two spe-
cific swimmers which consist of N (here N = 3, 4) spheres connected by thin jacks which
are able to elongate or shrink.

• N = 3 represents the case of the Three-sphere swimmer.

• N = 4 corresponds to the Four-sphere swimmer depicted below.
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B3

ξ1

ξ2

where S := ( 2a√
3
,+∞)3, the lower bound being chosen in order to avoid overlaps of

the balls, P = R2 × R, and the functions Xi are now defined as

Xi(ξ, c, α, r) = c + Rθ(ξiti + r) ∀i ∈ {1, 2, 3} .

Notice that the functions Xi are still analytic in (ξ, c, θ), and we use them to compute
the instantaneous velocity on the sphere Bi

vi =
∂Xi

∂t
(ξ, c, θ, r) = ċ + θ̇e3 × (ξiti + r) + Rθtiξ̇i ,

where e3 is the vertical unit vector. Eventually, due to the symmetries of the system,
the swimmer stays in the horizontal plane.

2.3. The four sphere swimmer moving in space (4S). We now turn to
the more difficult situation of a swimmer able to move in the whole three dimensional
space and rotate in any direction. In this case, we fix N = 4 and we consider a regular
reference tetrahedron (S1, S2, S3, S4) with center O ∈ R3 such that dist(O,Si) = 1

and as before, we call ti = �OSi for i = 1, 2, 3, 4.
The position and orientation in the three dimensional space of the tetrahedron

are described by the coordinates of the center c ∈ R3 and a rotation R ∈ SO(3), in
such a way that d = 6.

We place the center of the ball Bi at xi = c + ξiRti with ξi > 0 for i = 1, 2, 3, 4
as depicted in Fig. 2.3 and forbid possible rotation of the spheres around the axes. A
global rotation (R �= Id) of the swimmer is however allowed.

The four ball cluster is now completely described by the list of parameters X =

(ξ, c,R) ∈ S × P, where S := (
�

3
2 ,+∞)4 and P = R3 × SO(3). Again, the lower

bound for ξi is chosen in order to avoid overlaps of the balls.

x4

e1,4

x1

x2

x3

r1,2

Fig. 2.3. The four sphere swimmer (4S).

Furthermore, the function Xi are now defined as

Xi(ξ, c,R, r) = c + R(ξiti + r) ∀i ∈ {1, 2, 3, 4} ,

which are still analytic in (ξ, c,R), from which we compute the instantaneous velocity
on the sphere Bi

vi =
∂Xi

∂t
(ξ, c,R, r) = ċ + ω × (ξiti + r) + Rtiξ̇i

6

ξ2
ξ1

ξ3

ξ4

Figure 1: The Three-sphere swimmer and the Four-sphere swimmer

First, we prove that the Four-sphere swimmer remains controllable in the half space. This
result is based on the fact that when the swimmer is sufficiently far from the wall, its dynamic
is close to the one without boundary.
Then, concerning the Three-sphere swimmer, we describe its reachable set. In the whole
space, it can only reach one direction (see [1]), whereas, we prove that if the initial position
of the swimmer is not perpendicular to the plane wall, it can move in one more direction.
In others words, the system related to the motion of the Three-sphere swimmer becomes
controllable for almost all initial positions. The proof is based on the description of the
orbits of the vector fields related to the swimmer’s motion by using the Nagano’s theorem.
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Applications of defects localization for the
reconstruction of an acoustic refraction index

Yann Grisel
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(Joint work with Pierre-Alain Mazet, Vincent Mouysset and Jean-Pierre Raymond)

Abstract: We are investigating numerical methods to retrieve information about an acoustic
scatterer’s refraction index from far field measurements. Problems of this kind are com-
monly non linear and ill-posed.
We have developed a sampling method to localize differences, which we call defects, in
the actual index when compared to a known reference index. So, we use this information
to propose two separate strategies to reduce the number of parameters needed in the re-
construction of the actual refraction index. Moreover, we investigate the minimization of
defects as a new approach for the complete index reconstruction. Our results are illustrated
by numerical experiments.

Keywords: Inverse problems, Acoustic scattering, Iterative methods.

Introduction
In inverse acoustic scattering, one tries to recover information about a scatterer from mea-
surements. Penetrable scatterers are frequently referred to as inhomogeneous media and
characterized by a refraction index [1, 3]. We are interested in the reconstruction of the
refraction index from far-field measurements. This generally leads to iterative methods in-
volving numerous heavy computations.
We have extended the Factorization method [2] to localize the differences between the ac-
tual index and a known reference index. These differences will be called defects. Thus,
differences between some computed index and the actual index can be seen as defects and
we use this information in the reconstruction of the actual index.

Enhancement of iterative strategies for index reconstruction
by selective focusing
First, we propose a strategy to reconstruct a perturbed version of some reference index.
These perturbations are treated as defects and thus, can be localized. So, only the parameters
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corresponding to these defects need to be reconstructed. This naturally provides a substantial
reduction in computational costs.
Secondly, we propose an iterative refinement strategy to compute a more precise reconstruc-
tion of a refraction index with few parameters. Each step of this strategy has two stages.
First, we refine the zone containing to the most contrasting defect. Then, the reconstruction
is computed with this new set of parameters. This leads to an approximation of the actual
index with a constrained number of parameters positioned to fit as much as possible the
geometry of this index.

Index reconstruction by defects minimisation
Lastly, another interpretation for our defects localization result, is that the absence of defects
means that the actual index is equal to the reference index. Therefore, we propose a new way
to reconstruct an index of refraction by looking for the reference index such that the actual
index presents no more defects. We compare this approach to the classical reconstruction
which consists in matching directly the simulation with the measurements. Also, we show
some numerical results obtained with a Gauss-Newton method coupled with a total variation
regularization [4].
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(Joint work with Fatiha Alabau-Boussouira and Piermarco Cannarsa)

Abstract: We investigate stability properties of indirectly damped systems of evolution
equations in Hilbert spaces, under new compatibility assumptions. We prove polynomial
decay for the energy of solutions and optimize our results by interpolation techniques, ob-
taining a full range of power-like decay rates. In particular, we give explicit estimates with
respect to the initial data. We discuss several applications to hyperbolic systems with hybrid
boundary conditions and globally distributed coupling, including the system of two wave
equations subject to Dirichlet and Robin type boundary conditions, respectively.
Moreover, we present some new results concerning the stabilization properties of systems
of weakly coupled hyperbolic equations with both damping and coupling acting only on a
subset of the boundary.

Keywords: Indirect stabilization, energy estimates, interpolation spaces, evolution equa-
tions, hyperbolic systems.

Introduction
In recent years, the interest of the scientific community in the stabilization and control
of systems of partial differential equations has remarkably increased, due to the fact that
such systems arise in several applied mathematical models, such as those used for studying
the vibrations of flexible structures and networks, or fluids and fluid-structure interactions.
Moreover, it becomes essential to study whether controlling only a reduced number of state
variables suffices to ensure the stability of the full system.
As an example, we are concerned with the stabilization properties of systems like





∂2
t u−∆u+ ∂tu+ αv = 0 in Ω× R
∂2
t v −∆v + αu = 0 in Ω× R
u+ ∂u

∂ν
= 0 = v on ∂Ω× R ,

(1)

where Ω is a bounded open domain of RN , and the ‘frictional’ term ∂tu acts as a stabilizer.
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Main results
In a real Hilbert space H , with scalar product 〈·, ·〉 and norm | · |, we study the system of
evolution equations

{
u′′(t) + A1u(t) +Bu′(t) + αP1v(t) = 0

v′′(t) + A2v(t) + αP2u(t) = 0
(2)

with appropriate assumptions on operators B, Ai, Pi (i = 1, 2) and the coefficient α ∈ R.
When Pi are bounded and coercive operators (that is, when the coupling between the two
components of the system is globally distributed), we present results assuring the polyno-
mial stabilization property of system (2) under suitable compatibility conditions on Ai [4]
[3].
Moreover, in the case of operators Pi unbounded (when, for example, the coupling acts on
the boundary of the domain or on a proper subset of it), we present new stabilization results,
showing a polynomial decay rate for the total energy associated to system (2), related to the
regularity of the initial condition of the system.
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Optimal Dirichlet boundary control for the
Navier–Stokes equations
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Abstract: We consider an optimal Dirichlet boundary control problem for the Navier–
Stokes equations. The control is considered in the energy space where the related norm
is realized by the so called Steklov–Poincaré operator. We introduce a stabilized finite el-
ement method for the optimal control problem, for elements of lowest order. Further we
present some numerical results which demonstrate the differences of a control in L2(Γ) and
in the energy space H1/2(Γ), with an application to arterial blood flow.

Keywords: Optimal Dirichlet boundary control, energy space, Navier–Stokes equations,
stabilized finite elements, arterial blood flow.

The Optimal control problem
Let Ω ⊂ Rn (n = 2, 3) be a bounded Lipschitz domain with boundary Γ = ∂Ω. We consider
the following optimal Dirichlet boundary control problem for the Navier–Stokes equations:
Minimize the cost functional

J (u, z) :=
1

2
‖u− u‖2

L2(Ω) +
1

2
% |z|2H1/2(Γc)

under the constraint
−ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ΓD,

ν(∇u)n− pn = 0 on ΓN,

u = z on Γc,

where u and p are denoting velocity and pressure, respectively. The Dirichlet boundary con-
trol z is considered in the energy space H1/2(Γ), which is motivated by the trace theorem,
applied to the standard weak formulation in H1(Ω).
This approach was at first used for the Dirichlet control of the Poisson equation, see [4].
There it was shown that the control in the classical framework of L2(Γ) has several disad-
vantages in comparison to the framework of the energy space. The following extension for
the Navier–Stokes equations was done in [2].
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Control in H1/2(Γ)

The application of the standard optimal control theory requires a suitable representation of
the H1/2(Γ) semi–norm. This can be done by the so called Steklov–Poincaré operator S
(Dirichlet to Neumann map), which is a bounded and semi–elliptic mapping

S : H1/2(Γ)→ H−1/2(Γ).

It is realized by a homogeneous Poisson problem, the details can be found in [2, 5].

Discretization and numerical results
We discretize the optimality system by a finite element method with Dohrmann–Bochev
stabilization, see [1]. For such formulation we can use elements of lowest order, i.e. linear
shape functions, which is suitable for large systems of otherwise high number of degrees of
freedom.
The corresponding Galerkin matrix of the Steklov–Poincaré is given by the Schur comple-
ment system of the standard stiffness matrix, i.e.

Sh = ACC − ACIA−1
II AIC ,

and thus no further implementation of boundary integrals is required, the details can be
found in [2, 4].
We compare the two control approaches, the classical L2(Γ) and the H1/2(Γ) formulation.
For the former case we are able to prove, independent of the given data, that the control
is always zero in each corner of the domain, for example when considering a rectangular
domain. For the H1/2(Γ) control this behavior does not occur. Some numerical examples
shall be presented, which confirm these theoretical results.
Additionally, we present numerical results for the errors of the control for both approaches.
Here we observe better accuracy and order of convergence for the H1/2(Γ) case.

Applications to arterial blood flow
Here, in the last part, we consider an application to arterial blood flow. More precisely, the
optimal control of the inflow to a bypass. The blood flow is described by the steady Navier–
Stokes equations for Reynolds number Re ≈ 100. For this application several problems
like optimal vortex reduction and the minimization of wall shear stresses are discussed.
Moreover, for these numerical results we present the differences of the control in L2(Γ) and
H1/2(Γ).
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periodic conditions
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Abstract: In this paper, we study the existence and uniqueness of the solution of a non-
linear parabolic equation with periodic conditions. Afterward, using an adapted Carleman
inequality, we look at the stable reconstruction of the potential µ by partial measurements
of the solution.
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Introduction
In this work, we deal with the following nonlinear parabolic system (Eµ,ν,γ) :

∂tu = ∆u− µ(x)u+ ν(x)u2, 0 < t < T, x ∈ Rn,

u(0, x) = γ(x)

u
∣∣
Γ0
j

= u
∣∣
Γ1
j
,

∂u

∂xj

∣∣∣
Γ0
j

=
∂u

∂xj

∣∣∣
Γ1
j

, 1 ≤ j ≤ n

(1)

We note the cell Ω = Πn
i=1(0, Li),

Li is the period with regard to variable xi.
Q = (0, T )× Ω, Σ = (0, T )× ∂Ω,
Γ0
j = ∂Ω ∩ {xj = 0}, Γ1

j = ∂Ω ∩ {xj = Lj}.
µ(x), ν(x), and γ(x) are periodic functions.
This problem intervenes in biology for example, it can model the population growth in a
heterogeneous medium. The coefficient µ(x) corresponds to the intrinsic growth rate and
usually it can not be directly measured. So its reconstruction via the density u(t, x) is of
great interest. This work generalizes in the nonlinear case the result obtained by Choi [1] in
the linear case.

Theorem 1
In this part in addition, we suppose that µ, ν ∈ L∞(Rn), γ is bounded and continuous,
γ > 0, ν ≥ 0 continuous. Then the previous problem admits a unique periodic solution.
For the proof, we adapt a result of [2],
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Theorem 2
In this part we improved the result obtained by Choi by choosing an arbitrary open set ω,
ω ⊂ Ω, ω 6= Ω, θ ∈ (0, T ) fixed. Then there exists a constant C > 0 such that:

||µ− µ̃||L2(Ω) ≤ C(||u− ũ||H1(0,T ;L2(ω))+

||(u− ũ)(θ, .)||H2(Ω))

where u (resp. ũ) is a solution of (Eµ,ν,γ) (resp. (Eµ̃,ν,γ)).
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Abstract: We study a moving boundary fluid-structure interaction problem arising in mod-
eling blood flow through viscoelastic arteries and prove existence of a weak solution by
using a novel approach based on a semi-discrete, operator splitting Lie scheme. The moti-
vation for this proof comes from a numerical scheme, first introduced in 2009 ([3]), where a
stable, loosely coupled scheme was proposed to solve the problem under consideration. We
effectively prove convergence of that numerical scheme to a solution of the corresponding
fluid-structure interaction problem.

Keywords: Fluid-structure interaction, Hemodynamics, Existence of a weak solution, Op-
erator splitting, Semi-discretization

Introduction and statement of the result
This study is motivated by a fluid-structure interaction (FSI) problem in hemodynamics.
We consider the flow of an incompressible, viscous flow through a two-dimensional axially
symmetric pipe with deformable, thin walls. Let η denote the vertical displacement of the
deformable boundary. Then the fluid domain at time t is given by

Ωη(t) = {(x, z) : 0 < x < 1, 0 < z < 1 + η(x, t)}

with deformable boundary Γ(t) = {(x, 1 + η(x, t)) : 0 < x < 1}, t ∈ [0, T ). The fluid flow
is governed by the incompressible Navier-Stokes equations:

∂tu + u · ∇u = ∇ · σ, ∇ · u = 0, Ωη(t), t ∈ (0, T ),

where σ is the fluid stress tensor. The flow is driven by a prescribed dynamic pressure
drop at the inlet and outlet boundaries: p + 1

2
|u|2 = Pin/out(t), u × n = 0, on Γin/out.

At the bottom boundary we prescribe the symmetry boundary conditions: u2(t, x, 0) =
∂zu1(t, x, 0) = 0, x ∈ (0, 1), t ∈ (0, T ). The structure is modeled by a cylindrical
linearly viscoelastic Koiter shell model (see [1]):

%sh∂
2
ttη + C0η − C1∂

2
xxη + C2∂

4
xxxxη +D0∂tη −D1∂

3
txxη +D2∂

5
txxxxη = f,
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where f is the force applied to the structure, and constants Ci, Di ≥ 0, %s, h > 0. The
fluid and structure are coupled through the kinematic and dynamic coupling conditions,
respectively:

u|Γ(t)(t, .) = ∂tη(t, .)ez, f = −
√

1 + (∂xη)2σn · ez, on Γ(t), t ∈ (0, T ).

The system is supplemented with initial conditions u(0, .) = u0, η(0, .) = η0, ∂xη(0, .) =
v0.
The main result of this work is the proof of the existence of a weak solution (in a sense
defined in [2]) of the problem under consideration. In contrast with the related works that
already exist in literature, our work utilizes a physiologically reasonable structure model
[1], and the pressure inlet and outlet boundary conditions which introduce some technical
difficulties. However, the main novelty of this work is the approach used in proving the
existence theorem. Our proof is based on a semi-discrete, operator splitting Lie scheme,
which was used in [3] for a design of a stable, loosely coupled numerical scheme, called the
kinematically coupled scheme. The main steps in the proof include the ALE weak formula-
tion and Lie operator splitting, which splits the FSI problems into certain fluid and structure
sub-problems. Then we discretize the sub-problems in time, and apply careful analysis of
each substep to obtain suitable semi-discrete energy estimates. By using a compactness ar-
gument we show convergence to a weak solution. Thus, we effectively prove convergence
of the kinematically coupled scheme to a weak solution of the FSI problem.
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Abstract: We introduce some generalization of the Hautus test to linear parabolic systems
and give some applications to the distributed and boundary approximate controllability of
such systems.
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In finite dimension we have a well-known condition to check whether or not a system is
controllable, this is the so-called Hautus test:

Theorem. Let A ∈Mn(R), C ∈Mn×m(R), f ∈ L2(0, T )m and T > 0.
The O.D.E. {

d

dt
y(t) = Ay(t) + Cf(t), t ∈ (0, T ).

y(0) = x ∈ Rn.

is controllable if and only if

Ker (sI − A∗) ∩Ker (C∗) = {0} , ∀s ∈ C.

In this work we generalize this theorem to a class of linear parabolic systems in view of
approximate controllability.
Through the Hautus test we are able to give a necessary and sufficient condition for several
kind of parabolic systems, namely:

Example 1. [Boundary controllability in dimension N ≥ 1]
{

∂ty = (∆ + A)y in (0, T )× Ω,
y(t, σ) = 1γ(σ)Bf(t, σ) on (0, T )× ∂Ω,

where A ∈Mn(R), B ∈Mn×m(R), f ∈ L2 (0, T ;L2 (∂Ω)m) and γ ⊂ ∂Ω.

Example 2. [Distributed controllability with a first order coupling term]




∂ty =

(
∆ 0
A ∆

)
y + 1ω(x)Bf(t, x) in (0, T )× Ω,

y(t, σ) = 0 on (0, T )× ∂Ω,
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where A = G(x) · ∇ + a(x) with a ∈ L∞(Ω), G ∈ W 1,∞(Ω)N , B =

(
1
0

)
, f ∈

L2 (0, T ;L2 (Ω)), ω ⊂ Ω.

Example 3. [Controllability with different diffusion coefficients]




∂ty =

(
∆ 0
a ν∆

)
y in (0, T )× Ω,

y(t, σ) = 1γ(σ)Bf(t, σ) on (0, T )× ∂Ω,

where ν > 0, a ∈ R, B =

(
1
0

)
, f ∈ L2 (0, T ;L2 (∂Ω)) and γ ⊂ ∂Ω .
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We study the performance/robustness trade off in some finite dimensional observer-based
structure controllers used to stabilize the two-dimensional linearized Navier-Stokes equa-
tions around an unstable stationary solution by a boundary control. For this type of systems,
we have already defined finite dimensional observers coupled with finite dimensional con-
trol laws.
In this work, taking advantage of the finite dimensional character of our observer, we adapt
tools from finite dimensional systems to do the best performance/robustness trade off for the
stabilization of a flow around a cylinder.
As in [1], Kalman filter gain and state gain are determined by solving two finite dimension
Algebraic Riccati Equations involving the projection of the linearized equations onto the
unstable subspace of the linearized operator.
This Linear Quadratic Gaussian controller is the first observer-based structure controller; It
is of high-performance (in H2 norm sense) but not necessarily robust (in H∞ norm sense)
against the perturbation in the actuator dynamics [2].
To increase the robustness, we perform a generalization of Loop Transfer Recovery proce-
dure [3, 4] via a nonlinear and nonconvex optimization program, which results in the second
observer-based structure controller. However, more this second controller is robust, lower is
its performance.
Finally, an observer-based structure [4, 5] H2/H∞ controller is proposed and computed
once again via nonlinear and nonconvex optimization. It is of high-performance and at the
same time it is robust.

The approach is tested numerically for stabilization of two-dimensional linearized Navier-
Stokes equations by a boundary control and using boundary observations of velocity in the
case of a flow around a circular cylinder.
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On the identifiability of a rigid body moving in a
stationary viscous fluid

Erica Leticia Schwindt
Institut Élie Cartan, Nancy, Université de Lorraine (France)

Abstract: I present a work that I carried out with the collaboration of Carlos Conca (Uni-
versidad de Chile) and Takéo Takahashi (Université de Lorraine) during my PhD. This work
is devoted to a geometrical inverse problem associated to a fluid–structure system. More
precisely, we consider the interaction between a moving rigid body and a viscous and in-
compressible fluid. Assuming a low Reynolds regime, the inertial forces can be neglected
and therefore, the fluid motion is modelled by the Stokes system. We first prove the well-
posedness of the corresponding system. Then we show an identifiability result: with one
measure of the Cauchy forces of the fluid on one given part of the boundary and at some
positive time, the shape of a convex body and its initial position is identified.

Keywords: Fluid–structure interaction, Navier-Stokes equations, geometric inverse prob-
lems, rigid body dynamics.

In this work, we are interested in identifying an inaccessible solid structure, denoted by S(t),
which is moving in a viscous incompressible fluid occupying a region denoted by F(t). We
assume that both the fluid and the structure are contained in a bounded fixed domain (i.e.
connected and open set) Ω of R3 so that F(t) = Ω \ S(t).
We assume that the structure is a rigid body so that it can be described by its center of mass
a(t) ∈ R3 and by its orientationQ(t) ∈ SO3(R) as follows:

S(t) := S(a(t),Q(t)),

with
S(a,Q) := QS0 + a, (a,Q) ∈ R3 × SO3(R).

where S0 is a smooth non empty domain which is given.
Now, let us take two smooth non empty domains S(1)

0 , S(2)
0 . Let us also consider

(
a

(1)
0 ,Q

(1)
0

)
,

(
a

(2)
0 ,Q

(2)
0

)
∈ R3 × SO3(R) such that

S(1)
(
a

(1)
0 ,Q

(1)
0

)
⊂ Ω and S(2)

(
a

(2)
0 ,Q

(2)
0

)
⊂ Ω.

Thanks to the well-posedness of the corresponding systems, we know there exist T (1)
∗ >

0
(
respectively T

(2)
∗ > 0

)
for which there exists a unique solution of the corresponding

system.
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Then we have the main result:

Theorem. Suppose that the fluid velocity on the ∂Ω is equal to a known function u∗ such
that u∗ is not the trace of a rigid velocity on Γ ⊂ ∂Ω. Assume also that S(1)

0 , S(2)
0 are convex

sets. If there exists 0 < t0 < min
(
T

(1)
∗ , T

(2)
∗

)
such that

σ
(
u(1)(t0), p(1)(t0)

)
n|Γ = σ

(
u(2)(t0), p(2)(t0)

)
n|Γ

then there existsR ∈ SO3(R) such that

RS(1)
0 = S(2)

0

and

a
(1)
0 = a

(2)
0 , Q

(1)
0 = Q

(2)
0 R.

In particular, T (1)
∗ = T

(2)
∗ and

S(1)(t) = S(2)(t)
(
t ∈
[
0, T (1)

∗
))
.

Here,
(
u(i), p(i)

)
, are the velocity and the pressure of the fluid, whereas σ

(
u(i), p(i)

)
de-

notes the corresponding Cauchy stress tensor (i = 1, 2).
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Coupling estimation and control for a two
dimensional Burgers type equation

– Numerical experiments –

Jorge Tiago
CEMAT - IST, Technical University of Lisbon (Portugal)

(Joint work with Jean-Marie Buchot and Jean-Pierre Raymond)

Abstract: We consider the problem of stabilizing a two dimensional Burgers equation,
when only partial observations are available. We use a Galerkin approximation and we solve
two Riccati equations to define the finite dimensional differential system that we should
solve. The method defined for the linear system succeeds to stabilize the nonlinear problem
when noisy measurements are considered.

Keywords: Feedback control, estimation, finite element method, Burgers equation.

Our aim is to stabilize the solution z of the following problem





∂z

∂t
− ν∆z + (∂1ws + ∂2ws)z + (∂1z + ∂2z)ws + (∂1z + ∂2z)z = 0 in Ω× (0,∞),

ν
∂z

∂n
= 0 on Γn × (0,∞),

z = Mu on Γd × (0,∞),

z(0) = w0 − ws = z0 in Ω

when we observe only the solution one Γn.
For this purpose we consider the corresponding FEM type semi-discretization

EżN = AzN +BuN + F (zN) + EζN , zN(0) = zN0 ,
yNobs = HzN ,

and look for a feedback law of the type uN = KzNe where zNe is the solution of the estimator
system

EżNe = AzNe + L(HzNe − ynobs) +BKzNe , zNe (0) = zNe,0.

The finite dimensional approximation of the stabilization problem in the frame of linear
partial differential equations as been proposed by several authors. Just to mention some,
see for instance [3], [4], [1] or [5]. As to the nonlinear Burquers type equation, numerical
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simulations for the stabilization problem with full measurments were done in [6] within a
frame similar to ours. Considering the coupling with the estimator system, the numerical
approximation was treated in [2], but for the one dimensional case. We present here nu-
merical simulations for the two dimensional problem, assuming that the observations can be
perturbed by some noise with known covariance.
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Best location of actuators for the stabilization of
the Navier-Stokes equations

Jessie Weller-Calvo
Institut de Mécanique des Fluides de Toulouse (France)

(Joint work with Christophe Airiau, Jean-Marie Buchot, Michel Fournié and Jean-Pierre Raymond)

Abstract: We consider the stabilization by a boundary linear feedback law of the Navier-
Stokes equations around an unstable steady solution. We first build a low-dimensional
model in two steps for computing stabilizing controls for the linear Navier-Stokes equa-
tions. We then improve the approach by establishing optimal control zones that depend on
the Reynolds number. The method is tested on the non-linear model for different Reynolds
numbers, the flow being destabilized by imposing a perturbation at the inflow. The flow is
stabilized at Re = 80 while instabilities are considerably reduced for Re = 150.

Keywords: Incompressible Navier-Stokes, Feedback control, Best actuator location.

The aim of this work is to determine a boundary linear feedback control which is able to
stabilize the incompressible non-stationary Navier-Stokes equations around a steady solu-
tion. This problem has received great interest during the last decades due to its practical
application in fluid mechanics [2].

Flow setup and main features
We apply our method to the case of flow past a circular cylinder confined in a channel. Vi-
sualizations of flow vorticity show that, starting with a steady solution of the Navier-Stokes
equations, perturbations to the inflow condition induce vortex shedding in the cylinder wake.
Instability is also apparent in the spectrum of the linearized operator which exhibits two un-
stable eigenvalues.

Formulation of the control problem
Control is performed using blowing/suction actuators placed on the cylinder boundary. The
control law is determined for the model linearized around the steady solution and next ap-
plied to the nonlinear model. Two difficulties arise: the differential-algebraic nature of the
Navier-Stokes equations and the large scale of the discretized problem. We first show that
using a projection onto a divergence-free function space as described in [5] we can for-
mulate the problem as a classical linear control problem for which a feedback law can be
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determined by solving an Algebraic Riccati Equation. We then introduce the method used
in [1, 6] for reducing the problem dimension when there are only a few unstable modes.
Results: The actuation law we calculate suppresses, or at least reduces (depending on the
Reynolds number), the effects of the perturbations. The effect of the control is measured by
examining the time evolution of the control functional, but also the behavior of the lift and
drag coefficients.

Optimal location of actuators
Many authors show the importance of the control zone (see for example [3, 4]). One can
hope that improving the actuation law by optimizing this parameter could be a way to im-
prove the domain of validity of the above model. For a given number of actuators of fixed
size, we seek the control zone providing a control of minimal norm.
Results: For our example, placing the actuators according to our optimality criterion, brings
an improvement in the sense that the control is less costly while still stabilizing the flow,
although there is no gain is stabilization time.
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