Best location of actuators for the stabilization of the Navier-Stokes equations

J. Weller-Calvo 1 , J.-M. Buchot 2 , M. Fournié 2 , J.-P. Raymond 2 et C. Airiau 1

¹Institut de Mécanique des Fluides de Toulouse ²Institut de Mathématiques de Toulouse

Control of Fluid-Structure Systems and Inverse Problems June 25, 2012

Flows around vehicles, buildings, bridges \Rightarrow vibrations, noise ...

ightarrow Control mechanisms: body profile, texture, mobile elements, actuators ...

A confined circular cylinder

The incompressible Navier-Stokes equations (NS)

$$\mathbf{w}(\mathbf{x},t) = \text{flow velocity}, \ q(\mathbf{x},t) = \text{pressure}, \ \Omega^{\infty} = \Omega \times (0,\infty), \quad \Gamma^{\infty}_{loc} = \Gamma_{loc} \times (0,\infty)$$

$$\begin{split} &\frac{\partial \mathbf{w}}{\partial t} + (\mathbf{w} \cdot \nabla) \mathbf{w} - \nabla \cdot (\nu \nabla \mathbf{w} - p I) = 0, \quad \nabla \cdot \mathbf{w} = 0 \quad \text{in} \quad \Omega^{\infty} \\ &\mathbf{w} = \mathbf{w}_{in} \quad \text{on} \quad \Gamma_{in}^{\infty}, \quad \mathbf{w} = 0 \quad \text{on} \quad \Gamma_{wall}^{\infty}, \quad \mathbf{w} = \mathbf{M} \mathbf{u} \quad \text{on} \quad \Gamma_{cyl}^{\infty} \\ &(\nu \nabla \mathbf{w} - p I) \cdot \mathbf{n} = 0 \quad \text{on} \quad \Gamma_{out}^{\infty} \\ &\mathbf{w}(\cdot, 0) = \mathbf{w}_{0} \quad \text{in} \quad \Omega \end{split}$$

• Steady inflow condition \rightarrow (NS) admit a steady solution (\mathbf{w}_s, q_s).

Steady solution for $Re_{cyl}=150$ (isocontours of vorticity $\frac{\partial w_2}{\partial x_1}-\frac{\partial w_1}{\partial x_2}$)

- For Re_{cyl} large enough this solution is unstable. Perturbing the flow (inflow condition, initial condition)
 - ⇒ vortices in the cylinder wake

Vorticity at $t > t_{pert} + t_{transition}$, following a perturbation at $t=t_{pert}$, for $Re_{cyl}=150$

- Aim: to minimize the vortical activity in the cylinder wake.
- Method: blowing/suction from the cylinder.

Profile of M

• Feedback/Closed-loop control: Control is defined by a feedback operator K:

$$\mathbf{u}(\mathbf{x},t) = K[\mathbf{x}](\mathbf{w}(\cdot,t) - \mathbf{w}_s) \qquad \mathbf{x} \in \Gamma_{cyl}$$

Usual approach for control design in this context

- ullet One considers the departure from steady state ${f z}={f w}-{f w}_s,\ p=q-q_s$
- The (NS) equations are linearized about the steady state leaving:

$$\begin{array}{ll} \frac{\partial \mathbf{z}}{\partial t} + (\mathbf{z} \cdot \nabla) \mathbf{w}_s + (\mathbf{w}_s \cdot \nabla) \mathbf{z} - \nabla \cdot (\nu \nabla \mathbf{z} - \rho \mathbf{I}) \cdot \mathbf{n} = 0, \quad \nabla \cdot \mathbf{z} = 0 \quad \text{in} \quad \Omega^{\infty} \\ \mathbf{z} = 0 \quad \text{on} \quad \Gamma^{\infty}_{in} \cup \Gamma^{\infty}_{wall}, \quad \mathbf{z} = M \mathbf{u} \quad \text{on} \quad \Gamma^{\infty}_{cyl} \\ (\nu \nabla \mathbf{z} - \rho \mathbf{I}) \cdot \mathbf{n} = 0 \quad \text{on} \quad \Gamma^{\infty}_{out} \\ \mathbf{z}(0) = \mathbf{w}_0 - \mathbf{w}_s \quad \text{in} \quad \Omega \end{array}$$

• The control law is determined for (LNS) then applied to (NS) \rightarrow Local stabilization result

Idea of this work

- → Enlarging the stability domain could improve the actuation law.
 - ullet Two actuators, placed symmetrically on the cylinder, with $\Delta heta = 10^{\circ}$. The position heta can vary.

- A stabilizing control law of minimum norm is determined for each possible location of the actuators: $\theta = 5^{\circ}, \dots, 175^{\circ}$, using (LNS) Equations.
- The position corresponding to a minimal cost control is retained. Control laws are tested on (NS) Equations.

From the LNSE to a linear control system

A linear control system

$$\dot{\mathbf{z}} = A\mathbf{z} + B\mathbf{u}, \qquad \mathbf{z}(0) = \mathbf{z}_0$$

Two strategies

- In a theoretical context:
 - ▶ Step 1: Projection of the LNSE onto a divergence-free subspace (Leray projector) \rightarrow Oseen operator.
 - Step 2: Lift the Dirichlet boundary condition for the control (properties of the Oseen operator are used.)
- In a numerical context:
 - Step 1: Variational formulation with Lagrange multiplier approach to account for the Dirichlet boundary condition, then discretization by finite elements.
 - Step 2: Projection to simultaneously deal with the divergence and boundary conditions (discrete equivalent of the Leray projector.)

Computing the control

The aim of this work:

- Given an actuator position, impose a certain decay rate to z
- Find the best actuator location for doing this (best = that minimizes the norm of u.)

Outline of approach:

• With Dirichlet boundary conditions on $\Gamma_D \subset \partial \Omega$, we have $\mathbf{z} \in Z$ where

$$Z = \{z \in L^2(\Omega, \mathbb{R}^2) \mid \nabla \cdot \boldsymbol{z} = 0, \quad \boldsymbol{z} \cdot \boldsymbol{n} = 0 \text{ on } \Gamma_{\scriptscriptstyle D} \}$$

• The spectrum of the Oseen operator A, $\sigma(A)$, is contained in a sector. The eigenvalues are real or pairwise conjugate, of finite multiplicity.

Example: Numerical computation of eigenvalues at $Re_{cyl} = 80$

 $\longrightarrow A$ is not stable, $\sigma(A) \cap \mathbb{R}^{+*} \neq \emptyset$

Computing the control

Outline of the approach (continued):

• For $\omega \geqslant 0$, we order the eigenvalues of A:

$$\mathsf{Re}(\lambda_1) \geqslant \cdots \geqslant \mathsf{Re}(\lambda_{N_{\omega,u}}) > -\omega > \mathsf{Re}(\lambda_{N_{\omega,u}+1}) \geqslant \cdots$$

• Z can be decomposed into an *unstable* subspace (unstable for $A + \omega I$) and a *stable* subspace.

$$Z=Z_{\omega,u}\oplus Z_{\omega,s}$$
 and $Z^*=Z_{\omega,u}^*\oplus Z_{\omega,s}^*$

The projector $\pi_{\omega,u}$ onto $Z_{\omega,u}$ along $Z_{\omega,s}$ can easily be defined by determining a basis of $Z_{\omega,u}$ and $Z_{\omega,u}^*$

- The control system is projected onto the *unstable* subspace
 - \rightarrow we obtain a low dimensional system
 - \rightarrow we can apply classical control techniques

Computing the control

Outline of the approach (continued):

- Computation of proportional feedback controls by this method then implies solving very small Riccati equations (dimension 2 for the cylinder!)
- Computations can be repeated for different actuator positions.

$$\dot{\mathbf{z}} = A\mathbf{z} + B_{\theta}\mathbf{u}, \qquad \mathbf{z}(0) = \mathbf{z}_0$$

• The norm of the control is directly linked to the solution of the Riccati equation.

Test cases:

- $Re_{cyl=80}$: Computation of a stabilizing control. Comparison of a classical actuator placement ($\theta=70^{\circ}$) and the optimal placement determined by our algorithm ($\theta=92^{\circ}$).
- $Re_{cyl=150}$: Computation of a control that reduces drag.

Best location of actuators for the stabilization of the Navier-Stokes equations

J. Weller-Calvo 1 , J.-M. Buchot 2 , M. Fournié 2 , J.-P. Raymond 2 et C. Airiau 1

¹Institut de Mécanique des Fluides de Toulouse ²Institut de Mathématiques de Toulouse

Control of Fluid-Structure Systems and Inverse Problems June 25, 2012