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Problem statement

Let X, U be Banach spaces and let F : X × U → U . Let
U ⊂ L∞([0,∞), U) be a closed bounded set.
Consider the control system

ż = F (z, u)

and assume that z0, z1 ∈ X are such that there exist u ∈ U and
T > 0 such that

z(0) = z0, z(T ) = z1.

Time optimal control:

Show that there exist T ∗ > 0 and u∗ ∈ U such that T ∗ is the
minimal T as above. Study the regularity of z0 7→ T ∗(z0, z1).

Derive optimality conditions (Pontryagin’s maximum
principle).

Prove the bang-bang property u∗ ∈ ∂U.
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The finite dimensional case : linear systems

Denote X = Rn, U = Rm and let ż = Az +Bu.

Theorem 1 (Maximum Principle, Bellman et al. (1956))

Let u∗(t) be the time optimal control, defined on [0, τ∗]. Then
there exists z ∈ X, z 6= 0 such that

〈B∗T∗τ∗−tz, u∗(t)〉 = max
‖u‖≤1

〈B∗T∗τ∗−tz, u〉

Corollary 1

If (A,B) controllable then the time optimal control u∗ is
bang-bang, in the sense that

‖u∗(t)‖ = 1 (t ∈ [0, τ∗] a.e.)

Moreover, the time optimal control is unique.



The finite dimensional case : a bilinear system (I)

Consider a simplified modeling self-propelling by radial defomations
(Shapere and F. Wilczek (1989))

ḣ = Mα · β,

α̇ = β.

Given an integer L > 2, M ∈ML(R) with M∗ = −M and
h1 ∈ R∗, our aim consists in determining the minimal time T ∗ for
which there exists β ∈ L∞

(
(0, T ∗),RL

)
such that

|β(t)|2 6 1 (for a.e. t ∈ (0, T ∗)) ,

and
h(0) = 0 and α(0) = 0 .

satisfies
h(T ∗) = h1 and α(T ∗) = 0 .



The finite dimensional case : a bilinear system (II)

Proposition. (Lohéac, Scheid and M.T., 2011) The minimal
time T ? is given by

T ? =

√
2π|h1|
λ∗

,

where λ∗ = max {|λ|, λ ∈ σ(M)} > 0. Moreover, an optimal time
control is

β?(t) = exp

(
sign(h1)

√
2π

λ∗|h1|
tM

)
β0 (t ∈ [0, T ∗]) , (1)

where |β0|2 = 1 is chosen such that β0 ∈ Ker
(
M2 + |λ∗|2

)



Notation and problem statement (I)

Notation:

X (the state space) and U (the input space) are complex
Hilbert spaces

T = (Tt)t>0 is a strongly continuous semigroup on X
generated by A.

X1 is D(A) equipped with the graph norm, while X−1 is the
completion of X with respect to ‖z‖−1 := ‖(βI −A)−1z‖.
The semigroup T can be extended to X−1, and then its
generator is an extension of A, defined on X.

B ∈ L(U ;X−1) be a control operator and let
u ∈ L2([0,∞), U) be an input function.



Notation and problem statement (II)

We consider the system ż(t) = Az(t) +Bu(t) (t > 0).

u ∈ Uad = {u ∈ L∞([0,∞), U) | ‖u(t)‖ 6 1 a. e. in [0,∞)}.

The state trajectory is z(t) = Ttz(0) + Φtu, where

Φt ∈ L(L2([0,∞), U);X−1), Φtu =
∫ t

0 Tt−σBu(σ) dσ.

Assume that z0, z1 ∈ X are s.t. there exists u ∈ Uad and τ > 0
s.t. z1 = Tτz0 + Φτu (z1 reachable from z0.

Problem statement: Determine

τ∗(z0, z1) = min
u∈Uad

{τ | z1 = Tτz0 + Φτu},

and the corresponding control u∗.
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Exactly controllable systems(I)

Assume that B ∈ L(U,X) and that (A,B) is exactly controllable
in any time τ > 0.

Proposition 1 (Lohéac and M.T., 2011)

Let u∗(t) be the time optimal control, defined on [0, τ∗]. Then
there exists z ∈ X, z 6= 0 such that

〈B∗T∗τ∗−tz, u∗(t)〉 = max
‖u‖≤1

〈B∗T∗τ∗−tz, u〉

Corollary 2

Assume that (A,B) is approximatively controllable from sets of
positive measure. Then

‖u∗(t)‖ = 1 (t ∈ [0, τ∗] a.e.)

Moreover, the time optimal control is unique.



Exactly controllable systems(II): Idea of the proof

For each τ > 0, we endow X with the norm

|||z||| = inf{‖u‖L∞([0,τ ],U) | Φτu = z}.

Note that ||| · ||| is equivalent with the original norm ‖ · ‖.
For τ > 0 we set

B∞(τ) = {Φτu | ‖u‖L∞([0,τ ],U) 6 1},

and we show that if (τ∗, u∗) is an optimal pair then
Φτ∗u

∗ ∈ ∂B∞(τ∗).

Using the fact that B∞(τ∗) has a non empty interior, we
apply a geometric version of the Hahn-Banach theorem to get
the conclusion.



Exactly controllable systems(III): the Schrödinger equation

Ω ⊂ Rm a rectangular domain;

O a non-empty open subset of Ω.

∂z

∂t
(x, t) = i∆z(x, t) + u(x, t)χO for (x, t) ∈ Ω× (0,∞)

z(x, t) = 0 on ∂Ω× (0,∞),

‖u(·, t)‖ 6 1 a.e..

Proposition 2

The above system is approximatively controllable with controls
supported in any set of positive measure E ⊂ [0,∞).

Corollary 3

Time optimal controls are bang-bang, i.e., ‖u(·, t)‖L2(O) = 1 a.e.



L∞ null controllability over measurable sets(I)

Take U = L2(Γ) where Γ is a compact manifold.

Definition 1

Let τ > 0, e ⊂ Γ× [0, τ ] a set of positive measure. The pair
(A,B) is said L∞ null controllable in time τ over e if, for every
z0 ∈ X, there exists u ∈ L∞(Γ× [0, τ ]) (null control) such that

Tτz0 +

∫ τ

0
Tτ−sBχe(s)u(s) ds = 0

where χe is the characteristic function of e.

If (A,B) is L∞ null controllable in time τ over e then the quantity

Cτ,e := sup
‖z0‖=1

inf
{
‖u‖L∞(e) | u null control for z0

}
(2)

is called the control cost in time τ over e.



L∞ null controllability over measurable sets(II): Duality

Proposition 3

Let e ⊂ Γ× [0, τ ] be a set of positive measure and Kτ,e > 0. The
following two properties are equivalent

1 The inequality

‖T∗τϕ‖ 6 Kτ,e

∫ τ

0
‖χeB∗T∗σϕ‖L1(Γ) dσ (3)

holds for any ϕ ∈ X, where e′ = {(x, τ − t) | (x, t) ∈ e}.
2 The pair (A,B) is L∞ null controllable in time τ over e at

cost not larger than Kτ,e.



L∞ null controllability over measurable sets(III): main
result

Theorem 2 (Mizel and Seidman (1997), G. Wang (2008), Micu,
Roventa and M.T. (2011))

Assume that the pair (A,B) is L∞ null controllable in time τ over
e for every τ > 0 and for every set of positive measure
e ⊂ Γ× [0, τ ]. Then, for every z0 ∈ X and z1 ∈ R(z0,Uad), the
time optimal problem has a unique solution u∗ which is bang-bang.



Proof of Theorem 2:

Existence: Consider a minimizing sequence (zn, τn)n≥1 where
τn → τ∗ and zn is a controlled solution and pass to the limit.



Proof of Theorem 2:

Existence: Consider a minimizing sequence (zn, τn)n≥1 where
τn → τ∗ and zn is a controlled solution and pass to the limit.

Bang-bang property: Suppose that |u∗(x, t)| < 1− ε for
(x, t) ∈ e ⊂ Γ× [0, τ∗] where e is a set of positive measure.
From the L∞ controllability over e property it follows that
there exists an L∞ null control v ∈ L∞(Γ× [0, τ∗]) such that

supp (v) ⊂ e and ‖v‖L∞(e) < ε
v drives z∗(δ) to 0 in time τ∗ − δ.

It follows that u(t) = u∗(t+ δ) + v(t+ δ) drives z0 to z1 in
time τ∗ − δ. Contradiction!



Proof of Theorem 2:

Existence: Consider a minimizing sequence (zn, τn)n≥1 where
τn → τ∗ and zn is a controlled solution and pass to the limit.

Bang-bang property: Suppose that |u∗(x, t)| < 1− ε for
(x, t) ∈ e ⊂ Γ× [0, τ∗] where e is a set of positive measure.
From the L∞ controllability over e property it follows that
there exists an L∞ null control v ∈ L∞(Γ× [0, τ∗]) such that

supp (v) ⊂ e and ‖v‖L∞(e) < ε
v drives z∗(δ) to 0 in time τ∗ − δ.

It follows that u(t) = u∗(t+ δ) + v(t+ δ) drives z0 to z1 in
time τ∗ − δ. Contradiction!
Uniqueness: If u∗ and v∗ are optimal time controls then

w∗ = u∗+v∗

2 is also an optimal time control.

|u∗(x, t)| = |v∗(x, t)| = |w∗(x, t)| = 1 a. e. in Γ× [0, τ ]

⇒ u∗(x, t) = v∗(x, t) a. e. in Γ× [0, τ ].�



Bang-bang boundary controls for the heat equation (I)

Ω ⊂ Rm is an open and bounded set

Γ is a non-empty open subset of ∂Ω

∂z

∂t
(x, t) = ∆z(x, t) for (x, t) ∈ Ω× (0,∞) (4)

{
z(x, t) = u(x, t) on Γ× (0,∞)
z(x, t) = 0 on (∂Ω \ Γ)× (0,∞)

(5)

z(x, 0) = z0(x) for x ∈ Ω (6)



Bang-bang boundary controls for the heat equation (II):
the time optimal control problem

Uad = {u ∈ L∞(Γ× [0,∞)) | |u(x, t)| 6 1 a. e. in Γ× [0,∞)}.

R(z0,Uad) = {z(τ) | τ > 0 and z solution of (4)-(6) with u ∈ Uad}.
Given z0 ∈ H−1(Ω) and z1 ∈ R(z0,Uad), the time optimal control

problem for (4)-(6) consists in:

determining u∗ ∈ Uad such that the corresponding solution z∗

of (4)-(6) satisfies

z∗(τ∗(z0, z1)) = z1, (7)

where the control time τ∗(z0, z1) is

τ∗(z0, z1) = inf
u∈Uad

{τ | z(·, τ) = z1}. (8)



Bang-bang boundary controls for the heat equation (III):
Main theorem

Theorem 3 (Micu, Roventa and M.T. (2011))

Let m ≥ 2. Suppose that Ω is a rectangular domain in Rm and
that Γ is a nonempty open set of ∂Ω. Then, for every
z0 ∈ H−1(Ω) and z1 ∈ R(z0,Uad), there exits a unique solution u∗

of the time optimal control problem (8). This solution u∗ has the
bang-bang property:

|u∗(x, t)| = 1 a. e. in Γ× [0, τ∗(z0, z1)]. (9)



Bang-bang boundary controls for the heat equation (IV):
Main steps of the proof

Let A (respectively T) be the Dirichlet Laplacian (respectively the
heat semigroup) in X = L2(Ω).

We know that there exists an orthonormal basis of eigenvectors
{ϕk}k>1 of A and corresponding family of eigenvalues {−λk}k>1,
where the sequence {λk} is positive, non decreasing and satisfies
λk →∞ as k tends to infinity.

For η > 0 we denote by

Vη = Span {ϕk | λ
1
2
k 6 η}.



Bang-bang boundary controls for the heat equation (V): A
version of the Lebeau-Robbiano method

Proposition 4

Let τ > 0 and let e ⊂ Γ× [0, τ ] be a set of positive measure.
Assume B ∈ L(U,X−1/2). Moreover, assume that there exist
positive constants d0, d1 and d2 such that for every η > 0 and
[s, t] ⊂ (0, 1) we have that, for any ϕ ∈ Vη,

‖T∗τϕ‖ 6 d0e
d1η ln

(
1

µ(E)

)
+

d2
µ(E)

∫ τ

0
‖χE′B

∗T∗sϕ‖L1(Γ) ds, (10)

where E = (e ∩ Γ)× [s, t] and E′ = {(x, τ − t) | (x, t) ∈ E}.
Then the pair (A,B) is L∞ null controllable in time τ over e.



Bang-bang boundary controls for the heat equation (VI):
Proof of Theorem 3

From Proposition 4, a sufficient condition for existence, uniqueness
and bang-bang property of time optimal controls is the inequality:

‖T∗τϕ‖ 6 d0e
d1η ln( 1

µ(E) )+
d2
µ(E)

∫ τ

0

‖χE′B
∗T∗sϕ‖L1(Γ)ds,

which, in out particular case, can be written equivalently as

 ∑
n2+m2≤η2

|anm|2e−2τ(n2+m2)

 1
2

≤ d0e
d1η ln( 1

t−s )+
d2
t−s

∫
F∩[s,t]

∫
eσ

∣∣∣∣∣∣∣
√
η2−1∑
n=1


√
η2−n2∑
m=1

anme
−(m2+n2)σ

sin(nx)

∣∣∣∣∣∣∣ dx dσ,
F ⊂ [0, τ ] verifies µ(F ) > µ(E)

4µ(Γ) and µ(eσ) > µ(E)
4τ , ∀σ ∈ F .



Bang-bang boundary controls for the heat equation (V):
Proof of Theorem 3

Theorem 4 (Nazarov, 1993)

Let N ∈ N be a nonnegative integer and p(x) =
∑
|k|6N ake

iνkx

(ak ∈ C, νk ∈ R) be an exponential polynomial. Let I ⊂ R be a
finite interval and E a measurable subset of I of positive measure.
Then

sup
x∈I
|p(x)| 6

(
Cµ(I)

µ(E)

)2N

sup
x∈E
|p(x)|, (11)

where C > 0 is an absolute constant.



Bang-bang boundary controls for the heat equation (V):
Proof of Theorem 3

Theorem 4 (Nazarov, 1993)

Let N ∈ N be a nonnegative integer and p(x) =
∑
|k|6N ake

iνkx

(ak ∈ C, νk ∈ R) be an exponential polynomial. Let I ⊂ R be a
finite interval and E a measurable subset of I of positive measure.
Then

sup
x∈I
|p(x)| 6

(
Cµ(I)

µ(E)

)2N

sup
x∈E
|p(x)|, (11)

where C > 0 is an absolute constant.

Turán (1948): For every subinterval E ⊂ I = [−π, π] of length
µ(E) = 4πeL < 2π and f(x) :=

∑
|n|≤N an e

inx, we have

sup
x∈I
|f(x)| 6 1

L2N
sup
x∈E
|f(x)|.



Bang-bang boundary controls for the heat equation (VI):
Proof of Theorem 3

Nazarov (1993): The interval E is replaced by a measurable
set of positive measure.

Lebeau and Robbiano (1995): Inequality of similar type in
which eiνkx are replaced by eigenfunctions of an elliptic
operator.



Bang-bang boundary controls for the heat equation (VI):
Proof of Theorem 3

Nazarov (1993): The interval E is replaced by a measurable
set of positive measure.

Lebeau and Robbiano (1995): Inequality of similar type in
which eiνkx are replaced by eigenfunctions of an elliptic
operator.

Corollary 2

The following inequality holds for any sequence (ak)|k|6N ⊂ C

 ∑
|k|6N

|ak|2
 1

2

6
C2N

µ(I)

(
2µ(I)

µ(E)

)2N+1 ∫
E

∣∣∣∣∣∣
∑
|k|6N

ake
iνkx

∣∣∣∣∣∣ dx, (12)

where C > 0 is the constant from (11).



Bang-bang boundary controls for the heat equation (VII):
Proof of Theorem 3

Theorem 5 (Borwein and Erdelyi, 1997, 1998)

Let νk := kθ, k ∈ {1, 2, . . . }, θ > 1. Let ρ ∈ (0, 1), ε ∈ (0, 1− ρ)
and ε 6 1/2. Then there exists a constant cθ > 0 such that

sup
t∈[0,ρ]

|p(t)| 6 exp
(
cθε

1/(1−θ)
)

sup
t∈E
|p(t)|,

for every p ∈ S[0,1] := Span {tν1 , tν2 , . . . } and for every set
E ⊂ [ρ, 1] of Lebesgue measure at least ε > 0.



Bang-bang boundary controls for the heat equation (VII):
Proof of Theorem 3

Theorem 5 (Borwein and Erdelyi, 1997, 1998)

Let νk := kθ, k ∈ {1, 2, . . . }, θ > 1. Let ρ ∈ (0, 1), ε ∈ (0, 1− ρ)
and ε 6 1/2. Then there exists a constant cθ > 0 such that

sup
t∈[0,ρ]

|p(t)| 6 exp
(
cθε

1/(1−θ)
)

sup
t∈E
|p(t)|,

for every p ∈ S[0,1] := Span {tν1 , tν2 , . . . } and for every set
E ⊂ [ρ, 1] of Lebesgue measure at least ε > 0.

Müntz (1914): S[0,1] is a proper subspace of L2(0, 1) if and only if∑∞
k=1

1
νk
<∞.

L. Schwarz (1943): The restriction Rρ : S[0,1]
L2

→ S[ρ,1]
L2

is
invertible. The proof is by contradiction (no explicit constant).



Bang-bang boundary controls for the heat equation (VIII):
Proof of Theorem 3

Proof of the Erdelyi and Borwein Theorem:

The norm supt∈[0,1] |p(t)| is bounded by the norm

supt∈[ρ,1] |p(t)|, with explicit constant c := e
κ

1−ρ .

Seidman (2008), Miller (2009), Tenenbaum and Tucsnak
(2011): ‖R−1

ρ ‖ ≤ Ce
κ

1−ρ (results on the controllability’s cost
in small time for the heat equation).

The interval [1, ρ] is replaced by a measurable set E of
positive measure by using the Chebyshev-type polynomials
TE,ν0,ν1,...,νn corresponding to the set E and exponents
ν0 = 0, ν1..., νn:

|TE,ν0,...,νn(s)| ≤ |TE,ν1,...,νn(0)| ≤ c, s ∈ (0, inf(E))

|p(s)| ≤ |TE,ν0,...,νn(s)| sup
t∈E
|p(t)|, s ∈ (0, inf(E)).



The above result of Erdelyi and Borwein has the following
consequence:

Corollary 3

For every τ > 0 there exist constants C, κ > 0 such that for every
F ⊂ [0, τ ] of positive measure the following inequality holds

Ceκ/µ(F )

∫
F

∣∣∣∣∣∣
∑
k>1

ake
−k2t

∣∣∣∣∣∣ dt >

∑
k>1

|ak|2e−k
2τ

 1
2

((ak) ∈ `2(C)).



The above result of Erdelyi and Borwein has the following
consequence:

Corollary 3

For every τ > 0 there exist constants C, κ > 0 such that for every
F ⊂ [0, τ ] of positive measure the following inequality holds

Ceκ/µ(F )

∫
F

∣∣∣∣∣∣
∑
k>1

ake
−k2t

∣∣∣∣∣∣ dt >

∑
k>1

|ak|2e−k
2τ

 1
2

((ak) ∈ `2(C)).

By combining the space and time estimates (Corollaries 2 and 3)
we get the inequality (10) and the proof of the main theorem is
finished.�



Comments

We need the separation of variables x and y. Our proof can
be generalized only for special geometries.

Interior controllability results can be also obtained.



Open questions

L∞ boundary controls for the Schrödinger equation (even in
one space dimension)

Arbitrary shapes for the boundary control of the heat equation
(APRAIZ, ESCAURIAZA, WANG, ZHANG (2012))

Nonlinear problems


