Time optimal control of infinite dimensional linear systems

Marius Tucsnak

Université de Lorraine

Toulouse, June 2012

Problem statement

Let X, U be Banach spaces and let $F : X \times U \to U$. Let $\mathcal{U} \subset L^{\infty}([0,\infty), U)$ be a closed bounded set. Consider the control system

$$\dot{z} = F(z, u)$$

and assume that $z_0,z_1\in X$ are such that there exist $u\in {\rm U}$ and T>0 such that

$$z(0) = z_0, \qquad z(T) = z_1.$$

Time optimal control:

- Show that there exist $T^* > 0$ and $u^* \in \mathcal{U}$ such that T^* is the minimal T as above. Study the regularity of $z_0 \mapsto T^*(z_0, z_1)$.
- Derive optimality conditions (Pontryagin's maximum principle).
- Prove the bang-bang property $u^* \in \partial \mathcal{U}$.

- The finite dimensional case: linear and bilinear
- A class of exactly controllable systems
- \blacksquare Systems which are L^∞ null controllable over measurable sets
- Comments and open questions

The finite dimensional case : linear systems

Denote
$$X = \mathbb{R}^n$$
, $U = \mathbb{R}^m$ and let $\dot{z} = Az + Bu$.

Theorem 1 (Maximum Principle, Bellman et al. (1956))

Let $u^*(t)$ be the time optimal control, defined on $[0, \tau^*]$. Then there exists $z \in X$, $z \neq 0$ such that

$$\langle B^* \mathbb{T}^*_{\tau^* - t} z, u^*(t) \rangle = \max_{\|\mathbf{u}\| \leq 1} \langle B^* \mathbb{T}^*_{\tau^* - t} z, \mathbf{u} \rangle$$

Corollary 1

If (A, B) controllable then the time optimal control u^* is bang-bang, in the sense that

$$||u^*(t)|| = 1$$
 $(t \in [0, \tau^*] \quad a.e.)$

Moreover, the time optimal control is unique.

The finite dimensional case : a bilinear system (I)

Consider a simplified modeling self-propelling by radial defomations (Shapere and F. Wilczek (1989))

$$\dot{h} = M\alpha \cdot \beta,$$

$$\dot{\alpha} = \beta.$$

Given an integer $L \ge 2$, $M \in \mathcal{M}_L(\mathbb{R})$ with $M^* = -M$ and $h_1 \in \mathbb{R}^*$, our aim consists in determining the minimal time T^* for which there exists $\beta \in L^{\infty}((0, T^*), \mathbb{R}^L)$ such that

$$|\beta(t)|_2\leqslant 1\quad \left(\text{for a.e. }t\in(0,T^*)\right),$$

and

$$h(0)=0 \quad \text{and} \quad \alpha(0)=0\,.$$

satisfies

$$h(T^*) = h_1 \quad \text{and} \quad \alpha(T^*) = 0 \,.$$

Proposition. (Lohéac, Scheid and M.T., 2011) The minimal time T^* is given by

$$T^{\star} = \sqrt{\frac{2\pi|h_1|}{\lambda^*}} \,,$$

where $\lambda^*=\max\left\{|\lambda|,\ \lambda\in\sigma(M)\right\}>0.$ Moreover, an optimal time control is

$$\beta^{\star}(t) = \exp\left(\operatorname{sign}(h_1)\sqrt{\frac{2\pi}{\lambda^*|h_1|}} \ t \ M\right)\beta_0 \qquad (t \in [0, T^*]), \quad (1)$$

where $|\beta_0|_2 = 1$ is chosen such that $\beta_0 \in \operatorname{Ker} \left(M^2 + |\lambda^*|^2 \right)$

Notation:

- X (the state space) and U (the input space) are complex Hilbert spaces
- T = (T_t)_{t≥0} is a strongly continuous semigroup on X generated by A.
- X_1 is $\mathcal{D}(A)$ equipped with the graph norm, while X_{-1} is the completion of X with respect to $||z||_{-1} := ||(\beta I A)^{-1}z||$.
- The semigroup \mathbb{T} can be extended to X_{-1} , and then its generator is an extension of A, defined on X.
- $B \in \mathcal{L}(U; X_{-1})$ be a control operator and let $u \in L^2([0, \infty), U)$ be an input function.

Notation and problem statement (II)

We consider the system $\dot{z}(t) = Az(t) + Bu(t)$ $(t \ge 0)$.

 $u\in \mathfrak{U}_{ad}=\{u\in L^\infty([0,\infty),U) \hspace{0.1 in}|\hspace{0.1 in} \|u(t)\|\leqslant 1 \hspace{0.1 in} \text{a. e. in } [0,\infty)\}.$

The state trajectory is $z(t) = \mathbb{T}_t z(0) + \Phi_t u$, where

$$\Phi_t \in \mathcal{L}(L^2([0,\infty),U);X_{-1}), \ \ \Phi_t u = \int_0^t \mathbb{T}_{t-\sigma} Bu(\sigma) \,\mathrm{d}\sigma.$$

Assume that $z_0, z_1 \in X$ are s.t. there exists $u \in \mathcal{U}_{ad}$ and $\tau > 0$ s.t. $z_1 = \mathbb{T}_{\tau} z_0 + \Phi_{\tau} u$ (z_1 reachable from z_0 .

Problem statement: Determine

$$\tau^*(z_0, z_1) = \min_{u \in \mathcal{U}_{ad}} \{ \tau \mid z_1 = \mathbb{T}_{\tau} z_0 + \Phi_{\tau} u \},\$$

and the corresponding control u^* .

- Fattorini, H. O.: Time-optimal control of solutions of operational differential equations, J. Soc. Indust. Appl. Math. Control, 1964.
- Fattorini, H. O.: A remark on the "bang-bang" principle for linear control systems in infinite-dimensional space, SIAM J. Control, 1968.
- Schmidt, G.: The "bang-bang" principle for the time-optimal problem in boundary control of the heat equation, SIAM J. Control Optim., 1980.
- Mizel, V. J. and Seidman, T. I.: An abstract bang-bang principle and time-optimal boundary control of the heat equation, SIAM J. Control Optim., 1997.
- Wang, G. and Wang, L., The bang-bang principle of time optimal controls for the heat equation with internal controls, Systems Control Lett., 2007.

Bibliography (II)

- Phung, K. D., Wang, G., Zhang, X.: On the existence of time optimal controls for linear evolution equations, Discrete Contin. Dyn. Syst. Ser. B, 2007.
- Wang, G.: L[∞]-null controllability for the heat equation and its consequences for the time optimal control problem, SIAM J. Control Optim., 2008.
- Phung, K. D., Wang, G.: An observability for parabolic equations from a measurable set in time, eprint arXiv:1109.3863, 2011.

Books:

- Lions J.-L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Gauthier-Villars, Paris, 1968.
- Fattorini, H. O.: Infinite dimensional linear control systems. The time optimal and norm optimal problems, North-Holland Mathematics Studies, 201, Amsterdam, 2005.

Exactly controllable systems(I)

Assume that $B \in \mathcal{L}(U, X)$ and that (A, B) is exactly controllable in any time $\tau > 0$.

Proposition 1 (Lohéac and M.T., 2011)

Let $u^*(t)$ be the time optimal control, defined on $[0, \tau^*]$. Then there exists $z \in X$, $z \neq 0$ such that

$$\langle B^* \mathbb{T}^*_{\tau^* - t} z, u^*(t) \rangle = \max_{\|\mathbf{u}\| \leq 1} \langle B^* \mathbb{T}^*_{\tau^* - t} z, \mathbf{u} \rangle$$

Corollary 2

Assume that (A, B) is approximatively controllable from sets of positive measure. Then

 $||u^*(t)|| = 1$ $(t \in [0, \tau^*] \quad a.e.)$

Moreover, the time optimal control is unique.

Exactly controllable systems(II): Idea of the proof

For each $\tau > 0$, we endow X with the norm

 $|||z||| = \inf\{||u||_{L^{\infty}([0,\tau],U)} \mid \Phi_{\tau}u = z\}.$

Note that $||| \cdot |||$ is equivalent with the original norm $|| \cdot ||$. For $\tau > 0$ we set

 $B^{\infty}(\tau) = \{ \Phi_{\tau} u \mid \|u\|_{L^{\infty}([0,\tau],U)} \leq 1 \},\$

and we show that if (τ^*, u^*) is an optimal pair then $\Phi_{\tau^*}u^* \in \partial B^{\infty}(\tau^*)$.

• Using the fact that $B^{\infty}(\tau^*)$ has a non empty interior, we apply a geometric version of the Hahn-Banach theorem to get the conclusion.

Exactly controllable systems(III): the Schrödinger equation

 $\Omega \subset \mathbb{R}^m$ a rectangular domain;

 ${\mathfrak O}$ a non-empty open subset of ${\Omega}.$

$$\begin{split} \frac{\partial z}{\partial t}(x,t) &= i\Delta z(x,t) + u(x,t)\chi_0 \text{ for } (x,t) \in \Omega \times (0,\infty) \\ z(x,t) &= 0 \quad \text{ on } \partial\Omega \times (0,\infty), \\ \|u(\cdot,t)\| \leqslant 1 \qquad a.e.. \end{split}$$

Proposition 2

The above system is approximatively controllable with controls supported in any set of positive measure $E \subset [0, \infty)$.

Corollary 3

Time optimal controls are bang-bang, i.e., $\|u(\cdot,t)\|_{L^2(\mathbb{O})} = 1$ a.e.

L^{∞} null controllability over measurable sets(I)

Take $U = L^2(\Gamma)$ where Γ is a compact manifold.

Definition 1

Let $\tau > 0$, $e \subset \Gamma \times [0, \tau]$ a set of positive measure. The pair (A, B) is said L^{∞} null controllable in time τ over e if, for every $z_0 \in X$, there exists $u \in L^{\infty}(\Gamma \times [0, \tau])$ (null control) such that

$$\mathbb{T}_{\tau} z_0 + \int_0^{\tau} \mathbb{T}_{\tau-s} B\chi_e(s) u(s) \, ds = 0$$

where χ_e is the characteristic function of e.

If (A,B) is L^{∞} null controllable in time τ over e then the quantity

$$C_{\tau,e} := \sup_{\|z_0\|=1} \inf \left\{ \|u\|_{L^{\infty}(e)} \mid u \text{ null control for } z_0 \right\}$$
(2)

is called the *control cost in time* τ *over* e.

Proposition 3

Let $e \subset \Gamma \times [0, \tau]$ be a set of positive measure and $K_{\tau,e} > 0$. The following two properties are equivalent

1 The inequality

$$\|\mathbb{T}_{\tau}^{*}\varphi\| \leqslant K_{\tau,e} \int_{0}^{\tau} \|\chi_{e}B^{*}\mathbb{T}_{\sigma}^{*}\varphi\|_{L^{1}(\Gamma)} d\sigma$$
(3)

holds for any $\varphi \in X$, where $e' = \{(x, \tau - t) \mid (x, t) \in e\}$.

2 The pair (A, B) is L^{∞} null controllable in time τ over e at cost not larger than $K_{\tau,e}$.

L^{∞} null controllability over measurable sets(III): main result

Theorem 2 (Mizel and Seidman (1997), G. Wang (2008), Micu, Roventa and M.T. (2011))

Assume that the pair (A, B) is L^{∞} null controllable in time τ over e for every $\tau > 0$ and for every set of positive measure $e \subset \Gamma \times [0, \tau]$. Then, for every $z_0 \in X$ and $z_1 \in \Re(z_0, \mathfrak{U}_{ad})$, the time optimal problem has a unique solution u^* which is bang-bang.

Existence: Consider a minimizing sequence $(z_n, \tau_n)_{n\geq 1}$ where $\tau_n \to \tau^*$ and z_n is a controlled solution and pass to the limit.

- **Existence:** Consider a minimizing sequence $(z_n, \tau_n)_{n \ge 1}$ where $\tau_n \to \tau^*$ and z_n is a controlled solution and pass to the limit.
- Bang-bang property: Suppose that $|u^*(x,t)| < 1 \varepsilon$ for $(x,t) \in e \subset \Gamma \times [0,\tau^*]$ where e is a set of positive measure. From the L^∞ controllability over e property it follows that there exists an L^∞ null control $v \in L^\infty(\Gamma \times [0,\tau^*])$ such that

■ supp $(v) \subset e$ and $||v||_{L^{\infty}(e)} < \varepsilon$ ■ v drives $z^*(\delta)$ to 0 in time $\tau^* - \delta$.

It follows that $u(t) = u^*(t + \delta) + v(t + \delta)$ drives z_0 to z_1 in time $\tau^* - \delta$. Contradiction!

Proof of Theorem 2:

- **Existence:** Consider a minimizing sequence $(z_n, \tau_n)_{n\geq 1}$ where $\tau_n \to \tau^*$ and z_n is a controlled solution and pass to the limit.
- Bang-bang property: Suppose that $|u^*(x,t)| < 1 \varepsilon$ for $\overline{(x,t) \in e \subset \Gamma \times [0,\tau^*]}$ where *e* is a set of positive measure. From the L^{∞} controllability over *e* property it follows that there exists an L^{∞} null control $v \in L^{\infty}(\Gamma \times [0,\tau^*])$ such that
 - supp $(v) \subset e$ and $||v||_{L^{\infty}(e)} < \varepsilon$ v drives $z^*(\delta)$ to 0 in time $\tau^* - \delta$.

It follows that $u(t) = u^*(t + \delta) + v(t + \delta)$ drives z_0 to z_1 in time $\tau^* - \delta$. Contradiction!

• Uniqueness: If u^* and v^* are optimal time controls then $\overline{w^* = \frac{u^* + v^*}{2}}$ is also an optimal time control.

 $|u^*(x,t)| = |v^*(x,t)| = |w^*(x,t)| = 1 \text{ a. e. in } \Gamma \times [0,\tau]$

$$\Rightarrow u^*(x,t) = v^*(x,t)$$
 a. e. in $\Gamma \times [0,\tau]$.

 $\Omega \subset \mathbb{R}^m$ is an open and bounded set Γ is a non-empty open subset of $\partial \Omega$

$$\frac{\partial z}{\partial t}(x,t) = \Delta z(x,t) \text{ for } (x,t) \in \Omega \times (0,\infty)$$
(4)

$$\begin{cases} z(x,t) = u(x,t) & \text{on } \Gamma \times (0,\infty) \\ z(x,t) = 0 & \text{on } (\partial \Omega \setminus \Gamma) \times (0,\infty) \end{cases}$$
(5)

$$z(x,0) = z_0(x) \quad \text{for} \quad x \in \Omega \tag{6}$$

Bang-bang boundary controls for the heat equation (II): the time optimal control problem

 $\mathfrak{U}_{ad} = \{ u \in L^\infty(\Gamma \times [0,\infty)) \ | \ |u(x,t)| \leqslant 1 \text{ a. e. in } \Gamma \times [0,\infty) \}.$

 $\Re(z_0, \mathcal{U}_{ad}) = \{z(\tau) \mid \tau > 0 \text{ and } z \text{ solution of (4)-(6) with } u \in \mathcal{U}_{ad}\}.$ Given $z_0 \in H^{-1}(\Omega)$ and $z_1 \in \Re(z_0, \mathcal{U}_{ad})$, the time optimal control problem for (4)-(6) consists in:

 ■ determining u^{*} ∈ U_{ad} such that the corresponding solution z^{*} of (4)-(6) satisfies

$$z^*(\tau^*(z_0, z_1)) = z_1, \tag{7}$$

• where the control time $au^*(z_0,z_1)$ is

$$\tau^*(z_0, z_1) = \inf_{u \in \mathcal{U}_{ad}} \{ \tau \mid z(\cdot, \tau) = z_1 \}.$$
 (8)

Bang-bang boundary controls for the heat equation (III): Main theorem

Theorem 3 (Micu, Roventa and M.T. (2011))

Let $m \geq 2$. Suppose that Ω is a rectangular domain in \mathbb{R}^m and that Γ is a nonempty open set of $\partial\Omega$. Then, for every $z_0 \in H^{-1}(\Omega)$ and $z_1 \in \mathcal{R}(z_0, \mathcal{U}_{ad})$, there exits a unique solution u^* of the time optimal control problem (8). This solution u^* has the bang-bang property:

 $|u^*(x,t)| = 1$ a. e. in $\Gamma \times [0, \tau^*(z_0, z_1)].$ (9)

Bang-bang boundary controls for the heat equation (IV): Main steps of the proof

Let A (respectively T) be the Dirichlet Laplacian (respectively the heat semigroup) in $X = L^2(\Omega)$.

We know that there exists an orthonormal basis of eigenvectors $\{\varphi_k\}_{k \ge 1}$ of A and corresponding family of eigenvalues $\{-\lambda_k\}_{k \ge 1}$, where the sequence $\{\lambda_k\}$ is positive, non decreasing and satisfies $\lambda_k \to \infty$ as k tends to infinity.

For $\eta > 0$ we denote by

$$V_{\eta} = \operatorname{\mathsf{Span}} \{ \varphi_k \mid \lambda_k^{\frac{1}{2}} \leqslant \eta \}.$$

Bang-bang boundary controls for the heat equation (V): A version of the Lebeau-Robbiano method

Proposition 4

Let $\tau > 0$ and let $e \subset \Gamma \times [0, \tau]$ be a set of positive measure. Assume $B \in \mathcal{L}(U, X_{-1/2})$. Moreover, assume that there exist positive constants d_0 , d_1 and d_2 such that for every $\eta > 0$ and $[s,t] \subset (0,1)$ we have that, for any $\varphi \in V_{\eta}$,

$$\|\mathbb{T}_{\tau}^{*}\varphi\| \leqslant d_{0}e^{d_{1}\eta\ln\left(\frac{1}{\mu(\mathcal{E})}\right) + \frac{d_{2}}{\mu(\mathcal{E})}} \int_{0}^{\tau} \|\chi_{\mathcal{E}'}B^{*}\mathbb{T}_{s}^{*}\varphi\|_{L^{1}(\Gamma)} \,\mathrm{d}s, \qquad (10)$$

where $\mathcal{E} = (e \cap \Gamma) \times [s, t]$ and $\mathcal{E}' = \{(x, \tau - t) \mid (x, t) \in \mathcal{E}\}.$ Then the pair (A, B) is L^{∞} null controllable in time τ over e.

Bang-bang boundary controls for the heat equation (VI): Proof of Theorem 3

From Proposition 4, a sufficient condition for existence, uniqueness and bang-bang property of time optimal controls is the inequality:

$$\|\mathbb{T}_{\tau}^{*}\varphi\| \leqslant d_{0}e^{d_{1}\eta \ln\left(\frac{1}{\mu(\varepsilon)}\right) + \frac{d_{2}}{\mu(\varepsilon)}} \int_{0}^{\tau} \|\chi_{\varepsilon'}B^{*}\mathbb{T}_{s}^{*}\varphi\|_{L^{1}(\Gamma)} ds$$

which, in out particular case, can be written equivalently as

$$\left(\sum_{n^2+m^2 \le \eta^2} |a_{nm}|^2 e^{-2\tau(n^2+m^2)} \right)^{\frac{1}{2}} \le d_0 e^{d_1\eta \ln\left(\frac{1}{t-s}\right) + \frac{d_2}{t-s}} \\ \int_{F\cap[s,t]} \int_{e_\sigma} \left| \sum_{n=1}^{\sqrt{\eta^2-1}} \left(\sum_{m=1}^{\sqrt{\eta^2-n^2}} a_{nm} e^{-(m^2+n^2)\sigma} \right) \sin(nx) \right| \, dx \, d\sigma,$$

 $F \subset [0, \tau]$ verifies $\mu(F) \ge \frac{\mu(\mathcal{E})}{4\mu(\Gamma)}$ and $\mu(e_{\sigma}) \ge \frac{\mu(\mathcal{E})}{4\tau}$, $\forall \sigma \in F$.

Bang-bang boundary controls for the heat equation (V): Proof of Theorem 3

Theorem 4 (Nazarov, 1993)

Let $N \in \mathbb{N}$ be a nonnegative integer and $p(x) = \sum_{|k| \leq N} a_k e^{i\nu_k x}$ $(a_k \in \mathbb{C}, \nu_k \in \mathbb{R})$ be an exponential polynomial. Let $I \subset \mathbb{R}$ be a finite interval and E a measurable subset of I of positive measure. Then

$$\sup_{x \in I} |p(x)| \leq \left(\frac{C\mu(I)}{\mu(E)}\right)^{2N} \sup_{x \in E} |p(x)|, \tag{11}$$

where C > 0 is an absolute constant.

Bang-bang boundary controls for the heat equation (V): Proof of Theorem 3

Theorem 4 (Nazarov, 1993)

Let $N \in \mathbb{N}$ be a nonnegative integer and $p(x) = \sum_{|k| \leq N} a_k e^{i\nu_k x}$ $(a_k \in \mathbb{C}, \nu_k \in \mathbb{R})$ be an exponential polynomial. Let $I \subset \mathbb{R}$ be a finite interval and E a measurable subset of I of positive measure. Then

$$\sup_{x \in I} |p(x)| \leq \left(\frac{C\mu(I)}{\mu(E)}\right)^{2N} \sup_{x \in E} |p(x)|, \tag{11}$$

where C > 0 is an absolute constant.

Turán (1948): For every subinterval $E \subset I = [-\pi, \pi]$ of length $\mu(E) = 4\pi eL < 2\pi$ and $f(x) := \sum_{|n| \le N} a_n e^{inx}$, we have

$$\sup_{x \in I} |f(x)| \leq \frac{1}{L^{2N}} \sup_{x \in E} |f(x)|.$$

Bang-bang boundary controls for the heat equation (VI): Proof of Theorem 3

- Nazarov (1993): The interval E is replaced by a measurable set of positive measure.
- Lebeau and Robbiano (1995): Inequality of similar type in which e^{ivkx} are replaced by eigenfunctions of an elliptic operator.

Bang-bang boundary controls for the heat equation (VI): Proof of Theorem 3

- Nazarov (1993): The interval E is replaced by a measurable set of positive measure.
- Lebeau and Robbiano (1995): Inequality of similar type in which e^{ivkx} are replaced by eigenfunctions of an elliptic operator.

Corollary 2

The following inequality holds for any sequence $(a_k)_{|k|\leqslant N}\subset\mathbb{C}$

$$\left(\sum_{|k|\leqslant N} |a_k|^2\right)^{\frac{1}{2}} \leqslant \frac{C^{2N}}{\mu(I)} \left(\frac{2\mu(I)}{\mu(E)}\right)^{2N+1} \int_E \left|\sum_{|k|\leqslant N} a_k e^{i\nu_k x}\right| \, dx, \quad (12)$$

where C > 0 is the constant from (11).

Bang-bang boundary controls for the heat equation (VII): Proof of Theorem 3

Theorem 5 (Borwein and Erdelyi, 1997, 1998)

Let $\nu_k := k^{\theta}$, $k \in \{1, 2, ...\}$, $\theta > 1$. Let $\rho \in (0, 1)$, $\varepsilon \in (0, 1 - \rho)$ and $\varepsilon \leq 1/2$. Then there exists a constant $c_{\theta} > 0$ such that

$$\sup_{t \in [0,\rho]} |p(t)| \leq \exp\left(c_{\theta} \varepsilon^{1/(1-\theta)}\right) \sup_{t \in E} |p(t)|,$$

for every $p \in S_{[0,1]} := \text{Span} \{t^{\nu_1}, t^{\nu_2}, \dots\}$ and for every set $E \subset [\rho, 1]$ of Lebesgue measure at least $\varepsilon > 0$.

Bang-bang boundary controls for the heat equation (VII): Proof of Theorem 3

Theorem 5 (Borwein and Erdelyi, 1997, 1998)

Let $\nu_k := k^{\theta}$, $k \in \{1, 2, ...\}$, $\theta > 1$. Let $\rho \in (0, 1)$, $\varepsilon \in (0, 1 - \rho)$ and $\varepsilon \leq 1/2$. Then there exists a constant $c_{\theta} > 0$ such that

$$\sup_{t \in [0,\rho]} |p(t)| \leq \exp\left(c_{\theta} \varepsilon^{1/(1-\theta)}\right) \sup_{t \in E} |p(t)|,$$

for every $p \in S_{[0,1]} := \text{Span} \{t^{\nu_1}, t^{\nu_2}, \dots\}$ and for every set $E \subset [\rho, 1]$ of Lebesgue measure at least $\varepsilon > 0$.

- Müntz (1914): $S_{[0,1]}$ is a proper subspace of $L^2(0,1)$ if and only if $\sum_{k=1}^{\infty} \frac{1}{\nu_k} < \infty$.
- L. Schwarz (1943): The restriction $R_{\rho}: \overline{\mathfrak{S}_{[0,1]}}^{L^2} \to \overline{\mathfrak{S}_{[\rho,1]}}^{L^2}$ is invertible. The proof is by contradiction (no explicit constant).

Bang-bang boundary controls for the heat equation (VIII): Proof of Theorem 3

Proof of the Erdelyi and Borwein Theorem:

- The norm $\sup_{t \in [0,1]} |p(t)|$ is bounded by the norm $\sup_{t \in [\rho,1]} |p(t)|$, with explicit constant $c := e^{\frac{\kappa}{1-\rho}}$.
 - Seidman (2008), Miller (2009), Tenenbaum and Tucsnak (2011): $||R_{\rho}^{-1}|| \leq Ce^{\frac{\kappa}{1-\rho}}$ (results on the controllability's cost in small time for the heat equation).
- The interval [1, ρ] is replaced by a measurable set E of positive measure by using the Chebyshev-type polynomials T_{E,ν0,ν1,...,νn} corresponding to the set E and exponents ν₀ = 0, ν₁..., ν_n:

$$|T_{E,\nu_0,\dots,\nu_n}(s)| \le |T_{E,\nu_1,\dots,\nu_n}(0)| \le c, \quad s \in (0,\inf(E))$$
$$|p(s)| \le |T_{E,\nu_0,\dots,\nu_n}(s)| \sup_{t \in E} |p(t)|, \quad s \in (0,\inf(E)).$$

The above result of Erdelyi and Borwein has the following consequence:

Corollary 3

For every $\tau > 0$ there exist constants C, $\kappa > 0$ such that for every $F \subset [0, \tau]$ of positive measure the following inequality holds

$$Ce^{\kappa/\mu(F)} \int_F \left| \sum_{k \ge 1} a_k e^{-k^2 t} \right| \, \mathrm{d}t \ge \left[\sum_{k \ge 1} |a_k|^2 e^{-k^2 \tau} \right]^{\frac{1}{2}} \ ((a_k) \in \ell^2(\mathbb{C})).$$

The above result of Erdelyi and Borwein has the following consequence:

Corollary 3

For every $\tau > 0$ there exist constants C, $\kappa > 0$ such that for every $F \subset [0, \tau]$ of positive measure the following inequality holds

$$Ce^{\kappa/\mu(F)} \int_F \left| \sum_{k \ge 1} a_k e^{-k^2 t} \right| dt \ge \left[\sum_{k \ge 1} |a_k|^2 e^{-k^2 \tau} \right]^{\frac{1}{2}} ((a_k) \in \ell^2(\mathbb{C})).$$

By combining the space and time estimates (Corollaries 2 and 3) we get the inequality (10) and the proof of the main theorem is finished.

- We need the separation of variables x and y. Our proof can be generalized only for special geometries.
- Interior controllability results can be also obtained.

- L^{∞} boundary controls for the Schrödinger equation (even in one space dimension)
- Arbitrary shapes for the boundary control of the heat equation (APRAIZ, ESCAURIAZA, WANG, ZHANG (2012))
- Nonlinear problems