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Problem Formulation

We consider the following problem:
Find a control u that locally stabilizes the system

—VvAy+ (Oy+ doy)y = f in (0,00) x Q
v3|r, =gy andylr, =gp in (0,00)
ylr. = ge + Mu in (0,00)
y(0) =y inQ

around a unstable solution w of the stationary problem
—vAw + (1w + dow)w = f  in Q

Van |Fob = gn, w|FD = 9D
w|Fc = gC
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Problem Formulation

where Q = [0,1] x [0,1], T'. = {1} x [0, 1] corresponds to the controlled
boundary, I'p,={0} x [0, 1] the observed one and I'p =T"\ (I': UT,;) as
represented in Figure 1.

ob ¢

Dir. Obs. Dir. Ctl.

Figure: Domain 2 and boundary I' =T'p UT. UL,



Problem Formulation

In fact, the above problem is equivalent to consider the question of
finding u such that the difference z = y — w stabilizes to zero.

22— YAz + (01w + Oaw)z + (D12 + Do2)w + (12 + D22)z =0 in (0,00) x Q
ug—mpob =0 and zlr, =0 in (0, 00)

zlr. = Mu in (0, 00)

z(0) =20 (=yo —w) inQ



Problem Formulation

In fact, the above problem is equivalent to consider the question of
finding u such that the difference z = y — w stabilizes to zero.

22— YAz + (01w + Oaw)z + (D12 + Do2)w + (12 + D22)z =0 in (0,00) x Q
ug—mpob =0 and zlr, =0 in (0, 00)

zlr. = Mu in (0, 00)

z(0) =20 (=yo —w) inQ
Available partial observations given by

Yob = Hz

H(t) = (Wi'/r 2(8), - |1—‘711\r\ i z(t)> e RN



Semi-Discretization - Weak Formulation

/ Zpjdr = —/ vVz-Vojdr + / l/(bj%ds — / (01w + Ow)zpjdx
Q 0 r “on Q

- / (012 + O2z)wejdx — / (012 + O2z)z¢pjdx for all j € {1,n}
Q Q
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Semi-Discretization - Weak Formulation

/ Zpjdr = —/ vVz - -Vodx + / V(bj@ds - / (01w + Oow)zpjdx
Q Q r “on Q
— / (012 + O2z)wejdx — / (012 + O2z)z¢pjdx for all j € {1,n}
0 0

Robin approximation for Dirichlet and control conditions

0z 1
/Fv%'an = /Fob 207 0+/1“\Fob ¢jg(9—z)

. 0, zel'p, Ul'p,
g Mu, x €T,

so that

0z 1 1
/I—\ng‘]an = /FC gM’LLQb] — /F\Fob EZQSJ (1)



Shifting the operator

For simplicity we consider w = 0 but we include in the computation of A the term

a/nz,bid)j, a > 0.

The resulting matrix A corresponds to the discretization of the operator

A=A+ald, DA) ={zeH: 2|r, =0, %Fob —0}
with eigenvalues

(2k —1)2
4
associated with the class of eigenfunctions

)\kl = *l/[

Dy = 7003(2 wx1)sin(lrx2), k,l€N, d €R.

+ P +a (2)



Finite Dimensional Problem

The semi-discretized system can therefore be written as

E(z") = A2" 4+ Bu" + F(2") + EC¢" in (0, 00)
2"(0) = 2§ (3)
Yoo = HZ"+ 0"

The term EC" is the discretization of the contribution of the error ¢ in the weak
form of the dynamics. As to matrix n™ it corresponds to the discretized observation

noise 7.
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Coupled Finite Dimensional System - Linear
Case

2" will stabilize around zero if obtained from the coupled system

E(z") = Az" + F(2") 4+ BKz] + EC™ in (0, 00)
(

E(zl) =LH2"+ (A+ BK — LH)z! + Hn"
(0) = 24
2(0) =20 =25 +¢ (4)

where the feedback gain K and the filter L

K = —RilBg‘P S Mmﬂxn (5)

L=P.H'R;' € M, o (7)

are obtained from solutions P and P, of the AREs



Algebraic Riccati Equations

PeM,, P' =P, P>0,
AP+ PAy— PByR'BIP+Q =0 (8)

P.e M, P =P, P. >0,

€

AoP. + P.AY — P.CTR;'CP. + Q4 =0 (9)

associated to two Linear Quadratic Optimal Control problems.
e () = E approximates fQ 22ds,
e R = M, approximates fl“c u?ds,

e Ry and Qg correspond to the covariance fixed for the noise
samples ¢ and 7 possible weighted by some coefficients.



Uncontrolled solution for the
with 0 = 8

solution at time 1=60

linear problem




Evolution of z" solution for the
with 0 = 8

solution at time 1=60

linear problem




Evolution of 2" solution for the linear problem
with both noises and 6 = 8§

solution at time 1=60




Nonlinear Case

And what about the nonlinear case?

L2 Norms of Uncontrolled Solutions
20=E x ¢1 - «=-0.4, Int per Edge=50, FT=60

L2-Marm




Nonlinear Case
And what about the nonlinear case?

L2 Norms of Uncontrolled Solutions
20=E x ¢1 - «=-0.4, Int per Edge=50, FT=60
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Figure: L? norm of uncontrolled solution for different initial values

Some answers can be found in the Hall. Welcome to the poster session!
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Appendix - Nonlinear Case without n.

Solution Control
- sol. z from unctr. system '— Estimated control
'— estimated sol. z, i

—sol. z from contr. system

L2-Norm
L2-Norm

T oTimes Y Timets

Figure: Evolution of the L? norm of the uncontrolled, estimated, controlled
solution and control function for § = 0.01.
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Appendix - Nonlinear Case Ob Noise

Solution Gontrol
== sol. z from unctr. system —Estimated control
—— estimated sol. z, o i
—sol. z from contr. system |
£ £
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T Time

Figure: Evolution of the L? norm of the uncontrolled, estimated, controlled
solution and control function for § = 0.01 when observation noise is present
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Appendix - Nonlinear Case Ob Noise

Evolution of yOb n8 Full observation at final time

© unctrolled sol.
* noisy observation Gz
o estimated z,

|
“” l I b .|| + controlled sol. z

100

2z value

1. |

zvalue at t

— estimated sol. z,

KR}/
— noisy observation Cz+1

| —sol. z from contr. system)
Time(s)

15 Observations on T,

Figure: Evolution of observation yg and value of the full observation at final
time for § = 0.01 and 5" non-null
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