Control and Stabilization of fluid-structure systems

Takéo Takahashi
Institut Élie Cartan de Nancy and
Inria Nancy - Grand Est, Team-Project CORIDA

Outline

- Short Introduction on Fluid-Structure Systems
- Control as a swimming problem in collaboration with Jorge San Martín (Chile) and Marius Tucsnak (Nancy)
- Boundary Stabilization in collaboration with Mehdi Badra (Toulouse)

General Description

- Fluid:
- inviscid and incompressible (particular case: potential fluid)
- viscous and incompressible,
- viscous and compressible, etc.
- Structure:
- rigid body,
- elastic solid,
- aquatic animals, micro-organisms, etc.

Studied Problems

- Modeling (for instance: how to model a fish swimming ?)
- Theoretical Analysis (well-posedness, long time behavior, collisions, etc ...)
- Numerical Analysis (find numerical schemes, prove the convergence, numerical implementation)
- Control Problems (Control of both fluid and structure, self-propelled motions, etc ...)
- Inverse Problems (Detect a structure moving into a fluid, identify its shape, etc ...)

Difficulties

- The equations of the fluid are non linear and usually difficult to study even without structure (Navier-Stokes equations, Euler equations, etc.). The equations of the structure could also be difficult to solve.
- The equations of the fluid and the equations of the structure are strongly coupled.
- The fluid domain is variable.
- The fluid domain depends on the position of the structure which is part of the solution. The fluid domain is one of the unknowns of the problem!

Control as a swimming problem

in collaboration with Jorge San Martín (Chile) and Marius Tucsnak (Nancy)

Swimming Control results

- San Martin-T.-Tucsnak (motion of ciliate micro-organism)
- Alouges-De Simone-Lefebvre (motion of the three-balls system in a Stokes fluid)
- Glass-Rosier (motion of a boat in an incompressible inviscid fluid),
- Chambrion-Munnier (deformable structure in a potential fluid)
- Lohéac-Scheid-Tucsnak (deformable ball in a Stokes fluid)

The Model

The Model

$$
\begin{gathered}
-\nu \Delta v+\nabla p=0 \\
\nabla \cdot v=0 \quad \text { in } \mathbb{R}^{3} \backslash \mathcal{S}, \quad t>0, \\
v=h^{\prime} e_{3}+u, \quad \text { on } \partial \mathcal{S}, \quad t>0 \\
\lim _{|x| \rightarrow \infty} v=0, \quad t>0 \\
0=-\int_{\partial \mathcal{S}} \sigma(v, p) n d \Gamma \cdot e_{3}, \quad t>0
\end{gathered}
$$

The Model

$$
\theta=\chi(\xi, t)=\xi+\sum_{i=1}^{N} \alpha_{i}(t) \psi_{i}(\xi) \quad(\xi \in[0, \pi], t \geqslant 0)
$$

The "control" u is coming from the motion of the cilia:

$$
u=u_{\theta} e_{\theta}
$$

and

$$
\partial_{t} \chi(t, \xi)=u_{\theta}(t, \chi(t, \xi)), \quad \chi(0, \xi)=\xi .
$$

The Model

$$
\begin{gather*}
\dot{h}(t)=\sum_{i=1}^{N} \beta_{i}(t) F_{i}\left(\alpha_{1}(t), \ldots, \alpha_{N}(t)\right), \tag{1}\\
\dot{\alpha}_{i}(t)=\beta_{i}(t) \quad(i \in\{1, \ldots, N\}), \tag{2}\\
h(0)=0, \quad \alpha_{i}(0)=0 \tag{3}
\end{gather*}
$$

Is it possible to have $h(T)=h_{T}$, and $\alpha_{i}(T)=0$?
How to do it in an "efficient" way?

Feedback stabilization of a 1d fluid-structure system in collaboration with Mehdi Badra (Toulouse)

Controllability results

- 1d: Doubova and Fernandez-Cara, 2005 Liu, T. and Tucsnak, 2012
- 2d: Imanuvilov and T., 2007, case of rigid ball
- 2d: Boulakia and Osses, 2008, rigid body with geometrical properties
- 3d: Boulakia and Guerrero, 2011

Stabilization results

- Raymond, 2009
- Lequeurre

Feedback Stabilization of a Fluid-Structure system (damped Euler-Bernoulli beam)

1d Stabilization Problem

$u(t)$
\downarrow
-1
$h(t)$

- $h=h(t)$ trajectory of the particle
- $v=v(t, x)$ fluid velocity, defined in the fluid domain $[-1,1] \backslash\{h(t)\}$.
- $u=u(t)$ control of the system, velocity of the fluid at $x=-1$.

$$
[f](x)=f\left(x^{+}\right)-f\left(x^{-}\right)
$$

Feedback stabilization

Feedback stabilization

$$
\left\{\begin{array}{l}
v_{t}-v_{x x}+v v_{x}=f^{S} \quad(t \geqslant 0, \quad x \in[-1,1] \backslash\{h(t)\}) \\
v(t, h(t))=\dot{h}(t) \quad(t \geqslant 0) \\
v(t,-1)=a^{S}+u(t), \quad v(t, 1)=b^{S} \quad(t \geqslant 0)
\end{array}\right.
$$

Feedback stabilization

$$
\left\{\begin{array}{l}
v_{t}-v_{x x}+v v_{x}=f^{S} \quad(t \geqslant 0, \quad x \in[-1,1] \backslash\{h(t)\}), \\
v(t, h(t))=\dot{h}(t) \quad(t \geqslant 0), \\
m \ddot{h}(t)=\left[v_{x}\right](t, h(t))+m \ell^{S} \\
v(t,-1)=a^{S}+u(t), \quad v(t, 1)=b^{S} \quad(t \geqslant 0),
\end{array}\right.
$$

Feedback stabilization

$$
\begin{align*}
& u(t) \\
& \qquad-v(t, x) \quad v(t, x) \\
& -1 \begin{array}{ll}
v(t) \\
v(t, h(t))=\dot{h}(t) \quad(t \geqslant 0), \\
m \ddot{h}(t)=\left[v_{x}\right](t, h(t))+m \ell^{S} \\
v(t,-1)=a^{S}+u(t), \quad v(t, 1)=b^{S} \quad(t \geqslant 0), \\
h(0)=h_{0}, \quad \dot{h}(0)=h_{1}, \\
v(0, x)=v_{0}(x) \quad x \in[-1,1] \backslash\left\{h_{0}\right\} .
\end{array}
\end{align*}
$$

$$
1
$$

Stationary states

For f^{S}, ℓ^{S}, a^{S} and b^{S} given, find V^{S} and H^{S} such that

$$
\left\{\begin{array}{c}
-V_{y y}^{S}+V^{S} V_{y}^{S}=f^{S} \quad\left(y \in(-1,1) \backslash\left\{H^{s}\right\}\right), \tag{5}\\
0=\left[V_{y}^{S}\right]\left(H^{S}\right)+m \ell^{S}, \\
V^{S}(-1)=a^{S}, V^{S}(1)=b^{S}, \\
V^{S}\left(H^{S}\right)=0 .
\end{array}\right.
$$

Feedback Stabilization result

Theorem
If

$$
\left\|v_{0}-V^{S}\right\|_{L^{2}((-1,1))}+\left|h_{1}\right|+\left|h_{0}-H^{S}\right| \leqslant \mu
$$

then there exists a solution (v, h) with

$$
v(t,-1)=a^{S}+K\left(v(t, X)-V^{S}(y), \dot{h}(t), h(t)\right)
$$

and

$$
\begin{aligned}
& \left\|v(t)-V^{S}\right\|_{L^{2}(-1,1)}+|\dot{h}(t)|+\left|h(t)-H^{S}\right| \\
& \quad \leqslant C e^{-\sigma t}\left(\left\|v_{0}-V^{S}\right\|_{L^{2}((-1,1))}+\left|h_{1}\right|+\left|h_{0}-H^{S}\right|\right)
\end{aligned}
$$

Change of variables

$$
X(t, \cdot):(-1,1) \rightarrow(-1,1), \quad \text { with } \quad X\left(t, H^{s}\right)=h(t)
$$

and

$$
V(t, y):=v(t, X(t, y))
$$

This leads to the stabilization of the nonlinear system

$$
\begin{equation*}
\mathbf{Z}^{\prime}=A \mathbf{Z}+B u+F(\mathbf{Z}), \quad \mathbf{Z}(0)=\mathbf{Z}^{0} \tag{6}
\end{equation*}
$$

where

- $A: \mathcal{D}(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ compact resolvent in the real Hilbert space \mathcal{H} and generator of an analytic semigroup in \mathcal{H};
- $B: \mathbb{R} \rightarrow\left[\mathcal{D}\left(A^{*}\right)\right]^{\prime}$ is strictly relatively bounded.

Feedback stabilization of parabolic systems

Theorem
Assume the following unique continuation property

$$
\begin{aligned}
& \forall \varepsilon \in \mathcal{D}\left(A^{*}\right), \quad \forall \lambda \in \mathbb{C} \\
& \qquad A^{*} \varepsilon=\lambda \varepsilon \quad \text { and } \quad B^{*} \varepsilon=0 \Longrightarrow \varepsilon=0 .
\end{aligned}
$$

Then there exists $K \in \mathcal{L}(\mathcal{H} ; \mathbb{R})$ such that the solution \mathbf{Z} of (6) with $u=K \mathbf{Z}$ satisfies for $\left\|\mathbf{Z}^{0}\right\|$ small enough

$$
\|\mathbf{Z}(t)\| \leqslant\left\|\mathbf{Z}^{0}\right\| e^{-\sigma t}
$$

Application to our case

Is it possible to find a non null solution to the following problem?

$$
\left\{\begin{array}{l}
V_{y}^{S}(0) \varphi-\varphi_{y y}-V^{S} \varphi_{y}=0, \quad y \in(0,1) \\
\varphi(0)=\varphi(1)=0
\end{array}\right.
$$

Application to our case

Is it possible to find a non null solution to the following problem?

$$
\left\{\begin{array}{l}
V_{y}^{S}(0) \varphi-\varphi_{y y}-V^{S} \varphi_{y}=0, \quad y \in(0,1) \\
\varphi(0)=\varphi(1)=0
\end{array}\right.
$$

If we multiply by φ, we obtain

$$
V_{y}^{S}(0) \int_{0}^{1}|\varphi|^{2} \mathrm{dy}+\int_{0}^{1}\left|\varphi_{y}\right|^{2} \mathrm{dy}+\frac{1}{2} \int_{0}^{1} V_{y}^{S}|\varphi|^{2} \mathrm{dy}=0
$$

Application to our case

Is it possible to find a non null solution to the following problem?

$$
\left\{\begin{array}{l}
V_{y}^{S}(0) \varphi-\varphi_{y y}-V^{S} \varphi_{y}=0, \quad y \in(0,1) \\
\varphi(0)=\varphi(1)=0
\end{array}\right.
$$

If we multiply by φ, we obtain

$$
V_{y}^{S}(0) \int_{0}^{1}|\varphi|^{2} \mathrm{dy}+\int_{0}^{1}\left|\varphi_{y}\right|^{2} \mathrm{dy}+\frac{1}{2} \int_{0}^{1} V_{y}^{S}|\varphi|^{2} \mathrm{dy}=0
$$

Using Poincaré inequality, we deduce

$$
\lambda=V_{y}^{S}(0) \leqslant \frac{\left\|\left[F^{S}\right]^{+}\right\|_{L^{\infty}}-2 \pi^{2}}{3}, \quad F^{S}(y)=\int_{0}^{y} f^{S}(s) \mathrm{d} s .
$$

Conclusion

- We obtain the feedback stabilizability of a fluid-structure problem in 1d, with only one boundary control, provided σ is not too large or there does not exist a solution to (\star).

$$
\left\{\begin{array}{l}
V_{y}^{S}(0) \varphi-\varphi_{y y}-V^{S} \varphi_{y}=0, \quad y \in(0,1) \\
\varphi(0)=\varphi(1)=0
\end{array}\right.
$$

- We are working on the same problem in several dimensions.

Fluid-Rigid body in 2d

$$
\begin{aligned}
& \frac{\partial v}{\partial t}+(v \cdot \nabla) v-\nu \Delta v+\nabla p=f^{S} \\
& \nabla \cdot v=0 \\
& \qquad \quad \text { in } \mathcal{F}(a, \theta), \quad t>0 \\
& v=\ell+\omega(x-a)^{\perp}, \quad \text { on } \partial \mathcal{S}(a, \theta) \\
& v=b^{S}+u, \quad \text { on } \partial \Omega .
\end{aligned}
$$

$$
\begin{gathered}
M \ell^{\prime}=-\int_{\partial \mathcal{S}(a, \theta)} \sigma(v, p) n d \Gamma+M \ell^{S}, \quad t>0 \\
I \omega^{\prime}=-\int_{\partial \mathcal{S}(a, \theta)}(x-a)^{\perp} \cdot \sigma(v, p) n d \Gamma+I k^{S}, \quad t>0 \\
a^{\prime}=\ell, \quad \theta^{\prime}=\omega, \quad t>0 .
\end{gathered}
$$

The result

Theorem
Assume $\left(f^{S}, \ell^{S}, k^{S}, b^{S}\right)$ is associated to a stationary solution. If

$$
\begin{equation*}
\left\|v^{0}-V^{S}\right\|_{L^{2}(\Omega)}+\left|a^{0}-a^{S}\right|+\left|\theta^{0}-\theta^{S}\right| \leqslant \mu \tag{7}
\end{equation*}
$$

and if

$$
\begin{aligned}
u(t, x)= & \sum_{j=1}^{K} u_{j}(t) v_{j}(x) \\
& \quad \text { with } u_{j}=\Pi_{j}\left(\left(v \circ X-V^{S}, \ell, \omega, a-a^{S}, \theta-\theta^{S}\right)\right)
\end{aligned}
$$

then there exists a weak solution $(v, p, \ell, \omega, a, \theta)$ satisfying

$$
\begin{aligned}
& \left\|v(t)-V^{S}\right\|_{L^{2}(\Omega)}+\left|a(t)-a^{S}\right|+\left|\theta(t)-\theta^{S}\right| \\
& \quad \leqslant C e^{-\varsigma t}\left(\left\|v^{0}-V^{S}\right\|_{L^{2}(\Omega)}+\left|a^{0}-a^{S}\right|+\left|\theta^{0}-\theta^{S}\right|\right)
\end{aligned}
$$

Stationnay states

$$
\begin{align*}
& \left(V^{S} \cdot \nabla\right) V^{S}-\nu \Delta V^{S}+\nabla P^{S}=f^{S} \\
& \nabla \cdot V^{S}=0 \\
& \text { in } \mathcal{F}\left(a^{S}, \theta^{S}\right) \text {, } \tag{8}\\
& V^{S}(x)=0, \quad x \in \partial \mathcal{S}\left(a^{S}, \theta^{S}\right), \tag{9}\\
& V^{S}(x)=b^{S}, \quad x \in \partial \Omega . \tag{10}\\
& 0=-\int_{\partial \mathcal{S}\left(a^{S}, \theta^{S}\right)} \sigma\left(V^{S}, P^{S}\right) n d \Gamma+M \ell^{S}, \tag{11}\\
& 0=-\int_{\partial \mathcal{S}\left(a^{S}, \theta^{S}\right)}\left(y-a^{S}\right)^{\perp} \cdot \sigma\left(V^{S}, P^{S}\right) n d \Gamma+I k^{S} . \tag{12}
\end{align*}
$$

Change of variables

$X(t, y):=y+\eta(y)\left[a(t)+\left(R_{\theta(t)}-I_{2}\right) y\right] \quad$ and $\quad Y(t, \cdot):=X(t, \cdot)^{-1}$.
We define

$$
\begin{gather*}
\tilde{v}(t, y):=\operatorname{Cof}(\nabla X(t, y))^{*} v(t, X(t, y)), \quad \tilde{p}(t, y)=p(t, X(t, y)), \\
\tilde{\ell}(t):=R_{-\theta(t)} \ell(t), \quad \tilde{\omega}(t):=\omega(t) \tag{13}\\
\tilde{a}(t):=\int_{0}^{t} R_{-\theta(s)} \ell(s) d s, \quad \tilde{\theta}(t):=\theta(t) .
\end{gather*}
$$

The system after change of variables

$$
\begin{gathered}
{\left[\mathbf{K} \partial_{t} \tilde{v}\right]-\nu[\mathbf{L} \tilde{u}]+[\mathbf{M} \tilde{v}]+[\mathbf{N} \tilde{v}]+[\mathbf{G} \tilde{p}]=\tilde{f}^{S} \quad \text { in }(0, T) \times \mathcal{F},} \\
\nabla \cdot \tilde{v}=0 \quad \text { in }(0, T) \times \mathcal{F}, \\
\tilde{v}=\tilde{\ell}+\tilde{\omega} y^{\perp} \quad \text { on }(0, T) \times \partial \mathcal{S}, \\
\tilde{v}=b^{S}+u \quad \text { in }(0, T) \times \Omega, \\
M\left[R_{\theta} \tilde{\ell}\right]^{\prime}=-\int_{\partial \mathcal{S}} \sigma(\tilde{v}, \tilde{p}) n d \Gamma, \quad t>0, \\
I \tilde{\omega}^{\prime}(t)=-\int_{\partial \mathcal{S}} y^{\perp} \cdot \sigma(\tilde{v}, \tilde{p}) n d \Gamma, \quad t>0, \\
\tilde{a}^{\prime}=\tilde{\ell}, \quad t>0, \\
\tilde{\theta}=\tilde{\omega}, \quad t>0 .
\end{gathered}
$$

The system after of change of variables

We write

$$
\tilde{v}=\tilde{w}+V^{S}, \quad \tilde{p}=\tilde{q}+P^{S}
$$

so that

$$
\begin{aligned}
& {\left[\mathbf{K} \partial_{t} \tilde{w}\right]-\nu[\mathbf{L} \tilde{w}]-\nu\left[\mathbf{L} V^{S}\right]+[\mathbf{M} \tilde{w}]+\left[\mathbf{M} V^{S}\right]} \\
& \quad+\left[\mathbf{N}\left(\tilde{w}+V^{S}\right)\right]+[\mathbf{G} \tilde{q}]+\left[\mathbf{G} P^{S}\right]=\tilde{f}^{S} .
\end{aligned}
$$

We can rewrite the above equation as

$$
\begin{aligned}
& \partial_{t} \tilde{w}-\nu \Delta \tilde{w}-\nu\left[\mathbf{L} V^{S}\right]+\left[\mathbf{M} V^{S}\right]+\left[\mathbf{N}\left(\tilde{w}+V^{S}\right)\right]+\nabla \tilde{q}+\left[\mathbf{G} P^{S}\right] \\
& \quad=\tilde{f}^{S}+\left[(\operatorname{Id}-\mathbf{K}) \partial_{t} \tilde{w}\right]+\nu[(\mathbf{L}-\Delta) \tilde{w}]-[\mathbf{M} \tilde{w}]+[(\nabla-\mathbf{G}) \tilde{q}]
\end{aligned}
$$

The system after of change of variables

After some calculation, we deduce

$$
\begin{gather*}
\partial_{t} \tilde{w}-\nu \Delta \tilde{w}+\Gamma[\tilde{a} \tilde{\theta} \tilde{\ell} \tilde{\omega}]^{*}+\tilde{w} \cdot \nabla V^{S}+V^{S} \cdot \nabla \tilde{w}+\nabla \tilde{q} \\
=F(\mathbf{Z}) \quad \text { in }(0, \infty) \times \mathcal{F}, \tag{14}\\
\nabla \cdot \tilde{w}=0 \quad \text { in }(0, \infty) \times \mathcal{F}, \tag{15}\\
\tilde{w}=\tilde{\ell}+\tilde{\omega} y^{\perp} \quad \text { on }(0, \infty) \times \partial \mathcal{S}, \tag{16}\\
\tilde{w}=u \quad \text { in }(0, \infty) \times \Omega \tag{17}\\
M \tilde{\ell}^{\prime}(t)=-\int_{\partial \mathcal{S}} \sigma(\tilde{w}, \tilde{q}) n d \Gamma+M \varepsilon_{\ell}(\mathbf{Z}), \quad t>0, \tag{18}\\
I \tilde{\omega}^{\prime}(t)=-\int_{\partial \mathcal{S}} y^{\perp} \cdot \sigma(\tilde{w}, \tilde{q}) n d \Gamma, \quad t>0, \tag{19}\\
\tilde{a}^{\prime}=\tilde{\ell}, \quad t>0 \tag{20}\\
\tilde{\theta}^{\prime}=\tilde{\omega}, \quad t>0 . \tag{21}
\end{gather*}
$$

In the above system, we have set

$$
\mathbf{Z}=[\tilde{w}, \tilde{q}, \tilde{\ell}, \tilde{\omega}, \tilde{a}, \tilde{\theta}]^{*}
$$

and

$$
\Gamma[\tilde{a} \tilde{\theta} \tilde{\ell} \tilde{\omega}]^{*}=\tilde{a}_{1} \Gamma_{1}+\tilde{a}_{2} \Gamma_{2}+\tilde{\theta} \Gamma_{3}+\tilde{\ell}_{1} \Gamma_{4}+\tilde{\ell}_{2} \Gamma_{5}+\tilde{\omega} \Gamma_{6} .
$$

Feedback stabilization of parabolic systems

$$
\begin{equation*}
\mathbf{X}^{\prime}=A \mathbf{X}+B u \quad \text { in }\left[\mathcal{D}\left(A^{*}\right)\right]^{\prime}, \quad \mathbf{X}(0)=\mathbf{X}^{0}, \tag{22}
\end{equation*}
$$

where

- $A: \mathcal{D}(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ compact resolvent in the real Hilbert space \mathcal{H} and generator of an analytic semigroup in \mathcal{H};
- $B: U \rightarrow\left[\mathcal{D}\left(A^{*}\right)\right]^{\prime}$ is strictly relatively bounded.

There is a finite number of "unstable" modes: for any prescribed $\sigma>0$, there are only N eigenvalues of A with real part strictly greater than $-\sigma: \lambda_{k}, k=1, \ldots, N$ (N depending on σ).

General Theorem for Feedback stabilization

Theorem

Assume the following unique continuation property

$$
\begin{aligned}
& \forall \varepsilon \in \mathcal{D}\left(A^{*}\right), \quad \forall k \in\{1, \ldots, N\} \\
& A^{*} \varepsilon=\bar{\lambda}_{k} \varepsilon \quad \text { and } \quad B^{*} \varepsilon=0 \Longrightarrow \varepsilon=0 .
\end{aligned}
$$

Then there exists $\Pi \in \mathcal{L}\left(\mathcal{H} ; \mathbb{R}^{K}\right)$ such that $A+B B^{*} \Pi$ is exponentially stable of order $-\sigma$: the solution \mathbf{X} of (22) with $u=K \mathbf{X}$ satisfies

$$
\|\mathbf{X}(t)\| \leqslant\left\|\mathbf{X}^{0}\right\| e^{-\sigma t}
$$

K can be chosen as the the maximum of the geometric multiplicities of the $\lambda_{k}, k \in\{1, \ldots, N\}$.

Unique continuation

$$
\left\{\begin{array}{l}
\lambda \varphi-\nu \Delta \varphi+\nabla \pi+\left(\nabla V^{S}\right)^{*} \varphi-V^{S} \cdot \nabla \varphi=0 \tag{23}\\
m \lambda \xi+\int_{\partial \mathcal{S}} \sigma(\varphi, \pi) n d \Gamma+\left[\begin{array}{l}
\int_{\mathcal{F}} \Gamma_{1} \cdot \varphi d y \\
\left.\int_{\mathcal{F}} \Gamma_{2} \cdot \varphi d y\right]-b=0 \\
I_{0} \lambda \zeta+\int_{\partial \mathcal{S}} y^{\perp} \cdot \sigma(\varphi, \pi) n d \Gamma+\int_{\mathcal{F}} \Gamma_{3} \cdot \varphi d y-\kappa=0 \\
\lambda b+\int_{\mathcal{F}} \Gamma_{4} \cdot \varphi d y=0, \\
\lambda \kappa+\int_{\mathcal{F}} \Gamma_{5} \cdot \varphi d y=0 .
\end{array} .\right.
\end{array}\right.
$$

and

$$
\begin{equation*}
\sigma(\varphi, \pi) n=0 \quad \text { on } \partial \Omega \tag{24}
\end{equation*}
$$

Fixed Point Argument

$$
\mathbf{F} \mapsto \mathbf{X}
$$

where

$$
\begin{aligned}
& \mathbb{P} \mathbf{X}^{\prime}=A_{\Pi} \mathbb{P} \mathbf{X}+\mathbb{P} \mathbf{F}, \\
&(I-\mathbb{P}) \mathbf{X}=(I-\mathbb{P}) D B^{*} \Pi(\mathbf{X}), \\
& \mathbf{X}(0)=\mathbf{X}^{0} . \\
& \mathbf{X}=[\tilde{w} \tilde{\ell} \tilde{\omega} \tilde{a} \tilde{\ell}] .
\end{aligned}
$$

$$
F(\mathbf{Z})=\left[(\operatorname{Id}-K) \partial_{t} \tilde{w}\right]+\nu[(L-\Delta) \tilde{w}]+[(\nabla-G) \tilde{q}]+\ldots
$$

Fixed point in

$$
\begin{equation*}
L^{2}\left(D\left(A_{\Pi}^{1 / 2}\right)\right) \cap H^{1}\left(D\left(\left(A^{1 / 2}\right)^{*}\right)^{\prime}\right) \cap B C(H), \tag{25}
\end{equation*}
$$

and in

$$
\begin{equation*}
L_{\chi}^{2}\left(D\left(A_{\Pi}\right)\right) \cap H_{\chi}^{1}(H) \cap B C_{\chi}\left(D\left(A_{\Pi}^{1 / 2}\right)\right) . \tag{26}
\end{equation*}
$$

Conclusion

- We obtain the feedback stabilizability of a fluid-structure problem in 1d, with only one boundary control, provided σ is not too large or there does not exist a solution to (\star).
- We obtain the feedback stabilizability of a fluid-structure problem in 2d for "mild solutions" provided the initial position and the final position of the rigid body is the same.
- We obtain the feedback stabilizability of a fluid-structure problem in 2 d and 3 d for "strong solutions" with dynamical controllers.

