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Introduction: control problem and its stochastic counterpart

Abstract setting

Let H be a Hilbert space let E C H be a closed subspace.
Consider the equaton

O = F(u) +n(t), u(t)eH, n(t)€E, (1)
supplemented with the initial condition
u(0) =up € H. 2)

We assume that problem (1), (2) is well posed and denote
by Si(up,n) its resolving operator.
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Let H be a Hilbert space let E C H be a closed subspace.
Consider the equaton

O = F(u) +n(t), u(t)eH, n(t)€E, (1)
supplemented with the initial condition
u(0) =up € H. 2)

We assume that problem (1), (2) is well posed and denote
by Si(up,n) its resolving operator.

Control problem. Assuming that » is a control with range in E,
investigate various controllability properties, such as exact or
approximate controllability, stabilisation of a given solution, etc.
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denotes the law of a random variable &.
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Abstract setting

Random dynamical system. Let )\ be a probability measure
on L?(0,1; E) and let {nx} be a sequence of i.i.d. random
variables in L?(0, 1; E) such that D(n,) = ), where D(€)
denotes the law of a random variable &.

Define the mapping
¢k : Up — u(k), k=0,
where u(t) = Si(up, n) is the solution of (1), (2) with  such that
n(t)=n(t—k+1) forte(k—1,k), k>1.

Then {¢x : H— H,k > 0} form an RDS in H, and the problem
is to study the large-time asymptotics of its trajectories.
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General principle

We shall use the example of 2D Navier—Stokes equations to
justify the following general principle:

“Right” controllability properties imply ergodicity ‘

Ergodicity means the existence of a probability measure ;. on H
such that
D(pk(Up)) — p as k — oo. (3)

“Right” controllability properties are the following ones:
@ Approximate controllability in infinite time;
@ Squeezing: for any v, Vv’ € H there is a finite-dimensional
map ¥, acting in L2(0, 1; E) such that

’
1S1(v, Q) = Si(v' . C+ T (D < 5 llv =Vl (@)



Initial-boundary value problem
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Equations and phase space

Let D c R? be a domain with a smooth boundary 9D. Consider
the problem

ou+ (u,Vyu—vAu+Vp=1£(t,x), divu=0, xeD, (5
u(0,x) = Uo(x),  ufy, =0. (6)
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Equations and phase space

Let D c R? be a domain with a smooth boundary 9D. Consider
the problem

ou+ (u,Vyu—vAu+Vp=1£(t,x), divu=0, xeD, (5
u(0,x) = Uo(x),  ufy, =0. (6)

Here u = (uy, u2) and p are unknown velocity field and
pressure, v > 0 is the viscosity, f is an external force, and

<U7 v> - U1(t, X)81 + U2(t7x)82-
Problem (5), (6) is well posed in the space
H={uel?D,R? :divu=0inD,(u,n) =0onadD},

where n stands for the unit normal to the boundary oD.
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Two-dimensional Navier—Stokes system Problem of ergodicity

Random force

Let Q C (0,1) x D be an open subset and let {n,} be a
sequence of i.i.d. random variables in the space HJ(Q, R?)
regarded as a subspace in L2((0,1) x D,RR?). Assume that

f=h+n, heH, ”—Z’kw Ynk(t — k +1,x),

and define ¢ : H — H by the relation
wk(Ug) = u(k,-), u(t,x)= Si(up,n) is the solution of (5), (6).

The independence of 7, ensures that the trajectories of the
RDS ¢, are Markov processes in H, while the k-independence
of their law implies that those Markov processes are
homogeneous in time.
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Two-dimensional Navier—Stokes system Problem of ergodicity

Metric in the space of measures and ergodicity

Define the Kantorovich—Wasserstein distance (metrising the
weak convergence) on the space P(H) of probabilities on H:

i =l = sup | [ gy~ [ goual, sz € P(H)
llgll <1
where for a function g : H — R we set
l9(u) — gl

9l =suplg(u)|+  sup
ueH o<flu—vilu<t U=V~



Initial-boundary value problem

Two-dimensional Navier—Stokes system Problem of ergodicity

Metric in the space of measures and ergodicity

Define the Kantorovich—Wasserstein distance (metrising the
weak convergence) on the space P(H) of probabilities on H:

i =l = sup | [ gy~ [ goual, sz € P(H)
llgll <1
where for a function g : H — R we set
l9(u) — gl

9l =suplg(u)|+  sup
ueH o<flu—vilu<t U=V~

Problem of ergodicity. Find a measure 1 € P(H) such that
ID(pk(W0)) — ulli < C(1+ |uollw)e™ , k=0, (7)

where C and « are positive constants not depending on ug.
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Formulation of the main result

We first specify the structure of random variables 7. Let
x € C3°(Q) be a nonzero function and let {¢;} ¢ H'(Q,R?) be
a orthonormal basis in L?(Q, R?). We assume that

mk(t,X) = byt x), ¥ = xypj, (8)

j=1
where b; € R go to zero sufficiently fast and {y are independent
random variables such that

D(&ik) = pi(r)dr,  pj € Cy([—1,1]).

12
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Formulation of the main result

We first specify the structure of random variables 7. Let
x € C3°(Q) be a nonzero function and let {¢;} ¢ H'(Q,R?) be
a orthonormal basis in L?(Q, R?). We assume that

mk(t,X) = byt x), ¥ = xypj, (8)

j=1
where b; € R go to zero sufficiently fast and {y are independent
random variables such that

D(&ik) = pi(r)dr,  pj € Cy([—1,1]).

Main Theorem

Let h € H'(D,R?). Then there are ¢ > 0 and N > 1 depending
onv > 0 such that the RDS {\} is ergodic, provided that

Ihlly<e,  bj#0 for 1<j<N. (9)
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Sufficient condition for ergodicity

The existence and uniqueness of a measure 1 € P(H) and its

stability (without the rate of convergence) are consequences of

the following two properties in which & € H is a given function:
@ Recurrence. For any d > 0 and yp € H, the random time

7(Up) = min{k > 0 : [|px(Uo) — Ul < d}

is almost surely finite.
@ Stability. There is a continuous function »(d) defined for
d € [0, 1] and going to zero with d such that
sup || D(¢k(o)) — D(p())[[; < »(d).  (10)
lluo—tlln<d
The first property follows from the approximate controllability
to U in infinite time, while the second can be established by
combining the squeezing property with a general result on the

transformation of measures by smooth mappings.
10/12
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Approximate controllability in infinite time

Let us denote by K the support of the law for 7. Thus, K is a
compact subspace in H}(Q,R?). Suppose there is & € H for
which the following properties hold.

Approximate controllability. For any R,d > 0 there is an
integer | > 1 such that, given uy € By(R), we can find controls
(1,--.,C € K satisfying the inequality

1Si(Uo; ¢t -+ G1) — Ullw < d, (11)

where Sj(up; (3, - .., (k) stands for the restriction at t = / of the
solution for the Navier—Stokes system with the right-hand side

f(t +Z/k1k ) Ck(t —k +1,x).

11/12
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Approximate controllability in infinite time

Let us denote by K the support of the law for 7. Thus, K is a
compact subspace in H}(Q,R?). Suppose there is & € H for
which the following properties hold.

Approximate controllability. For any R,d > 0 there is an
integer | > 1 such that, given uy € By(R), we can find controls
(1,--.,C € K satisfying the inequality

1Si(Uo; ¢t -+ G1) — Ullw < d, (11)

where Sj(up; (3, - .., (k) stands for the restriction at t = / of the
solution for the Navier—Stokes system with the right-hand side

f(t +Z/k1k ) Ck(t —k +1,x).

This property is well understood due to the works of Coron
(1995-1996), Fursikov—Imanuvilov (1996-2000), and others.
It is trivially satisfied when ||h|| < 1.

11/12
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Squeezing

Let £n C HI(Q,R?) be the vector span of y;(t,x), j=1,....m,
and Bx(R) be the closed ball in X of radius R centred at zero.

Squeezing. VR > 0 there is dy > 0, m > 1, and a mapping
(where L(H, En) is the space of continuous linear operators
from H to £;) with the following properties:

@ Contraction. For any uy, u}y € By(R) with [luy — uj|| < do
and any ¢ € BHS(QRg)(R) we have

1
161 (0. €) — S1 (. ¢ + P(to. )t — o)) || < 51u0 — -
(12)
@ Regularity. The mapping @(uy, ¢) is regular and uniformly

Lipschitz with respect to its arguments.
12/12
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