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Main result and some ideas of its proof

Abstract setting

Let H be a Hilbert space let E ⊂ H be a closed subspace.
Consider the equaton

∂tu = F (u) + η(t), u(t) ∈ H, η(t) ∈ E , (1)

supplemented with the initial condition

u(0) = u0 ∈ H. (2)

We assume that problem (1), (2) is well posed and denote
by St (u0, η) its resolving operator.

Control problem. Assuming that η is a control with range in E ,
investigate various controllability properties, such as exact or
approximate controllability, stabilisation of a given solution, etc.
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Abstract setting

Random dynamical system. Let λ be a probability measure
on L2(0,1; E) and let {ηk} be a sequence of i.i.d. random
variables in L2(0,1; E) such that D(ηk ) = λ, where D(ξ)
denotes the law of a random variable ξ.
Define the mapping

ϕk : u0 7→ u(k), k ≥ 0,

where u(t) = St (u0, η) is the solution of (1), (2) with η such that

η(t) = ηk (t − k + 1) for t ∈ (k − 1, k), k ≥ 1.

Then {ϕk : H → H, k ≥ 0} form an RDS in H, and the problem
is to study the large-time asymptotics of its trajectories.
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General principle

We shall use the example of 2D Navier–Stokes equations to
justify the following general principle:

“Right” controllability properties imply ergodicity

Ergodicity means the existence of a probability measure µ on H
such that

D
(
ϕk (u0)

)
⇀ µ as k →∞. (3)

“Right” controllability properties are the following ones:
Approximate controllability in infinite time;
Squeezing: for any v , v ′ ∈ H there is a finite-dimensional
map Ψv ,v ′ acting in L2(0,1; E) such that∥∥S1(v , ζ)− S1(v ′, ζ + Ψv ,v ′(ζ))

∥∥ ≤ 1
2
‖v − v ′‖. (4)
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Initial-boundary value problem
Problem of ergodicity

Equations and phase space

Let D ⊂ R2 be a domain with a smooth boundary ∂D. Consider
the problem

∂tu + 〈u,∇〉u − ν∆u +∇p = f (t , x), div u = 0, x ∈ D, (5)
u(0, x) = u0(x), u

∣∣
∂D = 0. (6)

Here u = (u1,u2) and p are unknown velocity field and
pressure, ν > 0 is the viscosity, f is an external force, and

〈u,∇〉 = u1(t , x)∂1 + u2(t , x)∂2.

Problem (5), (6) is well posed in the space

H = {u ∈ L2(D,R2) : div u = 0 in D, 〈u,n〉 = 0 on ∂D},

where n stands for the unit normal to the boundary ∂D.
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Initial-boundary value problem
Problem of ergodicity

Random force

Let Q ⊂ (0,1)× D be an open subset and let {ηk} be a
sequence of i.i.d. random variables in the space H1

0 (Q,R2)
regarded as a subspace in L2((0,1)× D,R2). Assume that

f = h + η, h ∈ H, η =
∞∑

k=1

I(k−1,k)(t) ηk (t − k + 1, x),

and define ϕk : H → H by the relation

ϕk (u0) = u(k , ·), u(t , x) = St (u0, η) is the solution of (5), (6).

The independence of ηk ensures that the trajectories of the
RDS ϕk are Markov processes in H, while the k -independence
of their law implies that those Markov processes are
homogeneous in time.
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Initial-boundary value problem
Problem of ergodicity

Metric in the space of measures and ergodicity

Define the Kantorovich–Wasserstein distance (metrising the
weak convergence) on the space P(H) of probabilities on H:

‖µ1 − µ2‖∗L = sup
‖g‖L≤1

∣∣∣∣∫
H

g dµ1 −
∫

H
g dµ2

∣∣∣∣, µ1, µ2 ∈ P(H),

where for a function g : H → R we set

‖g‖L = sup
u∈H
|g(u)|+ sup

0<‖u−v‖H≤1

|g(u)− g(v)|
‖u − v‖H

.

Problem of ergodicity. Find a measure µ ∈ P(H) such that∥∥D(ϕk (u0))− µ‖∗L ≤ C (1 + ‖u0‖H)e−γk , k ≥ 0, (7)

where C and γ are positive constants not depending on u0.
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Formulation
“Right” controllability properties

Formulation of the main result
We first specify the structure of random variables ηk . Let
χ ∈ C∞0 (Q) be a nonzero function and let {ϕj} ⊂ H1(Q,R2) be
a orthonormal basis in L2(Q,R2). We assume that

ηk (t , x) =
∞∑

j=1

bjξjkψj(t , x), ψj = χϕj , (8)

where bj ∈ R go to zero sufficiently fast and ξjk are independent
random variables such that

D(ξjk ) = ρj(r)dr , ρj ∈ C1
0([−1,1]).

Main Theorem

Let h ∈ H1(D,R2). Then there are ε > 0 and N ≥ 1 depending
on ν > 0 such that the RDS {ϕk} is ergodic, provided that

‖h‖H ≤ ε, bj 6= 0 for 1 ≤ j ≤ N. (9)
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Formulation
“Right” controllability properties

Sufficient condition for ergodicity

The existence and uniqueness of a measure µ ∈ P(H) and its
stability (without the rate of convergence) are consequences of
the following two properties in which û ∈ H is a given function:

Recurrence. For any d > 0 and u0 ∈ H, the random time

τ(u0) = min{k ≥ 0 : ‖ϕk (u0)− û‖H ≤ d}

is almost surely finite.
Stability. There is a continuous function κ(d) defined for
d ∈ [0,1] and going to zero with d such that

sup
‖u0−û‖H≤d

∥∥D(ϕk (u0))−D(ϕk (û))
∥∥∗

L ≤ κ(d). (10)

The first property follows from the approximate controllability
to û in infinite time, while the second can be established by
combining the squeezing property with a general result on the
transformation of measures by smooth mappings.
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Formulation
“Right” controllability properties

Approximate controllability in infinite time
Let us denote by K the support of the law for ηk . Thus, K is a
compact subspace in H1

0 (Q,R2). Suppose there is û ∈ H for
which the following properties hold.
Approximate controllability. For any R,d > 0 there is an
integer l ≥ 1 such that, given u0 ∈ BH(R), we can find controls
ζ1, . . . , ζl ∈ K satisfying the inequality

‖Sl(u0; ζ1, . . . , ζl)− û‖H ≤ d , (11)

where Sl(u0; ζ1, . . . , ζk ) stands for the restriction at t = l of the
solution for the Navier–Stokes system with the right-hand side

f (t , x) = h(x) +
l∑

k=1

I(k−1,k)(t) ζk (t − k + 1, x).

This property is well understood due to the works of Coron
(1995-1996), Fursikov–Imanuvilov (1996-2000), and others.
It is trivially satisfied when ‖h‖ � 1.
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Squeezing

Let Em ⊂ H1
0 (Q,R2) be the vector span of ψj(t , x), j = 1, . . . ,m,

and BX (R) be the closed ball in X of radius R centred at zero.

Squeezing. ∀R > 0 there is d0 > 0, m ≥ 1, and a mapping

Φ : BH(R)× BH1
0 (Q,R2)(R)→ L(H, Em)

(where L(H, Em) is the space of continuous linear operators
from H to Em) with the following properties:

Contraction. For any u0,u′0 ∈ BH(R) with ‖u0 − u′0‖ ≤ d0
and any ζ ∈ BH1

0 (Q,R2)(R) we have∥∥S1
(
u0, ζ

)
− S1

(
u′0, ζ + Φ(u0, ζ)(u′0 − u0)

)∥∥ ≤ 1
2
‖u0 − u′0‖.

(12)
Regularity. The mapping Φ(u0, ζ) is regular and uniformly
Lipschitz with respect to its arguments.
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