Control and mixing for 2D Navier–Stokes equations with space-time localised force

Armen Shirikyan (partly in collaboration with V. Barbu and S. Rodrigues)

University of Cergy-Pontoise

Control of Fluid–Structure Systems and Inverse Problem Toulouse, 25–28 June 2012

Outline

Introduction: control problem and its stochastic counterpart

- Two-dimensional Navier–Stokes system
 Initial-boundary value problem
 - Problem of ergodicity
- 3 Main result and some ideas of its proor
 - Formulation
 - "Right" controllability properties

Outline

Two-dimensional Navier–Stokes system

- Initial-boundary value problem
- Problem of ergodicity

3 Main result and some ideas of its proof

- Formulation
- "Right" controllability properties

Outline

Introduction: control problem and its stochastic counterpart

Two-dimensional Navier–Stokes system

- Initial-boundary value problem
- Problem of ergodicity

3 Main result and some ideas of its proof

- Formulation
- "Right" controllability properties

Abstract setting

Let *H* be a Hilbert space let $E \subset H$ be a closed subspace. Consider the equaton

$$\partial_t u = F(u) + \eta(t), \quad u(t) \in H, \quad \eta(t) \in E,$$
 (1)

supplemented with the initial condition

$$u(0)=u_0\in H. \tag{2}$$

We assume that problem (1), (2) is well posed and denote by $S_t(u_0, \eta)$ its resolving operator.

Control problem. Assuming that η is a control with range in *E*, investigate various controllability properties, such as exact or approximate controllability, stabilisation of a given solution, etc.

Abstract setting

Let *H* be a Hilbert space let $E \subset H$ be a closed subspace. Consider the equaton

$$\partial_t u = F(u) + \eta(t), \quad u(t) \in H, \quad \eta(t) \in E,$$
 (1)

supplemented with the initial condition

$$u(0) = u_0 \in H. \tag{2}$$

We assume that problem (1), (2) is well posed and denote by $S_t(u_0, \eta)$ its resolving operator.

Control problem. Assuming that η is a control with range in *E*, investigate various controllability properties, such as exact or approximate controllability, stabilisation of a given solution, etc.

Abstract setting

Random dynamical system. Let λ be a probability measure on $L^2(0, 1; E)$ and let $\{\eta_k\}$ be a sequence of i.i.d. random variables in $L^2(0, 1; E)$ such that $\mathcal{D}(\eta_k) = \lambda$, where $\mathcal{D}(\xi)$ denotes the law of a random variable ξ .

Define the mapping

$$\varphi_k: u_0 \mapsto u(k), \quad k \ge 0,$$

where $u(t) = S_t(u_0, \eta)$ is the solution of (1), (2) with η such that

$$\eta(t) = \eta_k(t - k + 1)$$
 for $t \in (k - 1, k)$, $k \ge 1$.

Then $\{\varphi_k : H \to H, k \ge 0\}$ form an RDS in *H*, and the problem is to study the large-time asymptotics of its trajectories.

Abstract setting

Random dynamical system. Let λ be a probability measure on $L^2(0, 1; E)$ and let $\{\eta_k\}$ be a sequence of i.i.d. random variables in $L^2(0, 1; E)$ such that $\mathcal{D}(\eta_k) = \lambda$, where $\mathcal{D}(\xi)$ denotes the law of a random variable ξ .

Define the mapping

$$\varphi_k: u_0 \mapsto u(k), \quad k \ge 0,$$

where $u(t) = S_t(u_0, \eta)$ is the solution of (1), (2) with η such that

$$\eta(t) = \eta_k(t - k + 1)$$
 for $t \in (k - 1, k)$, $k \ge 1$.

Then $\{\varphi_k : H \to H, k \ge 0\}$ form an RDS in *H*, and the problem is to study the large-time asymptotics of its trajectories.

General principle

We shall use the example of 2D Navier–Stokes equations to justify the following general principle:

"Right" controllability properties imply ergodicity

Ergodicity means the existence of a probability measure μ on H such that

$$D(\varphi_k(u_0)) \rightarrow \mu \quad \text{as } k \rightarrow \infty.$$
 (3)

"Right" controllability properties are the following ones:

- Approximate controllability in infinite time;
- Squeezing: for any v, v' ∈ H there is a finite-dimensional map Ψ_{v,v'} acting in L²(0,1; E) such that

$$\left\|S_{1}(v,\zeta)-S_{1}(v',\zeta+\Psi_{v,v'}(\zeta))\right\| \leq \frac{1}{2}\|v-v'\|.$$
(4)

General principle

We shall use the example of 2D Navier–Stokes equations to justify the following general principle:

"Right" controllability properties imply ergodicity

Ergodicity means the existence of a probability measure μ on H such that

$$\mathcal{D}(\varphi_k(u_0)) \rightharpoonup \mu \quad \text{as } k \to \infty.$$
 (3)

"Right" controllability properties are the following ones:

- Approximate controllability in infinite time;
- Squeezing: for any v, v' ∈ H there is a finite-dimensional map Ψ_{v,v'} acting in L²(0,1; E) such that

$$\left\|S_{1}(v,\zeta)-S_{1}(v',\zeta+\Psi_{v,v'}(\zeta))\right\| \leq \frac{1}{2}\|v-v'\|.$$
(4)

General principle

We shall use the example of 2D Navier–Stokes equations to justify the following general principle:

"Right" controllability properties imply ergodicity

Ergodicity means the existence of a probability measure μ on H such that

$$\mathcal{D}(\varphi_k(u_0)) \rightarrow \mu \quad \text{as } k \rightarrow \infty.$$
 (3)

"Right" controllability properties are the following ones:

- Approximate controllability in infinite time;
- Squeezing: for any v, v' ∈ H there is a finite-dimensional map Ψ_{v,v'} acting in L²(0,1; E) such that

$$\left\|S_{1}(v,\zeta) - S_{1}(v',\zeta + \Psi_{v,v'}(\zeta))\right\| \leq \frac{1}{2} \|v - v'\|.$$
 (4)

Initial-boundary value problem Problem of ergodicity

Equations and phase space

Let $D \subset \mathbb{R}^2$ be a domain with a smooth boundary ∂D . Consider the problem

$$\partial_t u + \langle u, \nabla \rangle u - \nu \Delta u + \nabla p = f(t, x), \quad \text{div } u = 0, \quad x \in D, \quad (5)$$
$$u(0, x) = u_0(x), \quad u\big|_{\partial D} = 0. \quad (6)$$

Here $u = (u_1, u_2)$ and *p* are unknown velocity field and pressure, $\nu > 0$ is the viscosity, *f* is an external force, and

$$\langle u, \nabla \rangle = u_1(t, x)\partial_1 + u_2(t, x)\partial_2.$$

Problem (5), (6) is well posed in the space

 $H = \{ u \in L^2(D, \mathbb{R}^2) : \operatorname{div} u = 0 \text{ in } D, \langle u, \boldsymbol{n} \rangle = 0 \text{ on } \partial D \},$

where *n* stands for the unit normal to the boundary ∂D .

6/12

Initial-boundary value problem Problem of ergodicity

Equations and phase space

Let $D \subset \mathbb{R}^2$ be a domain with a smooth boundary ∂D . Consider the problem

$$\partial_t u + \langle u, \nabla \rangle u - \nu \Delta u + \nabla p = f(t, x), \quad \text{div } u = 0, \quad x \in D, \quad (5) \\ u(0, x) = u_0(x), \quad u\big|_{\partial D} = 0.$$

Here $u = (u_1, u_2)$ and *p* are unknown velocity field and pressure, $\nu > 0$ is the viscosity, *f* is an external force, and

$$\langle u, \nabla \rangle = u_1(t, x)\partial_1 + u_2(t, x)\partial_2.$$

Problem (5), (6) is well posed in the space

$$H = \{ u \in L^2(D, \mathbb{R}^2) : \text{div } u = 0 \text{ in } D, \langle u, \boldsymbol{n} \rangle = 0 \text{ on } \partial D \},\$$

where *n* stands for the unit normal to the boundary ∂D .

Initial-boundary value problem Problem of ergodicity

Random force

Let $Q \subset (0, 1) \times D$ be an open subset and let $\{\eta_k\}$ be a sequence of i.i.d. random variables in the space $H_0^1(Q, \mathbb{R}^2)$ regarded as a subspace in $L^2((0, 1) \times D, \mathbb{R}^2)$. Assume that

$$f = h + \eta, \quad h \in H, \quad \eta = \sum_{k=1}^{\infty} I_{(k-1,k)}(t) \eta_k(t-k+1,x),$$

and define $\varphi_k : H \to H$ by the relation

 $\varphi_k(u_0) = u(k, \cdot), \quad u(t, x) = S_t(u_0, \eta)$ is the solution of (5), (6).

The independence of η_k ensures that the trajectories of the RDS φ_k are Markov processes in *H*, while the *k*-independence of their law implies that those Markov processes are homogeneous in time.

Metric in the space of measures and ergodicity

Define the Kantorovich–Wasserstein distance (metrising the weak convergence) on the space $\mathcal{P}(H)$ of probabilities on H:

$$\|\mu_1 - \mu_2\|_L^* = \sup_{\|g\|_L \le 1} \left| \int_H g \, d\mu_1 - \int_H g \, d\mu_2 \right|, \quad \mu_1, \mu_2 \in \mathcal{P}(H),$$

where for a function $g: H \to \mathbb{R}$ we set

$$\|g\|_{L} = \sup_{u \in H} |g(u)| + \sup_{0 < \|u-v\|_{H} \le 1} \frac{|g(u) - g(v)|}{\|u-v\|_{H}}.$$

Problem of ergodicity. Find a measure $\mu \in \mathcal{P}(H)$ such that

$$\|\mathcal{D}(\varphi_k(u_0)) - \mu\|_L^* \le C(1 + \|u_0\|_H)e^{-\gamma k}, \quad k \ge 0,$$
 (7)

where *C* and γ are positive constants not depending on u_0 .

Metric in the space of measures and ergodicity

Define the Kantorovich–Wasserstein distance (metrising the weak convergence) on the space $\mathcal{P}(H)$ of probabilities on H:

$$\|\mu_1 - \mu_2\|_L^* = \sup_{\|g\|_L \le 1} \left| \int_H g \, d\mu_1 - \int_H g \, d\mu_2 \right|, \quad \mu_1, \mu_2 \in \mathcal{P}(H),$$

where for a function $g: H \to \mathbb{R}$ we set

$$\|g\|_{L} = \sup_{u \in H} |g(u)| + \sup_{0 < \|u-v\|_{H} \le 1} \frac{|g(u) - g(v)|}{\|u-v\|_{H}}.$$

Problem of ergodicity. Find a measure $\mu \in \mathcal{P}(H)$ such that

$$\|\mathcal{D}(\varphi_k(u_0)) - \mu\|_L^* \le C(1 + \|u_0\|_H)e^{-\gamma k}, \quad k \ge 0,$$
 (7)

where *C* and γ are positive constants not depending on u_0 .

8/12

Formulation "Right" controllability properties

Formulation of the main result

We first specify the structure of random variables η_k . Let $\chi \in C_0^{\infty}(Q)$ be a nonzero function and let $\{\varphi_j\} \subset H^1(Q, \mathbb{R}^2)$ be a orthonormal basis in $L^2(Q, \mathbb{R}^2)$. We assume that

$$\eta_k(t,x) = \sum_{j=1}^{\infty} b_j \xi_{jk} \psi_j(t,x), \quad \psi_j = \chi \varphi_j,$$
(8)

where $b_j \in \mathbb{R}$ go to zero sufficiently fast and ξ_{jk} are independent random variables such that

$$\mathcal{D}(\xi_{jk}) = \rho_j(r) dr, \quad \rho_j \in C_0^1([-1,1]).$$

Main Theorem

Let $h \in H^1(D, \mathbb{R}^2)$. Then there are $\varepsilon > 0$ and $N \ge 1$ depending on $\nu > 0$ such that the RDS { φ_k } is ergodic, provided that

 $\|h\|_H \le \varepsilon, \qquad b_j \ne 0 \quad \text{for} \quad 1 \le j \le N.$

Formulation "Right" controllability properties

Formulation of the main result

We first specify the structure of random variables η_k . Let $\chi \in C_0^{\infty}(Q)$ be a nonzero function and let $\{\varphi_j\} \subset H^1(Q, \mathbb{R}^2)$ be a orthonormal basis in $L^2(Q, \mathbb{R}^2)$. We assume that

$$\eta_k(t,x) = \sum_{j=1}^{\infty} b_j \xi_{jk} \psi_j(t,x), \quad \psi_j = \chi \varphi_j,$$
(8)

where $b_j \in \mathbb{R}$ go to zero sufficiently fast and ξ_{jk} are independent random variables such that

$$\mathcal{D}(\xi_{jk}) = \rho_j(r) dr, \quad \rho_j \in C_0^1([-1,1]).$$

Main Theorem

Let $h \in H^1(D, \mathbb{R}^2)$. Then there are $\varepsilon > 0$ and $N \ge 1$ depending on $\nu > 0$ such that the RDS { φ_k } is ergodic, provided that

 $\|h\|_H \leq \varepsilon, \qquad b_j \neq 0 \quad \text{for} \quad 1 \leq j \leq N.$

(9)

Formulation "Right" controllability properties

Sufficient condition for ergodicity

The existence and uniqueness of a measure $\mu \in \mathcal{P}(H)$ and its stability (without the rate of convergence) are consequences of the following two properties in which $\hat{u} \in H$ is a given function:

• **Recurrence.** For any d > 0 and $u_0 \in H$, the random time

$$\tau(u_0) = \min\{k \ge 0 : \|\varphi_k(u_0) - \hat{u}\|_H \le d\}$$

is almost surely finite.

Stability. There is a continuous function *x*(*d*) defined for *d* ∈ [0, 1] and going to zero with *d* such that

$$\sup_{\|u_0-\hat{u}\|_H \le d} \|\mathcal{D}(\varphi_k(u_0)) - \mathcal{D}(\varphi_k(\hat{u}))\|_L^* \le \varkappa(d).$$
(10)

The first property follows from the *approximate controllability to û in infinite time*, while the second can be established by combining the squeezing property with a general result on the transformation of measures by smooth mappings.

Approximate controllability in infinite time

Let us denote by \mathcal{K} the support of the law for η_k . Thus, \mathcal{K} is a compact subspace in $H_0^1(Q, \mathbb{R}^2)$. Suppose there is $\hat{u} \in H$ for which the following properties hold.

Approximate controllability. For any R, d > 0 there is an integer $l \ge 1$ such that, given $u_0 \in B_H(R)$, we can find controls $\zeta_1, \ldots, \zeta_l \in \mathcal{K}$ satisfying the inequality

$$\|S_l(u_0;\zeta_1,\ldots,\zeta_l)-\hat{u}\|_H\leq d, \tag{11}$$

where $S_l(u_0; \zeta_1, ..., \zeta_k)$ stands for the restriction at t = l of the solution for the Navier–Stokes system with the right-hand side

$$f(t,x) = h(x) + \sum_{k=1}^{l} I_{(k-1,k)}(t) \zeta_k(t-k+1,x).$$

This property is well understood due to the works of *Coron* (1995-1996), *Fursikov–Imanuvilov* (1996-2000), and others. It is trivially satisfied when $||h|| \ll 1$.

Approximate controllability in infinite time

Let us denote by \mathcal{K} the support of the law for η_k . Thus, \mathcal{K} is a compact subspace in $H_0^1(Q, \mathbb{R}^2)$. Suppose there is $\hat{u} \in H$ for which the following properties hold.

Approximate controllability. For any R, d > 0 there is an integer $l \ge 1$ such that, given $u_0 \in B_H(R)$, we can find controls $\zeta_1, \ldots, \zeta_l \in \mathcal{K}$ satisfying the inequality

$$\|S_l(u_0;\zeta_1,\ldots,\zeta_l)-\hat{u}\|_H\leq d, \tag{11}$$

where $S_l(u_0; \zeta_1, ..., \zeta_k)$ stands for the restriction at t = l of the solution for the Navier–Stokes system with the right-hand side

$$f(t,x) = h(x) + \sum_{k=1}^{l} I_{(k-1,k)}(t) \zeta_k(t-k+1,x).$$

This property is well understood due to the works of *Coron* (1995-1996), *Fursikov–Imanuvilov* (1996-2000), and others. It is trivially satisfied when $||h|| \ll 1$.

11/12

Introduction: control problem and its stochastic counterpart Two-dimensional Navier–Stokes system Main result and some ideas of its proof

Formulation "Right" controllability properties

Squeezing

Let $\mathcal{E}_m \subset H_0^1(Q, \mathbb{R}^2)$ be the vector span of $\psi_j(t, x)$, j = 1, ..., m, and $B_X(R)$ be the closed ball in X of radius R centred at zero. Squeezing. $\forall R > 0$ there is $d_0 > 0$, $m \ge 1$, and a mapping

$$\Phi: \mathcal{B}_{\mathcal{H}}(\mathcal{R}) \times \mathcal{B}_{\mathcal{H}^{1}_{0}(\mathcal{Q},\mathbb{R}^{2})}(\mathcal{R}) \to \mathcal{L}(\mathcal{H},\mathcal{E}_{m})$$

(where $\mathcal{L}(H, \mathcal{E}_m)$ is the space of continuous linear operators from *H* to \mathcal{E}_m) with the following properties:

• Contraction. For any $u_0, u'_0 \in B_H(R)$ with $||u_0 - u'_0|| \le d_0$ and any $\zeta \in B_{H_0^1(Q,\mathbb{R}^2)}(R)$ we have

$$\|S_1(u_0,\zeta) - S_1(u'_0,\zeta + \Phi(u_0,\zeta)(u'_0 - u_0))\| \le \frac{1}{2} \|u_0 - u'_0\|.$$
(12)

Regularity. The mapping Φ(u₀, ζ) is regular and uniformly Lipschitz with respect to its arguments.