
On the identifiability of a rigid body moving in a
stationary viscous fluid

Erica L. Schwindt

Institut E. Cartan. Université de Lorraine
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Introduction

Suppose an unknown body S is immersed in a fluid, and the body and the
fluid are contained in a fixed domain Ω. Assume Γ is a non empty open
subset of ∂Ω where we can measure σ(u, p) n|Γ, at some time t0 > 0.

Γ
Ω

S

Is it possible to recover S?.
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Formulation of the problem

We assume that the structure is a rigid body so that it can be described
by its center of mass a(t) ∈ R3 and by its orientation Q(t) ∈ SO3(R):

S(t) := S(a(t), Q(t)),

with
S(a, Q) := QS0 + a.

and
F(a, Q) := Ω \ S(a, Q) = F(a(t), Q(t))

is a smooth non empty domain.

Q
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Formulation of the problem

− div(σ(u, p)) = 0 in F(t), t ∈ (0, T ),

div(u) = 0 in F(t), t ∈ (0, T ),

u = `+ ω × (x− a) on ∂S(t), t ∈ (0, T ),

u = u∗ on ∂Ω, t ∈ (0, T ),∫
∂S(t)

σ(u, p)n dγx = 0 t ∈ (0, T ),∫
∂S(t)

(x− a)× σ(u, p)n dγx = 0 t ∈ (0, T ),

a′ = ` t ∈ (0, T ),

Q′ = S(ω)Q t ∈ (0, T ), (S(ω)z = ω × z, ∀z ∈ R3)

a(0) = a0,

Q(0) = Q0.
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Formulation of the problem

We assume
u = u∗ on ∂Ω

where u∗ is a given velocity satisfying the compatibility condition∫
∂Ω

u∗ · n dγx = 0.

Now, we can introduce the following operator called Poincaré–Steklov op-
erator

ΛS(u∗) := σ(u, p)n on Γ.

Our goal is to prove the injectivity of this operator, in the sense,

σ
(

u(1), p(1)
)

n|Γ = σ
(

u(2), p(2)
)

n|Γ ⇒ S(1) = S(2).
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Main results

Theorem (well-posedness)

Assume u∗ ∈ H3/2(∂Ω), S0 is a smooth non empty domain and assume
(a0, Q0) ∈ R3 × SO3(R) is such that S(a0, Q0) ⊂ Ω and F(a0, Q0) is a
smooth non empty domain. Then there exist a maximal time T∗ > 0 and
a unique solution

(a, Q) ∈ C1([0, T∗); R3 × SO3(R)), (`,ω) ∈ C([0, T∗); R3 × R3),

(u, p) ∈ C
(
[0, T∗); H2(F(a(t), Q(t)))× H1(F(a(t), Q(t)))/R

)
satisfying the previous system. Moreover one of the following alternatives
holds:

T∗ = +∞;

limt→T∗ dist (S(a(t), Q(t)), ∂Ω) = 0.
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Main results

Let us take two smooth non empty domains S(1)
0 , S(2)

0 and we consider(
a

(1)
0 , Q

(1)
0

)
,
(

a
(2)
0 , Q

(2)
0

)
∈ R3 × SO3(R) such that

S(1)
(

a
(1)
0 , Q

(1)
0

)
⊂ Ω and S(2)

(
a

(2)
0 , Q

(2)
0

)
⊂ Ω.

Applying the previous theorem, we deduce that for any u∗ ∈ H3/2(∂Ω),

there exist T
(1)
∗ > 0

(
respectively T

(2)
∗ > 0

)
and a unique solution(

a(1), Q(1), `(1),ω(1), u(1), p(1)
) (

respectively
(

a(2), Q(2), `(2),ω(2), u(2), p(2)
))

of our system in
[
0, T

(1)
∗

) (
respectively in

[
0, T

(2)
∗

))
.
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Main results

Theorem (identifiability)

Assume that u∗ ∈ H3/2(∂Ω) and that u∗ is not the trace of a rigid

velocity on Γ. Assume also that S(1)
0 , S(2)

0 are convex. If there exists

0 < t0 < min
(

T
(1)
∗ , T

(2)
∗

)
such that

σ
(

u(1)(t0), p(1)(t0)
)

n|Γ = σ
(

u(2)(t0), p(2)(t0)
)

n|Γ

then there exists R ∈ SO3(R) such that

RS(1)
0 = S(2)

0

and

a
(1)
0 = a

(2)
0 , Q

(1)
0 = Q

(2)
0 R.

In particular, T
(1)
∗ = T

(2)
∗ and S(1)(t) = S(2)(t)

(
t ∈

[
0, T

(1)
∗

))
.
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Main results

Idea of proof.
In order to prove Theorem of identifiability, we reason by contradiction and

we assume that there exists 0 < t0 < min
(

T
(1)
∗ , T

(2)
∗

)
, such that

σ
(

u(1)(t0), p(1)(t0)
)

n|Γ = σ
(

u(2)(t0), p(2)(t0)
)

n|Γ

and S(1)(t0) 6= S(2)(t0).
In that case, since S(1)(t0) and S(2)(t0) are convex sets, we have

∂S(1)(t0) ∩ ∂S(2)(t0) is included in a line

This case can be split into the 3 following subcases

Ω

S

S

(t )

(t )
(1)

(2)

0

0

Ω

S
S

(t )
(t )

(1)

(2)

0

0

Ω

S

S

(t )
(t )

(1)

(2)
0

0
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Main results

∂S(1)(t0) ∩ ∂S(2)(t0) contains 3 noncollinear points.

Ω

S

S

(t )

(t )
(1)

(2)

0

0

By using the unique continuation result for the Stokes equations due to
Fabre and Lebeau, we prove that neither of the above case may be possi-
ble. �
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Thanks for your attention !
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