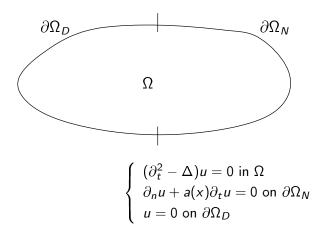
Carleman estimate for Zaremba boundary condition Pierre Cornilleau and Luc Robbiano Lycée du parc des Loges, Évry and Université de Versailles Saint-Quentin LMV, UMR CNRS 8100

PROBLEM



where $a(x) \ge 0$, $a \not\equiv 0$, and a supported in $\partial \Omega_N$.

KNOWN RESULTS

$$\begin{cases} (\partial_t^2 - \Delta + a(x)\partial_t)u = 0 \text{ in } \Omega, \\ u = 0 \text{ on } \partial\Omega. \end{cases}$$

(Lebeau 93)

$$\begin{cases} (\partial_t^2 - \Delta)u = 0 \text{ in } \Omega, \\ \partial_n u + a(x)\partial_t u = 0 \text{ on } \partial\Omega. \end{cases}$$

(Lebeau-Robbiano 95)

$$E(u(t)) = \frac{1}{2} \int_{\Omega} |\partial_t u(t)|^2 + |\partial_x u(t)|^2 dx.$$

We have $E(u(t)) \le \frac{C}{\log^2(2+t)}$, (for "smooth" u).

Remind: $a(x) \ge 0$ and $a \not\equiv 0$.

RESULTS

Theorem

For Zaremba problem we have $E(u(t)) \leq \frac{C}{\log^2(2+t)}$.

Related result: Let v solution of

$$\begin{cases} (\Delta + \lambda^2)v = f_0 \text{ in } \Omega\\ (\partial_n + i\lambda a(x))v = f_1 \text{ on } \partial\Omega_N\\ v = 0 \text{ on } \partial\Omega_D \end{cases}$$

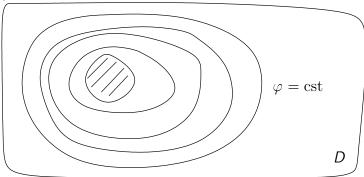
Theorem (Burq 98)

If there exists C > 0 such that $||v|| \leq Ce^{C|\lambda|}(||f_0||_{L^2} + |f_1|_{L^2})$ then we have $E(u(t)) \leq \frac{C}{\log^2(2+t)}$.

This means estimate on resolvent \Rightarrow stabilisation estimate.

WHAT IS CARLEMAN ESTIMATE?

 φ a real function.

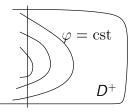


Carleman estimate has the following form, $\exists h_0 > 0, C > 0, \forall u \text{ supported in } D, \forall h \in (0, h_0]$

$$h^{1/2} \| e^{\varphi/h} u \|_{L^2(D)} + h^{3/2} \| e^{\varphi/h} \nabla u \|_{L^2(D)} \le C \| e^{\varphi/h} h^2 \Delta u \|_{L^2(D)}.$$

CARLEMAN ESTIMATES AT THE BOUNDARY (I)

First without boundary conditions,

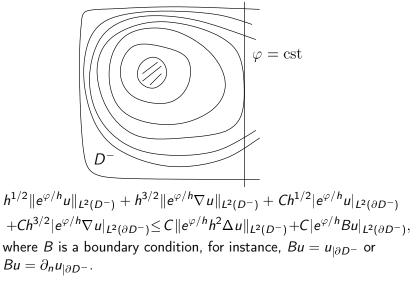


 $\exists h_0 > 0, \ C > 0, \ \forall u \text{ supported in } D, \ \forall h \in (0, h_0]$

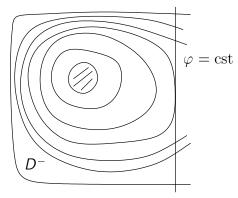
$$\begin{split} h^{1/2} \| e^{\varphi/h} u \|_{L^2(D^+)} + h^{3/2} \| e^{\varphi/h} \nabla u \|_{L^2(D^+)} \\ \leq & C \| e^{\varphi/h} h^2 \Delta u \|_{L^2(D^+)} + C h^{1/2} | e^{\varphi/h} u |_{L^2(\partial D^+)} + C h^{3/2} | e^{\varphi/h} \nabla u |_{L^2(\partial D^+)}. \end{split}$$

CARLEMAN ESTIMATES AT THE BOUNDARY (II)

With boundary conditions,

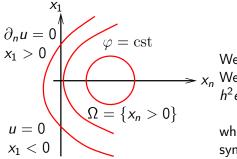


CARLEMAN FOR ZAREMBA BOUNDARY CONDITION



$$\begin{split} h^{1/2} \| e^{\varphi/h} u \|_{L^2(D^-)} + h^{3/2} \| e^{\varphi/h} \nabla u \|_{L^2(D^-)} + Ch^{1/2} | e^{\varphi/h} u |_{H^{1/2}(\partial D^-)} \\ + Ch^{3/2} | e^{\varphi/h} \partial_{x_n} u |_{H^{-1/2}(\partial D^-)} &\leq C \| e^{\varphi/h} h^2 \Delta u \|_{L^2(D^-)} + C | e^{\varphi/h} B u |_{H}, \\ \text{where } B \text{ is the Zaremba boundary condition and } H \text{ adapted Hilbert space.} \end{split}$$

CONJUGAISON BY THE WEIGHT



We set
$$v = e^{\varphi/h}u$$
.
We have
 $h^2 e^{\varphi/h} \Delta u = h^2 e^{\varphi/h} \Delta (e^{-\varphi/h}v)$
 $= P_{\varphi}v$,
where the semi-classical
symbol of P_{φ} is given by

$$p_{\varphi}(x,\xi) = \xi_n^2 + 2i\varphi'_{x_n}\xi_n + q_2(x,\xi') + 2iq_1(x,\xi') \text{ where}$$
$$q_2(x,\xi') = |\xi'|^2 - |\partial_x\varphi(x)|^2$$
$$q_1(x,\xi') = \xi'\partial_{x'}\varphi(x)$$

THE PROPERTIES OF ROOTS

Informations on the roots: important for boundary value problems. $p_{\varphi}(x,\xi) = \xi_n^2 + 2i\varphi'_{x_n}\xi_n + q_2(x,\xi') + 2iq_1(x,\xi').$ There exists a real root if and only if $\xi_n^2 + q_2(x,\xi') = 0$ and $\varphi'_{x_n}\xi_n + q_1(x,\xi') = 0$, thus

$$\mu(x,\xi') = q_2(x,\xi') + \frac{q_1^2(x,\xi')}{\varphi_{x_n}^{'2}(x)} = 0.$$

The roots are simple if

$$\mu(x,\xi') > -(\varphi'_{x_n}(x))^2 \text{ and in this case,}$$
$$\operatorname{Im} \rho_1(x,\xi') > -\varphi'_{x_n}(x) > \operatorname{Im} \rho_2(x,\xi'),$$
where ρ are the roots

where ρ_j are the roots. We distinguish two cases, $\mu < 0$ and $\mu > -(\varphi'_{x_n})^2$.

CASE $\mu < 0$

We have $\operatorname{Im} \rho_j < 0$ if $\varphi'_{x_n}(x) > 0$ (it is our choice of φ). $P_{\varphi}v = f \text{ in } x_n > 0.$ Denote $\underline{v} = \begin{cases} v \text{ if } x_n > 0 \\ 0 \text{ if } x_n < 0 \end{cases}$

$$\begin{split} & P_{\varphi}\underline{v} = \underline{f} + \gamma_0 \delta'_{x_n=0} + \gamma_1 \delta_{x_n=0}, \\ & \text{where } \gamma_j \text{ depend on } v_{|x_n=0} \text{ and } D_{x_n} v_{|x_n=0}. \\ & \text{Choose } Q \text{ a parametrix of } P \longrightarrow QP = Id + R \text{ where } R \text{ smoothing.} \\ & \underline{v} = Q\underline{f} + C_0\gamma_0 + C_1\gamma_1 + R\underline{f} \text{ where } C_j \text{ are operators on traces.} \\ & \text{On } x_n = 0, \text{ (i.e. } x_n = 0^+) \\ & v_{|x_n=0} = Q\underline{f}_{|x_n=0} + C'_0\gamma_0 + C'_1\gamma_1 + R\underline{f}_{|x_n=0}, \\ & \text{and similar relation for } \partial_{x_n} v_{|x_n=0}. \end{split}$$

CALDERON OPERATORS

 $\begin{aligned} & v_{|x_n=0} = Q\underline{f}_{|x_n=0} + C'_0\gamma_0 + C'_1\gamma_1 + R\underline{f}_{|x_n=0}. \\ & C_0, \ C_1 \text{ have the following form (principal symbol)} \end{aligned}$

$$\int e^{ix'\xi'}\hat{\gamma}(\xi')\int e^{ix_n\xi_n}\frac{\xi_n^{\nu}}{p_{\varphi}(x,\xi)}d\xi_nd\xi'=0$$

WHY? \longrightarrow By residues formula and Im $\rho_j < 0$. ξ_n^{ν} comes from Fourier transform of $\delta_{x_n=0}^{(\nu)}$. We obtain,

 $v_{|x_n=0} = Q\underline{f}_{|x_n=0} + R\underline{f}_{|x_n=0} + \tilde{R}(\gamma_0, \gamma_1)$, (where \tilde{R} is smoothing). Thus we can estimate the two traces $v_{|x_n=0}$ and $\partial_{x_n}v_{|x_n=0}$ microlocally in $\mu < 0$.

Important: in this region we do not need boundary conditions.

CASE
$$\mu > -(\varphi'_{x_n})^2$$

We have

$$p_{\varphi}(x,\xi) = (\xi_n - \rho_2(x,\xi'))(\xi_n - \rho_1(x,\xi')).$$

Modulo some remainder terms, we have
$$P_{\varphi}v = (D_n - op(\rho_2))(D_n - op(\rho_1))v.$$

We quantify symbols in semi-classical sense, i.e. $op(\xi) = D = \frac{h}{\cdot}\partial.$

Let
$$z = (D_n - \operatorname{op}(\rho_1)) v$$
, we have,
 $(D_n - \operatorname{op}(\rho_2)) \underline{z} = \underline{f} + \frac{h}{i} z_{|x_n=0} \delta_{x_n=0}.$

The root of $\xi_n - \rho_2(x, \xi')$ is in $\{\text{Im} < 0\}$ we can perform as in previous case and we can estimate

$$z_{|x_n=0}=D_nv_{|x_n=0}-\operatorname{op}(
ho_1)v_{|x_n=0}=g$$
, where g depends on f.

EQUATION ON TRACES (I)

$$\begin{split} & D_n v_{|x_n=0} - \operatorname{op}(\rho_1) v_{|x_n=0} = g \\ & \text{We recall } v = e^{\varphi/h} u \\ & u_{|x_n=0} = 0 \text{ on } x_1 < 0 \text{ and } D_{x_n} u_{|x_n=0} = 0 \text{ on } x_1 > 0, \text{ then} \\ & D_{x_n} u = D_{x_n} \left(e^{-\varphi/h} v \right) = e^{-\varphi/h} \left(D_{x_n} v + i \varphi'_{x_n} v \right). \\ & \text{Let } v_0 = v_{|x_n=0} \text{ and } v_1 = \left(D_{x_n} v + i \varphi'_{x_n} v \right)_{|x_n=0}. \\ & \text{We obtain on } v_0 \text{ and } v_1 \text{ the equation} \end{split}$$

$$v_1 - op(\rho_1 + i\varphi'_{x_n})v_0 = g \text{ on } x_n = 0, \text{ with}$$

 $v_0 = 0 \text{ on } x_1 < 0,$
 $v_1 = 0 \text{ on } x_1 > 0.$

EQUATION ON TRACES (II)

$$v_1 - op(\rho_1 + i\varphi'_{x_n})v_0 = g \text{ on } x_n = 0, \text{ with}$$

 $v_0 = 0 \text{ on } x_1 < 0,$
 $v_1 = 0 \text{ on } x_1 > 0.$

Let $r_{x_1>0}$ the restriction to $x_1 > 0$. We can write

$$r_{x_1>0} \operatorname{op}(\rho_1 + i \varphi'_{x_n}) v_0 = -r_{x_1>0} g \text{ on } x_n = 0.$$

We have a pseudo-differential boundary problem, studied by Eskin, Boutet de Monvel, Rempel-Schulze, Grubb, Harutjunjan-Schulze ... Problem: $\rho_1 + i\varphi'_{x_n}$ does not satisfy the transmission condition. Before taking the restriction we must transform the equation on the traces.

EQUATION ON TRACES (III)

$$v_1 - op(\rho_1 + i\varphi'_{x_n})v_0 = g \text{ on } x_n = 0$$
, with
 $v_0 = 0 \text{ on } x_1 < 0$,
 $v_1 = 0 \text{ on } x_1 > 0$.

Let
$$\lambda_{-}^{s}(\xi') = \left(\xi_{1} + i\sqrt{|\xi''|^{2} + \varepsilon^{2}}\right)^{s}$$
,
 $\lambda_{+}^{s}(\xi') = \left(\xi_{1} - i\sqrt{|\xi''|^{2} + \varepsilon^{2}}\right)^{s}$.
The kernel of $\operatorname{op}(\lambda_{-}^{s})$ is supported in $x_{1} \leq 0$. Let
 $z_{0} = \operatorname{op}(\lambda_{+}^{1/2})v_{0}$ is supported in $x_{1} \geq 0$,
 $z_{1} = \operatorname{op}(\lambda_{-}^{-1/2})v_{1}$ is supported in $x_{1} \leq 0$.
 $z_{1} - \operatorname{op}(\lambda_{-}^{-1/2})\operatorname{op}(\rho_{1} + i\varphi'_{x_{n}})\operatorname{op}(\lambda_{+}^{-1/2})z_{0} = g_{0}$ where g_{0} is known.
We obtain

$$-r_{x_1>0}\operatorname{op}(\lambda_{-}^{-1/2})\operatorname{op}(\rho_1+i\varphi_{x_n}')\operatorname{op}(\lambda_{+}^{-1/2})z_0=r_{x_1>0}g_0.$$

EQUATION ON TRACES (IV)

$$-ir_{x_1>0} \operatorname{op}(\lambda_{-}^{-1/2}) \operatorname{op}(\rho_1 + i\varphi'_{x_n}) \operatorname{op}(\lambda_{+}^{-1/2}) z_0 = r_{x_1>0} g_0.$$

Computation of the symbol when x = 0. The remainder are treated as errors terms.

First what is ρ_1 ? $p_{\varphi}(x,\xi) = \xi_n^2 + 2i\varphi'_{x_n}\xi_n + q_2(x,\xi') + 2iq_1(x,\xi')$. For simplicity take $\partial_{x'}\varphi(0) = 0$. Thus $q_2(0,\xi') = |\xi'|^2 - |\varphi'_{x_n}(0)|^2$ and $q_1(0,\xi') = 0$. We obtain, $p_{\varphi}(x,\xi) = \xi_n^2 + 2i\varphi'_{x_n}\xi_n + |\xi'|^2 - |\varphi'_{x_n}(0)|^2 = (\xi_n + i\varphi'_{x_n})^2 + |\xi'|^2$, thus $\rho_1(0,\xi') = -i\varphi'_{x_n}(0) + i|\xi'|$. Symbol of $op(\lambda_-^{-1/2})op(\rho_1 + i\varphi'_{x_n})op(\lambda_+^{-1/2})$ is (on x = 0)

$$\lambda_{-}^{-1/2}i|\xi'|\lambda_{+}^{-1/2} = \left(\xi_{1} + i\sqrt{|\xi''|^{2} + \varepsilon^{2}}\right)^{-1/2}i|\xi'|\left(\xi_{1} - i\sqrt{|\xi''|^{2} + \varepsilon^{2}}\right)^{-1/2}$$

EQUATION ON TRACES (V)

$$-r_{x_1>0} \operatorname{op}(\lambda_{-}^{-1/2}) \operatorname{op}(\rho_1 + i\varphi'_{x_n}) \operatorname{op}(\lambda_{+}^{-1/2}) z_0 = r_{x_1>0} g_0.$$

$$\lambda_{-}^{-1/2} i |\xi'| \lambda_{+}^{-1/2} = \left(\xi_{1} + i \sqrt{|\xi''|^{2} + \varepsilon^{2}}\right)^{-1/2} i |\xi'| \left(\xi_{1} - i \sqrt{|\xi''|^{2} + \varepsilon^{2}}\right)^{-1/2}$$
$$= \frac{i |\xi'|}{\sqrt{|\xi'|^{2} + \varepsilon^{2}}} = i + O(\varepsilon).$$

Then we obtain,

$$-ir_{x_1>0}z_0 = r_{x_1>0}g_0 + O(\varepsilon)(z_0) + O(x')(z_0)$$

and we can estimate z_0 (supported in $\{x_1 \ge 0\}$) by g_0 in suitable norm.

From traces we can estimate v in interior by more classical way.