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PROBLEM

8QD aQN

(0? = A)u=0inQ
Opu + a(x)0ru = 0 on 0Ny
u=0o0n 9dQp

where a(x) > 0, a # 0, and a supported in 9Qp.



KNOWN RESULTS

(0? — A+ a(x)0:)u =0 in Q,
u =0 on 0Q.

(Lebeau 93)

Onu + a(x)0ru = 0 on O9.
(Lebeau-Robbiano 95)

{ (0?2 = A)u=0in Q,

Ew(®) = 5 [ 100 + 10,u(1) .

We have E(u(t)) < m

Remind: a(x) > 0 and a #Z 0.

, (for “smooth” u).



RESULTS

Theorem

C
For Zaremba problem we have E(u(t)) < —5——.
log=(2 + t)
Related result: Let v solution of

(A+X)v="1inQ
(0n + ixa(x))v = f1 on OQp
v=20o0n 9dQp

Theorem (Burq 98)
If there exists C > 0 such that ||v| < CePl(||f]l.2 + |f.2) then

we have E(u(t)) < m.

This means estimate on resolvent = stabilisation estimate.



WHAT IS CARLEMAN ESTIMATE?

@ a real function.

<,

-

Carleman estimate has the following form,
dhg > 0, C > 0, VYu supported in D, Yh € (0, ho]

W22/l 2 py + B[ 2/ "V ul| 2 py < Clle?/"h? Aul12(py.



CARLEMAN ESTIMATES AT THE BOUNDARY (1)

First without boundary conditions,

Jhg > 0, C > 0, Vu supported in D, ¥Yh € (0, ho]

h1/2uew/hu||L2(D+) + h3/2uew/hquL2(D+)

<C|le?/"R Aul|j2(pry+ChY 2/ M ul 12 HChP 2| €#/ PV bl 125 p .-



CARLEMAN ESTIMATES AT THE BOUNDARY (II)
With boundary conditions,

p = cst

2

D-

W22/ ull 2oy + B2 €2/ "V ul| 2 p-y + Ch?|e#/ 1] 2 (pp-)
+Ch3/2|etp/hVU‘L2(aD7)§ C’|€Lp/hh2AU||L2(D—)+C’e(p/ BU|L2(8D*)

where B is a boundary condition, for instance, Bu = Ujap- of
Bu = 0pyjap--



CARLEMAN FOR ZAREMBA BOUNDARY CONDITION

: p = cst
L
D
W29/ ul| 2oy + 1221/ ull 2p-) + ChY2|e#/ il agop-

+Ch3/2yew/haXnu\H_l/z(aD,)g C||e‘p/hh2Au||Lz(Df)—|—C]e‘p/ Buln,
where B is the Zaremba boundary condition and H adapted Hilbert
space.



CONJUGAISON BY THE WEIGHT

X1
anu>:OO / o = cst
X1 We set v = e¥/My.
/—\ x, We have
\_/ Re?lhAu = IPes/PA(e#/hy)
Q fd {Xn > O} = P@V.
u= \\ where the semi-classical
x; <0 symbol of P, is given by

Po(x, &) = &3 + 2l En + qa(x, &) + 2igu(x, &) where
G(x,&") = 1€')? — |0p(x)?
qu(x,&") = € 0p(x)



THE PROPERTIES OF ROOTS

Informations on the roots: important for boundary value problems.
po(x,€) = &5 + 2ig), &n + qa(x, &) + 2iqu(x,€).
There exists a real root if and only if

€2+ qa(x,¢") = 0 and 0.&n + q1(x, &) =0, thus

2 !
1, €) = qalx, &) + ";(X(f)) _o.

The roots are simple if
1(x, &) > — (¢l (x))? and in this case,
Imp1(x, &) > =4, (x) > Im pa(x, ),
where p; are the roots.

We distinguish two cases, 11 < 0 and p > —(¢) )2



CASE 1 <0

We have Im p; < 0 if ¢} _(x) > 0 (it is our choice of ).
P,v="finx, > 0.

Denotev:{ vifx, >0

0Oif x, <0

Pov = f + 700, —o + 710x,=0,

where 7; depend on v|,, —¢ and Dy, v|x,—o-

Choose @ a parametrix of P — QP = Id + R where R smoothing.
v = Qf + Coyo + Ciy1 + Rf where C; are operators on traces.

On x, =0, (i.e. x,=0%)

V|xp=0 = Q£|X,,:0 + C(IJ’YO + C{71 + R£|X,,:0'
and similar relation for Oy, v|,,—o-



CALDERON OPERATORS

V|xp=0 = Qf|xn:o + Cyvo + Ciyn + Rﬁ|xn:o-
Co, 1 have the following form (principal symbol)

X&' gt ixn&n 5% r_

WHY? — By residues formula and Im p; < 0.

£ comes from Fourier transform of 6)(:):0.

We obtain, N 5

Vixp=0 = Q£|x,,:0 + R£|x,,:o + R(70,71), (where R is smoothing).
Thus we can estimates the two traces v|,,—¢ and Oy, v|x,—0
microlocally in z < 0.

Important: in this region we do not need boundary conditions.



CASE p > —(¢) )?

We have

Po(x,€) = (&n = p2(x, &) (§n — p1(x, ).

Modulo some remainder terms, we have

P,v = (D — op(p2)) (Dn — op(p1)) v.

We quantify symbols in semi-classical sense, i.e. op(§) = D = ?E).
Let z = (D, — op(p1)) v, we have,

(Dn —op(p2))z=1f+ ?Z|Xn:05Xn:0'

The root of £, — pa(x,&') is in {Im < 0} we can perform as in
previous case and we can estimate

Z|xy=0 = DnV|x,—0 — op(p1)V|x,=0 = &, where g depends on f.



EQUATION ON TRACES (1)

DnVix,—0 = 0P(P1)V|xy—0 = &

We recall v = e¥/hy
Ujx,—0 = 0 on x; < 0 and Dy, uj,—0 = 0o0n x3 > 0, then

Dy, u = D, (e“P/hv) — e—¥/h (Dx,,V + iyl v).
Let vo = Vix,—0 and vi = (Dy,v + i), v)
We obtain on vg and v; the equation

|xn=0"

vi —op(p1 + il )vo = g on x, = 0, with
vo=0o0n x3 <0,
vi =0onx3 >0.



EQUATION ON TRACES (1)

vi — op(p1 + i}, J)vo = g on x, = 0, with
vo=0o0nx <0,

vi =0o0n x; > 0.
Let ry,~0 the restriction to x; > 0. We can write

ra>00p(p1 + il Jvo = —rq>08 on x, = 0.

We have a pseudo-differential boundary problem, studied by Eskin,
Boutet de Monvel, Rempel-Schulze, Grubb, Harutjunjan-Schulze ...
Problem: p; 4 iy} does not satisfy the transmission condition.
Before taking the restriction we must transform the equation on the
traces.



EQUATION ON TRACES (Ill)

vi —op(p1 + il )vo = g on x, = 0, with
vo=0o0n x3 <0,
vi =0onx3 >0.

Let 32.(¢) = (& +iv/ER T )
() = (- iVIEP+2)

The kernel of op(\?.) is supported in x; < 0. Let

Zo = op()\ip)vo is supported in x; > 0,

7 = op(/\:l/z)vl is supported in x; < 0.

71 — op(/\:l/z) op(p1 + i¥,) op(/\;1/2)zo = go where gy is known.
We obtain

—1/2 . —-1/2
~ >0 0p(A_ ) op(p1 + il ) op(A1 %) 20 = g 080-



EQUATION ON TRACES (IV)

. —1/2 . —1/2
—irgs00p(A=?) op(p1 + 0!, ) op(AT*)20 = Fy>080-

Computation of the symbol when x = 0. The remainder are treated
as errors terms.

First what is p1?

Po(x,€) = €2+ 2i), £n + q2(x,€') + 2iqu(x, &)

For simplicity take 0, ¢(0) = 0.

Thus 2(0,¢') = ¢/ — [, (0)[? and q1(0,¢’) = 0. We obtain,
Po(x:€) = €2+ 2il, &0 + 1€'2 = |, (O = (€0 + ik, )* + 1€/,
thus p1(0,¢') = —ig} (0) + i[¢'].

Symbol of op(A_"?) op(p1 + i, ) op(A; /%) is (on x = 0)

-1/2
AT = (51 + iyl + ez) e (51 —iyflen? + 62)

~1/2



EQUATION ON TRACES (V)

—1/2 . —1/2
—ra>00p(A %) op(p1 + it ) op(A1?)20 = 1y >080.

-1/2
AN = (51 + i1 + 62) ile' (51 —iy/1¢"? + ez)

1 _ iy o).

GEEE

Then we obtain,

~1/2

—irg>020 = hy>080 + O(e)(20) + O(x")(20)

and we can estimate zp (supported in {x; > 0}) by go in suitable
norm.
From traces we can estimate v in interior by more classical way.



