Existence of a weak solution for a moving boundary fluid-structure interaction problem in blood flow

Boris Muha
Sunčica Čanić

Department of Mathematics
University of Houston
Houston, Tx

Description of the geometry

- η denote the vertical displacement of the deformable boundary.
- Fluid domain at time t:
 \[\Omega_\eta(t) = \{(x, z) : 0 < z < L, 0 < r < R + \eta(t, z)\}. \]
- $\Gamma(t) = \{(z, R + \eta(t, z)) : 0 < z < L\}$ is deformable boundary.
- Longitudinal displacement is neglected.
The fluid flow is governed by the incompressible Navier-Stokes equations:

\[\rho_f (\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}) = \nabla \cdot \sigma, \quad \nabla \cdot \mathbf{u} = 0, \quad \text{in } \Omega_{\eta}(t), \quad t \in (0, T), \]

- \(\rho_f \) is fluid density and \(\sigma = -p\mathbf{I} + 2\mu \mathbf{D}(\mathbf{u}) \) fluid stress tensor.
- The structure is modeled by a cylindrical linearly viscoelastic Koiter shell model:

\[\rho_s h \partial_t^2 \eta + C_0 \eta - C_1 \partial_x^2 \eta + C_2 \partial_x^4 \eta + D_0 \partial_t \eta - D_1 \partial_x \partial_t \eta + D_2 \partial_x^4 \partial_t \eta = f. \]

- It is physiologically reasonable structure model.
- In this presentation we present purely elastic case, i.e. \(D_0 = D_1 = D_2 = 0 \) (mathematically harder case).
Coupling conditions and boundary conditions

- The fluid and structure are coupled through the kinematic and dynamic coupling conditions, respectively:

\[u(t, z, \eta(t, z)) = \partial_t \eta(t, z) e_z, \]

\[f = -\sqrt{1 + (\partial_z \eta)^2} \sigma n \cdot e_z, \text{ on } (0, L), \ t \in (0, T). \]

- The flow is driven by a prescribed dynamic pressure drop at the inlet and outlet boundaries:

\[p + \frac{1}{2}|u|^2 = P_{in/out}(t), \ u \times n = 0, \text{ on } \Gamma_{in/out}. \]

- The structure is clamped:

\[\eta(0) = \partial_z \eta(0) = \eta(L) = \partial_z \eta(L) = 0. \]

- The system is supplemented with initial conditions:

\[u(0, .) = u_0, \ \eta(0, .) = \eta_0, \ \partial_t \eta(0, .) = v_0. \]
Full FSI problem

Find \(u = (u_z(t, z, r), u_r(t, z, r)) \), \(p(t, z, r) \), and \(\eta(t, z) \) such that

\[
\begin{aligned}
\rho_f \left(\partial_t u + (u \cdot \nabla) u \right) &= \nabla \cdot \sigma \quad \text{in } \Omega_\eta(t), \ t \in (0, T), \\
\nabla \cdot u &= 0
\end{aligned}
\]

\[
\begin{aligned}
\rho_s h \partial_t^2 \eta + C_0 \eta - C_1 \partial_z^2 \eta + C_2 \partial_z^4 \eta &= -J \sigma n \cdot e_r \quad \text{on } (0, T) \times (0, L), \\
u &= \partial_t \eta e_r \\
u_r &= 0 \quad \text{on } (0, T) \times \Gamma_b,
\end{aligned}
\]

\[
\begin{aligned}
p + \frac{\rho_f}{2} |u|^2 &= P_{in/out}(t), \quad \text{on } (0, T) \times \Gamma_{in/out}, \\
u_r &= 0 \quad \text{on } (0, T) \times \Gamma_{in/out},
\end{aligned}
\]

\[
\begin{aligned}
\mathbf{u}(0, .) &= \mathbf{u}_0, \\
\eta(0, .) &= \eta_0, \\
\partial_t \eta(0, .) &= \nu_0.
\end{aligned}
\]

at \(t = 0 \).
We prove existence of a weak solution of $2D - 1D$ FSI problem in blood flow.

- We use pressure inlet and outlet boundary conditions which introduce some technical difficulties.
- The most important novelty of this work is related to the method of proof. The proof is based on a semi-discrete, operator splitting Lie scheme, which was used by Guidoboni, Čanić et al. ('09) for a design of a stable, loosely coupled numerical scheme, called the kinematically coupled scheme. Therefore, in this work, we effectively prove that the kinematically coupled scheme converges to a weak solution of the underlying FSI problem.
Existence result for FSI problems in various settings - Conca, San Martín, Tucsnak ('99), Desjardins, Esteban ('99), San Martín, Starovoitov, Tucsnak ('02), Desjardins, Esteban, Grandmont, Le Tallec ('03), M. Boulakia ('03), Feireisl ('03), Takahashi ('03), Barbu, Grujić, Lasiecka, Tuffaha ('08), Houot, Munnier ('08), Galdi, Kyed ('09), Houot, San Martin, Tucsnak ('10), Guidoboni, Guidorzi, Padula ('12), ...

Existence results for moving boundary problem for Navier-Stokes coupled with elasticity:

- **Strong solution:** Beirão da Veiga ('04), Cheng and Shkoller ('10), Coutand and Shkoller. ('05, '06), Kukavica and Tuffaha ('12)
- **Weak solutions:** Chambolle, Desjardins, Esteban, and Grandmont ('05), Grandmont ('08)
By formally taking solution \((u, \partial_t \eta)\) as test function in the weak formulation we get following energy estimate:

\[
\frac{d}{dt} E + D \leq C(P_{in/out}),
\]

where

\[
E = \frac{\rho_f}{2} \| u \|_{L^2(\Omega)}^2 + \frac{\rho_s h}{2} \| \eta_t \|_{L^2(\Gamma)}^2 + \frac{1}{2} \left(C_0 \| \eta \|_{L^2}^2 + C_1 \| \partial_z \eta \|_{L^2}^2 + C_2 \| \partial_{zz} \eta \|_{L^2}^2 \right),
\]

\[
D = \mu \| D(u) \|_{L^2(\Omega)}^2.
\]
ALE formulation on reference domain

- We want to rewrite problem in the reference configuration \(\Omega = (0, L) \times (0, 1) \).
- Since we consider control domain, we can not use Lagrangian coordinates.
- We use ALE mapping \(A_\eta(t) : \Omega \rightarrow \Omega_\eta(t) \),
 \[
 A_\eta(t)(\tilde{x}, \tilde{z}) = \left(\begin{array}{c} \tilde{x} \\ (1 + \eta(t, x))\tilde{z} \end{array} \right), \quad (\tilde{x}, \tilde{z}) \in \Omega.
 \]
- We have problem on a fixed domain, but with coefficients that depend on the solution.
- Test functions still depend on the solution (because of divergence-free condition).
We consider initial value problem \(\frac{d}{dt} \phi + A(\phi) = 0, \phi(0) = \phi_0 \).

We suppose that \(A = A_1 + A_2 \).

Let \(\Delta T = T/N \) be time-discretization step and \(t_n = n\Delta t \). Then we define:

\[
\frac{d}{dt} \phi_{n+\frac{i}{2}} + A_i(\phi_{n+\frac{i}{2}}) = 0 \quad \text{in} \quad (t_n, t_{n+1}),
\]

\[
\phi_{n+\frac{i}{2}}(t_n) = \phi^{n+\frac{i-1}{2}}, \quad n = 0, \ldots, N-1, \quad i = 1, 2,
\]

where \(\phi^{n+\frac{i}{2}} = \phi_{n+\frac{i}{2}}(t_{n+1}) \).

To apply Lie scheme, we must rewrite original problem as first order problem. Therefore we introduce new unknown, structure velocity \(v = \partial_t \eta \).
We use Semi-Discretization in time, i.e. we discretize only time variable t.

Scheme is designed in such a way that we get semi-discrete energy inequalities (analogous to continuous case).

That guarantees stability of the numerical scheme (which is not a case for classical loosely coupled schemes for FSI problems).

In every subset scheme is implicit. It is crucial for stability!
Step 1 - Elastodynamics

Given \((u^n, \eta^n, v^n)\) from previous step, find \((u^{n+\frac{1}{2}}, v^{n+\frac{1}{2}}, \eta^{n+\frac{1}{2}})\) such that:

\[
\begin{align*}
\frac{\eta^{n+\frac{1}{2}} - \eta^n}{\Delta t} &= v^{n+\frac{1}{2}} & \text{on } (0, L) \\
\rho_s h \frac{\eta^{n+\frac{1}{2}} - \eta^n}{\Delta t} + C_0 \eta^{n+\frac{1}{2}} - C_1 \partial_z^2 \eta^{n+\frac{1}{2}} + C_2 \partial_z^4 \eta^{n+\frac{1}{2}} &= 0 & \text{on } (0, L),
\end{align*}
\]

\[
\eta^{n+\frac{1}{2}}(0) = \partial_z \eta^{n+\frac{1}{2}}(0) = \eta^{n+\frac{1}{2}}(L) = \partial_z \eta^{n+\frac{1}{2}}(L) = 0.
\]
Step 2 - Fluid + Structure inertia

find \((u^{n+1}, v^{n+1}, \eta^{n+1})\) such that:

\[
\begin{aligned}
\rho_f \left(\frac{u^{n+1} - u^{n+\frac{1}{2}}}{\Delta t} \right) + ((u^n - w^{n+\frac{1}{2}}) \cdot \nabla \eta^n) u^{n+1} &= \nabla \eta^n \cdot \sigma \eta^n (u^{n+1}), \\
\nabla \eta^n \cdot u^{n+1} &= 0 \quad \text{in } \Omega, \\
u_r^{n+1} &= 0, \quad \partial_r u^z_r^{n+1} = 0 \quad \text{on } \Gamma_b, \\
p^{n+1} + \frac{\rho_f}{2} |u^{n+1}|^2 &= P_{in/out}(t), \quad u_r^{n+1} = 0 \quad \text{on } \Gamma_{in/out}, \\
u^{n+1} &= v^{n+1} e_r \quad \text{on } (0, L), \\
\eta^{n+1} &= \eta^{n+\frac{1}{2}} \quad \text{in } (0, L), \\
\rho_s h \frac{v^{n+1} - v^{n+\frac{1}{2}}}{\Delta t} &= -J^{n+1} \sigma n \cdot e_r \quad \text{on } (0, L).
\end{aligned}
\]
Approximate solution

\[u_N(t,.) = u^n_N, \quad \eta_N(t,.) = \eta^n_N, \quad v_N(t,.) = v^n_N, \quad v^*(t,.) = v^{n-\frac{1}{2}}_N, \]

\[t \in ((n-1)\Delta t, n\Delta t], \quad n = 1 \ldots N. \]

- Semi-discrete energy estimates imply that approximate solution are bounded in suitable norms uniformly in \(N \).
- From weak compactness we get limit functions \(u, v, v^* \) and \(\eta \).
- \(v = v^* \).
Passing to the limit

We can get following convergences (on a subsequence)

1. $\eta_N \rightarrow \eta$ in $C([0, T]; H^s(0, L))$, $s < 2$,
2. $\eta_N \rightharpoonup \eta$ weakly* in $L^\infty(0, T; H^2_0(0, L))$,
3. $v_N \rightarrow v$ in $L^2((0, T) \times (0, L))$,
4. $v_N \rightharpoonup v$ weakly* in $L^\infty(0, T; L^2(0, L))$,
5. $u_N \rightarrow u$ in $L^2((0, T) \times \Omega)$,
6. $u_N \rightharpoonup u$ weakly in $L^2(0, T; H^1(\Omega))$.

To get strong convergence in L^2 we use:

$$\|\tau\Delta t u_N - u_N\|^2_{L^2((0,T) \times \Omega)} + \|\tau\Delta t v_N - v_N\|^2_{L^2((0,T) \times (0,L))} \leq C\Delta t.$$

This inequality follows from semi-discrete version of energy inequality.
Test function

- Test functions depends on \(N \! \).
- Therefore one can not pass to the limit directly.
- We construct dense subset \(\mathcal{X} \) of test functions on original domain such that every test function \(q \in \mathcal{X} \) can be transform to reference domain via ALE mapping \(A_{\eta_N} \), for \(q \geq N(q) \).
- We use fact that \(\eta_N \to \eta \) in \(C([0, T]; C^1[0, L]) \) and \(\eta_N(x) \geq r_{min}, N \in \mathbb{N} \) (this can be ensured by taking \(T \) small enough).
- We have shown existence of local in time solution (in a sense that solution exists as long upper boundary does not touch lower boundary).
References

H. Beirão da Veiga.
On the existence of strong solutions to a coupled fluid-structure evolution problem.

M. Boulakia.

M. Bukač, S. Čanić, R. Glowinski, J. Tambača, and A. Quaini.
Fluid-structure interaction in blood flow allowing non-zero longitudinal structure displacement.
Submitted, 2011.

S. Čanić and B. Muha.
Existence of a weak solution to a nonlinear fluid-structure interaction problem describing the flow of an incompressible, viscous fluid in a cylinder with deformable walls.
Preprint 2012.

S. Čanić, B. Muha, M. Bukač.

A. Chambolle, B. Desjardins, M. J. Esteban, and C. Grandmont.
Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate.

The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic shell.

D. Coutand and S. Shkoller.
The interaction between quasilinear elastodynamics and the Navier-Stokes equations.

C. Grandmont.
Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate.

Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow.

I. Kukavica and A. Tuffaha.
Solutions to a fluid-structure interaction free boundary problem.
Thank you for your attention!