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Description of the geometry
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71 denote the vertical displacement of the deformable boundary.

Fluid domain at time ¢:

Q) ={(z,2): 0<z2< L,O<r < R+n(t

'2)}

I'(t) ={(z,R+n(t,z)) : 0 < z < L} is deformable boundary.

Longitudinal displacement is neglected.
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Fluid and structure equations

The fluid flow is governed by the incompressible Navier-Stokes
equations:

of(Ou+u-Vu)=V.0, V-u=0, in Q,(t), t € (0,7),

e oy is fluid density and o = —pI + 2uD(u) fluid stress tensor.

e The structure is modeled by a cylindrical linearly viscoelastic Koiter shell
model:

0shdin + Con — C102n + Codyn+
+Dodyn — D1020ym + D2030ym = f.
e It is physiologically reasonable structure model.

e In this presentation we present purely elastic case, i.e.
Dy = D1 = Dy = 0 (mathematically harder case).
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Coupling conditions and boundary conditions

The fluid and structure are coupled through the kinematic and dynamic
coupling conditions, respectively:

u(t,z,n(t,z)) = omlt, z)e,,

f=—V1+(9.n)%0n-e,, on (0,L), t € (0,7T).
The flow is driven by a prescribed dynamic pressure drop at the inlet
and outlet boundaries: p + %\u|2 = Pipjout(t), uxn =0, on Ty pu-
The structure is clamped: 7(0) = 9,17(0) = n(L) = d,n(L) = 0.

The system is supplemented with initial conditions:
u(0,.) = uo, 1(0,.) =m0, n(0,.) = vo.
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Full FSI problem

Find u = (u,(t, z,7),u.(t, z,7)),p(t, z,7), and n(t, z) such that

ot T = V7 by, ce 0.1

u = Ome,
pshatQU + COT] — Clazn + 028377 = —Jon-e, } on (O,T) X (O,L),
u, = 0,
ou, = 0 } on (0,T) x Iy,
+ 4 u 2 = Pzn out(t),
D 2|’L|L,,, _ Jout (1) }on (0,7) X Tinjout
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Description of the result

We prove existence of a weak solution of 2D — 1D FSI problem in blood
flow.

o We use pressure inlet and outlet boundary conditions which introduce
some technical difficulties.

e The most important novelty of this work is related to the method of
proof. The proof is based on a semi-discrete, operator splitting Lie
scheme, which was used by Guidoboni, Cani¢ et al. ('09) for a design of
a stable, loosely coupled numerical scheme, called the kinematically
coupled scheme. Therefore, in this work, we effectively prove that the
kinematically coupled scheme converges to a weak solution of the
underlying FSI problem.

Boris Muha Suntica Cani¢ Existence of a weak solution for a moving boundary fluid-structu



Existence result for FSI problems in various settings - Conca, San Martin,
Tucsnak ('99), Desjardins, Esteban ('99), San Martin, Starovoitov, Tucsnak
('02), Desjardins, Esteban, Grandmont, Le Tallec ('03), M. Boulakia ('03),
Feireisl ('03), Takahashi ('03), Barbu, Gruji¢, Lasiecka, Tuffaha ('08), Houot,
Munnier ('08), Galdi, Kyed ('09), Houot, San Martin, Tucsnak ('10),
Guidoboni, Guidorzi, Padula ('12), ...

Existence results for moving boundary problem for Navier-Stokes coupled
with elasticity:
e Strong solution: Beirdo da Veiga ('04), Cheng and Shkoller ('10),
Coutand and Shkoller. ('05, '06), Kukavica and Tuffaha ('12)

e Weak solutions : Chambolle, Desjardins, Esteban, and Grandmont
('05), Grandmont ('08)
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Energy inequality

By formally taking solution (u, d;n) as test function in the weak formulation
we get following energy estimate:

d
—FE+D<C(P
dt + = ( zn/out)v

where

4 osh 1
E = T ull}zq) + Sl + 5 (Collnl3z + Calldan3a + Call92nl32),
9 Q) 2 "o

D = p|D(u)]|72 (-
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ALE formulation on reference domain

We want to rewrite problem in the reference configuration
Q=(0,L) x(0,1).

Since we consider control domain, we can not use Lagrangian
coordinates.

We use ALE mapping A, (t) : @ — Q,(1),

z

A’?(t)(jvé) = < (1+77(t5$))2

>, (z,2) € Q.

We have problem on a fixed domain, but with coefficients that depend
on the solution.

Test functions still depend on the solution (because of divergence-free
condition).
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Lie (Marchuk-Yanenko) operator splitting scheme

e We consider initial value problem %(ﬁ + A(p) =0, ¢(0) = ¢o.
e We suppose that A = A7 + As.

e Let AT =T/N be time-dicretization step and t,, = nAt. Then we

define:
d

dt
Gppiltn) = ™7, =0, . N—1,i=12,
2

¢n+% + A@((an_i_%) =0 in (tnathrl)v

n+i _ )
where 63 = ¢, . (tns1).
e To apply Lie scheme, we must rewrite original problem as first order

problem. Therefore we introduce new unknown, structure velocity
v = 0.
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Semi-Discretization

We use Semi-Discretization in time, i.e. we discretize only time variable
t.

Scheme is designed in such a way that we get semi-discrete energy
inequalities (analogous to continuous case).

That guarantees stability of the numerical scheme (which is not a case
for classical loosely coupled schemes for FSI problems).

In every subset scheme is implicit. It is crucial for stability!
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Step 1 - Elastodynamics

. . 1 1 1
Given (u”,n™, v"™) from previous step, find (u""z,v" "2, " "2) such that:
s P n

u"tz =u”, inQ
N gt .
A7 =v""2 on (0,L)
vn—f—% — " i 9 1 1 1
psh A +Con™t2 — 010202 + Co9in™ 2 =0 on (0, L),

(1)
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Step 2 - Fluid + Structure inertia

find (u"t! o1 1) such that:

un+1 o unJr%

At

n

ol (=W ) = (),
VT outt =0 inQ,

utl =0, 9u?tt =0 on Iy,

P+ B2 = Py joue (), up ™ =0 on Ty outs

u"t! = y"*le, on (0,1),

nn—i—l — ,'7”-0-% in (0’ L),

n+%
— = —J""sn-e, on(0,L).
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Approximate solution

_1
un(t,.) = uly, an(t,.) = 1%, on(t,.) = o, vi(t,.) = oy 2,

te((n—1)At,nAt], n=1...N.

Tuy (N=T/At)
. . ‘I | } :t

e Semi-discrete energy estimates imply that approximate solution are
bounded in suitable norms uniformly in V.

e From weak compactness we get limit functions u, v, v* and 7.

o v =10".
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Passing to the limit

We can get following convergences (on a subsequence)

ny — n in C([0,T); H5(0, L)), s < 2,
nn — n weakly* in L>(0,T; HZ(0, L)),
vy — v in L2((0,T) x (0, L)),

vy — v weakly* in L>(0,T; L?(0, L))),
uy — uwin L2((0,T) x Q),

uy — u weakly in L2(0,T; H'(2)).

To get strong convergence in L? we use:

||7_AtuN - uNH%Q((O,T)xQ) + ||7-AtUN - UNH%Q((O,T)X(O,L)) < CAt.

This inequality follows from semi-discrete version of energy inequality.
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Test function

e Test functions depends on N!
e Therefore one can not pass to the limit directly.

e We construct dense subset X’ of test functions on original domain such
that every test function q € X can be transform to reference domain via
ALE mapping 4, , for ¢ > N(q).

e We use fact that iy — n in C([0,T]; C1[0, L]) and nn(x) > Tmin,

N € N (this can be ensured by taking 7" small enough).

e We have shown existence of local in time solution (in a sense that

solution exists as long upper boundary does not touch lower boundary).
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Thank you for your attention!
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