Inverse problems for elliptic PDEs and Hardy classes of generalized analytic functions

Juliette Leblond

Sophia-Antipolis, France
team APICS

From joint work with
L. Baratchart, Y. Fischer (INRIA Bordeaux), J.R. Partington (Univ. Leeds, UK)

Overview

- Planar conductivity PDE and (pseudo-) holomorphic functions (σ-harmonic, generalized analytic)
- Properties of associated Hardy spaces
- Consequences for direct and inverse PDE problems
- Conclusion

Conductivity equation

Let $\Omega \subset \mathbb{R}^{2}$ with smooth boundary $\Gamma=\partial \Omega$
$\Omega \simeq \operatorname{disk} \mathbb{D}, \Gamma \simeq$ circle $\mathbb{T} \quad$ or annulus: $\Omega \simeq \mathbb{A}, \Gamma \simeq \mathbb{T} \cup \varrho \mathbb{T}$
\simeq conformally, simply or doubly connected (also with several holes)
$0<\varrho<1$
Conductivity coefficient σ Lipschitz smooth function in Ω
σ known, $0<c \leq \sigma \leq C$

Consider solutions u to (u):

$$
\begin{equation*}
\operatorname{div}(\sigma \operatorname{grad} u)=\nabla \cdot(\sigma \nabla u)=0 \text { in } \Omega \tag{u}
\end{equation*}
$$

second order elliptic PDE, distributional sense

$$
\nabla \cdot(\sigma \nabla u)=\Delta u+\nabla(\log \sigma) \cdot \nabla u=0
$$

$\sigma=1$ or cst: $\Delta u=0$, Laplace equation, u harmonic in Ω

Geometries

$$
\Omega=\mathbb{A}, I \subset \mathbb{T}, J=(\mathbb{T} \backslash I) \cup \varrho \mathbb{T}
$$

$$
I=\mathbb{T}, J=\varrho \mathbb{T}
$$

or $\Omega=\mathbb{D}, I \subset \mathbb{T}, J=\mathbb{T} \backslash /$
or conformally equivalent domains (conformal invariance)

Boundary value problems

- Dirichlet (direct) problem:

Given measures of u on Γ, recover u in $\Omega \quad$ (and $\sigma \partial_{n} u$, on Γ)
(n outer unit normal) well-posed for smooth Dirichlet data $\phi \rightsquigarrow \phi \in L_{\mathbb{R}}^{2}(\Gamma)$?

- Cauchy (inverse) problem:
$|I|,|J|>0 \quad$ partial overdetermined boundary data
Given measures u and $\sigma \partial_{n} u$ on $I \subset \Gamma$ of a solution u to (u),
$(\mathrm{u}): \nabla \cdot(\sigma \nabla u)=0$ in $\Omega \quad$ recover $u, \sigma \partial_{n} u$ on $J=\Gamma \backslash /\left(\right.$ or $\left.\partial_{n} u\right)$

1 pair of Dirichlet-Neumann data $\left(\phi_{I}, \psi_{I}\right)$ on $I, \phi_{I} \in L_{\mathbb{R}}^{2}(I), \psi_{I} \in W_{\mathbb{R}}^{-1,2}(I)$?
L^{2} boundary data \rightsquigarrow smooth conductivity σ, tradeoff

Other PDEs, other problems

(u): $\nabla \cdot(\sigma \nabla u)=0$ in $\Omega \subset \mathbb{R}^{2}$

Above boundary values problems also for

- Laplace: $\Delta u=0$ from Cauchy data on $I \subset \Gamma$, recover $J=\Gamma \backslash /$ (unknown geometry),
or Robin coefficient on J
- Schrödinger: $-\Delta w+q w=0$

Other related issues: unique continuation principles, density (Runge) properties, stability estimates, free boundary problems

σ-harmonic conjugation

Generalized Cauchy-Riemann equations:
u solution to $(\mathrm{u}): \nabla \cdot(\sigma \nabla u)=0 \quad \Leftrightarrow \exists v$ such that in Ω :

$$
\left\{\begin{array}{l}
\partial_{x} v=-\sigma \partial_{y} u \quad \text { and } \nabla \cdot\left(\frac{1}{\sigma} \nabla v\right)=0, ~=\sigma \partial_{x} u \quad \partial_{y} v=0 .
\end{array} \quad\right. \text {. }
$$

Function v : σ-conjugated to u
Want solution u to (u) and σ-conjugated v to have boundary values (traces) on Γ, whence:

$$
\left\{\begin{array}{l}
\partial_{\theta} v=\sigma \partial_{n} u \\
\partial_{n} v=-\sigma \partial_{\theta} u
\end{array} \quad \text { on } \Gamma\right.
$$

Generalized analytic functions

$\ln \Omega \simeq \mathbb{D} \subset \mathbb{R}^{2} \simeq \mathbb{C}$ complex plane

$$
x=(x, y) \simeq z=x+i y, \quad \partial=\partial_{z}=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right), \quad \bar{\partial}=\partial_{\bar{z}}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right)
$$

u solution to (u): $\nabla \cdot(\sigma \nabla u)=0$

$$
\nabla \simeq \bar{\partial}, \nabla . \simeq \operatorname{Re} \partial
$$

$\Leftrightarrow f=u+i v$ satisfies Beltrami equation conjugated B., pseudoholomorphic

$$
\begin{gather*}
\bar{\partial} f=\nu \overline{\partial f} \tag{f}\\
\text { for } \nu=\frac{1-\sigma}{1+\sigma} \in W^{1, \infty}(\Omega),|\nu| \leq \kappa<1 \text { in } \Omega \\
f \text { solution to (f) } \Longleftrightarrow u=\operatorname{Re} f \text { solution to (u) }
\end{gather*}
$$

(f) conformally invariant
(\mathbb{R}-linear, first order)
$\neq \mathbb{C}$-linear Beltrami equation: $\bar{\partial} g=\nu \partial g$, quasi-conformal map. $f(z, \bar{z}), u(x, y), v(x, y)$
in $\Omega \simeq \mathbb{A}$, compatibility condition needed for \Leftarrow

Harmonic and analytic functions

Generalization of homogeneous situations $\sigma=\mathrm{cst} \rightsquigarrow \sigma=1, \nu=0$ Holomorphic / complex analytic functions $\bar{\partial} F=0$ in $\mathbb{D} \subset \mathbb{C}$:
$\Omega=\mathbb{D}$ unit disc or $\Omega \simeq \mathbb{D}$ conformally equivalent

$$
\begin{gathered}
x=(x, y) \simeq z=x+i y, \quad \partial=\partial_{z}=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right), \bar{\partial}=\partial_{\bar{z}}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right) \\
\text { Laplace operator } \Delta=4 \bar{\partial} \partial=4 \partial \bar{\partial}=\partial_{x}^{2}+\partial_{y}^{2} \\
F(z)=\sum_{k \geq 0} \hat{F}_{k} z^{k}=\sum_{k \geq 0} \hat{F}_{k} r^{k} e^{i k \theta}, z=r e^{i \theta} \in \mathbb{D}, r<1
\end{gathered}
$$

(Fourier series, coeficieients \hat{F}_{k})

$$
\bar{\partial} F=0(F \text { holomorphic }) \Leftrightarrow F=u+i v
$$

with harmonic u and conjugate function v satisfying
Cauchy-Riemann equations in \mathbb{D} :

$$
\left\{\begin{array}{l}
\partial_{x} v=-\partial_{y} u \\
\partial_{y} v=\partial_{x} u
\end{array}\right.
$$

Hardy spaces H^{2} of analytic functions in \mathbb{D}

$$
\sum_{k \geq 0}\left|\hat{F}_{k}\right|^{2}=\|F\|_{2}^{2}=\underset{0<r<1}{\operatorname{ess} \sup } \int_{0}^{2 \pi}\left|F\left(r e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi}<\infty
$$

$\Rightarrow F \in H^{2}(\mathbb{D})$: solutions to $\bar{\partial} F=0$ in $\mathbb{D},\|F\|_{2}<\infty$
Hilbert space $\subset L^{2}(\mathbb{D})$
Parseval $p=2$, also $\Omega=\mathbb{A}$ and Banach H^{p}
$\rightsquigarrow L^{2}$ boundary values on $\mathbb{T}: \operatorname{tr} H^{2}(\mathbb{D}) \subset L^{2}(\mathbb{T}) \quad$ closed (traces, non tg lim)
\rightsquigarrow equivalent boundary $L^{2}(\mathbb{T})$ norm:

$$
\|F\|_{2}=\|\operatorname{tr} F\|_{L^{2}(\mathbb{T})}
$$

\rightsquigarrow Cauchy-Riemann equation in $\overline{\mathbb{D}}$, up to boundary \mathbb{T} : $\operatorname{tr} F=u+i v$ on \mathbb{T}, where $\partial_{\theta} v=\partial_{n} u, \partial_{n} v=-\partial_{\theta} u$
\rightsquigarrow uniqueness and density results

Generalized Hardy space H_{ν}^{2}

Hilbert space $H_{\nu}^{2}=H_{\nu}^{2}(\mathbb{D})$:
also $\Omega \simeq \mathbb{D}$ or $\simeq \mathbb{A}$ conformally; Banach spaces $H_{\nu}^{p}, 1<p<\infty$

- solutions f to (f)

$$
\bar{\partial} f=\nu \overline{\partial f} \text { in } \mathbb{D}
$$

- bounded in Hardy norm in \mathbb{D}

$$
\|f\|_{2}^{2}=\underset{0<r s \sup }{\operatorname{esc} \sup } \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{\frac{d \theta}{2 \pi}} \frac{2}{2 \pi}<\infty
$$

$$
\text { (sup of } L^{2} \text { norms on circles in } \mathbb{D} \text {) }
$$

H_{ν}^{2} shares many properties of $H^{2}=H_{0}^{2}$
[Baratchart-L.-Rigat-Russ, 2010], [Fischer, 2011], [F.-L.-Partington-Sincich, 2011], [BFL, 2012]

Properties of H_{ν}^{2}

Generalize those of H^{2}
Theorem [BLRR]

$$
f \in H_{\nu}^{2}(\mathbb{D}) \quad \bar{\partial} f=\nu \overline{\partial f},\|f\|_{2}<\infty
$$

- f admits a non tangential limit $\operatorname{tr} f \in L^{2}(\mathbb{T})$ on \mathbb{T} $(\Gamma=\mathbb{T})$
$-\operatorname{tr} f=0$ a.e. on $I \subset \mathbb{T},|I|>0$ implies that $f \equiv 0$; if $f \not \equiv 0$, then its zeroes are isolated in \mathbb{D}
+ Blaschke condition and $\log |\operatorname{tr} f| \in L^{1}(\mathbb{T})$
- $\|\operatorname{tr} f\|_{L^{2}(\mathbb{T})}$ is equivalent to $\|f\|_{2}$ on $H_{\nu}^{2}(\mathbb{D})$
- Closedness of traces:
$\operatorname{tr} H_{\nu}^{2}(\mathbb{D})$ is closed in $L^{2}(\mathbb{T})$
- Retr $f=0$ a.e. on \mathbb{T} implies that $f \equiv 0$ in \mathbb{D}

$$
\text { or whenever normalization on } \mathbb{T}, f \in H_{\nu}^{2,0}(\mathbb{D})=\left\{f \in H_{\nu}^{2}(\mathbb{D}), \int_{\mathbb{T}} \operatorname{Im} \operatorname{tr} f=0\right\}
$$

Properties of $\operatorname{tr} H_{\nu}^{2}(\mathbb{D})$

Corollary [BLRR]
$-\forall \phi \in L_{\mathbb{R}}^{2}(\mathbb{T}), \exists!f \in H_{\nu}^{2,0}(\mathbb{D})$ such that $\operatorname{Retr} f=\phi$
moreover,

$$
\|\operatorname{tr} f\|_{L^{2}(\mathbb{T})} \leq c_{\nu}\|\phi\|_{L^{2}(\mathbb{T})}
$$

- conjugation operator \mathcal{H}_{ν} bounded on $L_{\mathbb{R}}^{2}(\mathbb{T}) \quad$ Hilbert-Riess transform, $L^{2}(\mathbb{T})$

$$
\begin{aligned}
& \operatorname{tr} u=\operatorname{Re} \operatorname{tr} f=\phi \stackrel{\mathcal{H}_{\nu}}{\longmapsto} \operatorname{tr} v=\operatorname{Im} \operatorname{tr} f=\mathcal{H}_{\nu} \phi \\
& f \in H_{\nu}^{2,0}(\mathbb{D}) \Longleftrightarrow \operatorname{tr} f=\left(I+i \mathcal{H}_{\nu}\right) \phi, \phi \in L_{\mathbb{R}}^{2}(\mathbb{T})
\end{aligned}
$$

- density (Runge):
let $I \subset \mathbb{T}, J=\mathbb{T} \backslash I$ such that $|J|>0$ then, restrictions to I of functions in $\operatorname{tr} H_{\nu}^{2}(\mathbb{D})$ dense in $L^{2}(I)$
however, if $g_{n} \in \operatorname{tr} H_{\nu}^{2}$ converges to $\operatorname{tr} f$ in $L^{2}(I)$ while $\operatorname{tr} f \notin \operatorname{tr} H_{\left.\nu\right|_{I}}^{2}$, then $\left\|g_{n}\right\|_{L^{2}(J)} \rightarrow \infty$

Best constrained approximation in H_{ν}^{2}

Regularization: bounded extremal problems (BEP)
Let $I \subset \Gamma,|I|,|J|>0, \varepsilon>0$

$$
\mathcal{B}=\left\{f \in \operatorname{tr} H_{\nu}^{2},\|\operatorname{Re} f\|_{L^{2}(J)} \leq \varepsilon\right\} \mid I \subset L^{2}(I)
$$

Theorem [BFL, FLPS]
(BEP) well-posed
\forall function $\Phi \in L^{2}(I), \exists$ unique $f_{*} \in \mathcal{B}$ such that

$$
\left\|\Phi-f_{*}\right\|_{L^{2}(I)}=\min _{f \in \mathcal{B}}\|\Phi-f\|_{L^{2}(I)}
$$

Moreover, if $\Phi \notin \mathcal{B}$, then $\left\|\operatorname{Re} f_{*}\right\|_{L^{2}(J)}=\varepsilon$

Constructive issues in H_{ν}^{2}

Computation algorithm, from $\Phi \in L^{2}(I) \quad \Omega=\mathbb{D}, \mathbb{A}(I \subseteq \mathbb{T})$ [AP,BFL,FLPS]
\perp projection operator $L^{2}(\Gamma) \rightarrow \operatorname{tr} H_{\nu}^{2,0}: \quad P_{\nu} \phi=\frac{1}{2}\left(\phi+i \mathcal{H}_{\nu} \phi\right)$
vanishing mean on \mathbb{T}
Solution to (BEP): given $\Phi \in L^{2}(I), M>0 \quad$ Toeplitz-Hankel operators on H_{ν}^{2}

$$
P_{\nu}\left(\chi_{I} f_{*}\right)-\gamma P_{\nu}\left(\chi_{J} \operatorname{Re} f_{*}\right)=P_{\nu}(\Phi \vee 0)
$$

for ! Lagrange parameter $\gamma<0$ s.t. $\left\|f_{*}\right\|_{L^{2}(J)}=M$
$\min _{f \in \operatorname{tr} \mu_{\nu}^{2}}\|\Phi-f\|_{L^{2}(I)}+\gamma\|\operatorname{Ref}\|_{L^{2}(\Omega)}$
$\gamma \% M$ smoothly decreasing
Complete families of solutions, for computations in $H_{\nu}^{2}(\Omega)$ and $L^{2}(\Gamma)$
\rightsquigarrow Bessel/exponentials, toroidal harmonics [F] (w.r.t. σ or ν, and Ω) polynomials?

For related conductivity PDE

u solution to (u) in Ω :
$\nabla \cdot(\sigma \nabla u)=0 \Leftarrow u=\operatorname{Re} f$ with f solution to (f) in $\Omega \quad \Leftrightarrow$ if $\Omega \simeq \mathbb{D}$

- Dirichlet boundary value problems:
from prescribed boundary data $\phi \in L_{\mathbb{R}}^{2}(\Gamma)$,
recover u in Ω solution to (u) such that $\operatorname{tr} u=\phi$ on Γ
From Dirichlet theorem in $H_{\nu}^{2,0}(\Omega)$:
$\exists!u$ in $L_{\mathbb{R}}^{2}(\Omega)$ solution to (u) such that $\operatorname{tr} u=\phi$
$\operatorname{tr} f=\phi+i \int_{\Gamma} \sigma \partial_{n} u=\phi+i \mathcal{H}_{\nu} \phi,\|u\|_{2}=\|\operatorname{tr} u\|_{L^{2}(\Gamma)}=\|\phi\|_{L^{2}(\Gamma)}$
- Unique continuation properties

For related conductivity PDE

- Cauchy inverse problems, $I \subset \mathbb{T}$

Given ϕ_{I} and ψ_{I} in $L_{\mathbb{R}}^{2}(I)$,
recover u solution to (u) in Ω such that $\operatorname{tr} u=\phi_{I}, \sigma \partial_{n} u=\psi_{l}$ on I
Let $\Phi=\phi_{I}+i \int_{I} \psi_{I} \in L^{2}(I) \backslash\left(\operatorname{tr} H_{\nu}^{2}\right)_{\mid I} ; \quad$ from density results:
$\exists u_{k}=\operatorname{Re} f_{k}$ solution to (u) in Ω

$$
\left\|\operatorname{tr} u_{k}-\phi_{I}\right\|_{L^{2}(I)} \rightarrow 0
$$

$\left\|\partial_{\theta} \mathcal{H}_{\nu} u_{k}-\psi_{i}\right\|_{L^{2}(I)} \rightarrow 0$
but $\left\|\operatorname{tr} u_{k}\right\|_{L^{2}(J)} \rightarrow \infty$
\rightsquigarrow ill-posed for non compatible boundary data ϕ_{l}, ψ_{l} on I
\rightsquigarrow look for $\operatorname{tr} u \simeq \phi_{I}, \sigma \partial_{n} u \simeq \psi_{I}$ on I with $\operatorname{tr} u$ bounded on J...
\rightsquigarrow solve bounded extremal problems (BEP) for Φ in $\operatorname{tr} H_{\nu}^{2}$

Plasma equilibrium model in a tokamak

In 2D poloidal sections, poloidal magnetic flux u :
$\nabla \cdot\left(\frac{1}{x} \nabla u\right)=\nabla \cdot(\sigma \nabla u)=0$ in the vacuum Ω, conductivity $\sigma=\frac{1}{x}$
Maxwell equations, axisymmetric assumption, cylindrical coordinates $(x, y)=(R, Z)(\varphi=$ cte $)$

$$
\begin{aligned}
& \Omega \simeq \mathbb{A}_{0} \subset \mathbb{R}^{2} \\
& \Gamma=\Gamma_{e} \cup \Gamma_{p}
\end{aligned}
$$ annular domain between plasma and chamber

limitor $\Gamma_{/} \subset \Omega$
inside plasma, Grad-Shafranov equation, control

From pointwise magnetic data on outer boundary $\Gamma_{e} \quad$ (poloidal magnetic field)

$$
u, B_{\rho}=-\frac{1}{x} \partial_{t} u, B_{t}=\frac{1}{x} \partial_{n} u
$$

recover plasma boundary Γ_{p}
outermost level line tangent to $\Gamma_{/}$

Application to plasma shaping in a tokamak

Tore Supra
(CEA-IRFM Cadarache)
magnetic field B, flux u

Plasma in tokamak

From measurements of $u, \sigma \partial_{n} u$ on outer boundary Γ_{e}, find level line Γ_{p} of associated solution u to (u), tangent to limitor $\Gamma_{/}$

Take a first such $\Gamma_{p, 0}$
expand u on Γ_{e} (toroidal harmonics), compute $\max u=c_{0}$ on $\Gamma_{\text {, }}$

Data transmission $\Gamma_{e} \rightsquigarrow \Gamma_{p, 0}$:
$u, \sigma \partial_{n} u$ on $I=\Gamma_{e} \rightsquigarrow u, \sigma \partial_{n} u$ on $J_{0}=\Gamma_{p, 0}, u$ in Ω_{0}
Cauchy boundary inverse problem in $\Omega_{0} \quad$ solve (BEP)
$u, B_{\rho} \rightsquigarrow \phi_{l}, B_{t}=\partial_{\theta} v=\sigma \partial_{n} u \rightsquigarrow \psi_{l} \rightsquigarrow$ Cauchy data Φ on Γ_{e}
constraint $\left\|\operatorname{Re} f_{*}-c_{0}\right\|_{L^{2}\left(J_{0}\right)} \leq M$ small, c constant

Free boundary problem Γ_{p} :
iterate 1st step $\rightsquigarrow \Gamma_{p}$, last closed level line tangent to $\Gamma_{/}$
$u, \partial_{n} u$ on $\Gamma_{l} \rightsquigarrow \Gamma_{p, 1}:\left\{u=\max _{\Gamma_{l}} u=c_{1}\right\}$ with shape optimization [BFP]

Plasma boundary recovery

Poloidal section of tokamak Tore Supra

Reconstruction of plasma boundary Γ_{p} from measurements \circ of poloidal flux u and \times of poloidal magnetic field on Γ_{e}

Other applications

Inverse problems for Laplace equations $\Delta u=0$ in planar domains, from given Cauchy data on $I \subset \Gamma=\partial \Omega$
$\Omega=\mathbb{A}$

Robin coefficient recovery on inner boundary J of \mathbb{A} ($I=\mathbb{T}$ outer boundary)

data transmission on circles (for sources localisation)

$\partial_{n} u+R u=0$ on J

Other applications

Geometry recovery, $J \subset \Gamma$ (using conformal maps)

Given Cauchy data on $I \subset \Gamma$, recover J such that $\partial_{n} u=0$ on J

Conclusion

Work in progress:

- More about generalized Hardy classes H_{ν}^{p}
factorization, operators, density of traces for $\Omega=\mathbb{A} \quad$ reproducing kernel in $H_{\nu}^{2} ? H_{\nu}^{p}, p=1, \infty$?
- extremal problems minimize also w.r.t. c in constraint $\|\operatorname{Re} f-c\|_{L^{2}(J)}$
- solutions $w=e^{s} F$ to related $\bar{\partial} w=\alpha \bar{w}$
$\alpha=\bar{\partial} \log \sigma^{1 / 2}$
- Other elliptic operators (and relat-ed/-ing PDEs)
+ time t ?
Schrödinger $\Delta w \simeq|\alpha|^{2} w+(\partial \alpha) \bar{w} \quad$ 3D Laplace + symmetry properties $\rightsquigarrow 2 \mathrm{D}$ conductivity (u)
- Unique continuation principles for (u) and (w)
stability, energy estimates
Runge density properties
\rightsquigarrow EIT issues?
- Non smooth boundary geometry 「 other tokamaks, Jet, ITER: X point
with geometrical issues: Bernoulli type (free boundary) problems
- Other classes of conductivities σ (or coefficients ν, α)?

```
non smooth?
```

(up to now, \mathbb{R}-valued Hölder smooth $\sigma, r>2$, in $H_{\nu}^{p}(\Omega), p>r /(r-1)$)

Main references

[AP] Astala, Päivärinta, Calderón inverse conductivity problem (2006)
[BLF] Baratchart, Fischer, Leblond, Dirichlet/Neumann problems and Hardy classes for the planar conductivity equation (subm.)
[BLP] Baratchart, Leblond, Partington, Hardy approximation on subsets of the circle (1996-2000)
[BLRR] Baratchart, Leblond, Rigat, Russ, Hardy spaces of the conjugate Beltrami equation (2010)
[BN] Bers, Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coeff. and appl. (1954)
[FLPS] Fischer, Leblond, Partington, Sincich, BEP in Hardy spaces for the conjugate Beltrami equation in simply conn. dom. (2011)

+ Vekua (1962), Kohn-Vogelius (1984), Sylvester-UhImann (1987), ...

