Inverse problem for a parabolic equation with periodic conditions

M. CRISTOFOL ${ }^{1}$, I. KADDOURI ${ }^{1,2}$, and D. E. TENIOU ${ }^{2}$

(1) University of Aix Marseille LATP
(2) University of sciences and technology Houari Boumediene, Faculty of mathematics, Laboratory AMNEDP, Department of Mathematics

Juin/2012

Outline of the talk

(1) Introduction
(2) Objectives
(3) Existence and uniqueness
(4) Carleman inequality
(5) Inverse problem

6 Work in progress

Introduction

- Direct problem : the coefficients are known.
- \rightarrow we determine solution.
- Inverse problem : the solution is known (partially).
- \rightarrow we determine one of several coefficients.
- In general the inverse problems are ill posed in the sense of Hadamard
(1) The solution can "not exist".
(2) The solution can "not be unique".
(3) The solution can "not be stable".

Introduction

- Direct problem : the coefficients are known.
- \rightarrow we determine solution.
- Inverse problem : the solution is known (partially).
- \rightarrow we determine one of several coefficients.
- In general the inverse problems are ill posed in the sense of Hadamard
(1) The solution can "not exist".
(2) The solution can "not be unique"
- The solution can "not be stable".

Introduction

- Direct problem : the coefficients are known.
- \rightarrow we determine solution.
- Inverse problem : the solution is known (partially).
- \rightarrow we determine one of several coefficients.
- In general the inverse problems are ill posed in the sense of Hadamard
- The solution can "not exist".
(2) The solution can "not be unique".
(3) The solution can "not be stable".

Introduction

- Direct problem : the coefficients are known.
- \rightarrow we determine solution.
- Inverse problem : the solution is known (partially).
- \rightarrow we determine one of several coefficients.
- In general the inverse problems are ill posed in the sense of Hadamard
(1) The solution can "not exist".
The solution can "not be unique".
The solution can "not be stable".

Introduction

- Direct problem : the coefficients are known.
- \rightarrow we determine solution.
- Inverse problem : the solution is known (partially).
- \rightarrow we determine one of several coefficients.
- In general the inverse problems are ill posed in the sense of Hadamard:
(1) The solution can "not exist".
(3) The solution can "not be unique"

Introduction

- Direct problem : the coefficients are known.
- \rightarrow we determine solution.
- Inverse problem : the solution is known (partially).
- \rightarrow we determine one of several coefficients.
- In general the inverse problems are ill posed in the sense of Hadamard:
(1) The solution can "not exist".
(2) The solution can "not be unique".

Introduction

- Direct problem : the coefficients are known.
- \rightarrow we determine solution.
- Inverse problem : the solution is known (partially).
- \rightarrow we determine one of several coefficients.
- In general the inverse problems are ill posed in the sense of Hadamard:
(1) The solution can "not exist".
(2) The solution can "not be unique".
(3) The solution can "not be stable".

Introduction

We prove an inequality of stability by using a Carleman estimate for the following parabolic periodic problem :

$$
\left\{\begin{array}{llll}
\partial_{t} u & =\Delta u+\mu(x) u-\nu(x) u^{2}, & & 0<t<T, x \in \Omega \tag{1}\\
u(0, x) & =u_{0}(x) & & x \in \Omega \\
\left.u\right|_{\Gamma_{j}^{0}} & =\left.u\right|_{\Gamma_{j},},\left.\quad \frac{\partial u}{\partial x_{j}}\right|_{\Gamma_{j}^{0}}=\left.\frac{\partial u}{\partial x_{j}}\right|_{\Gamma_{j}}, & & 1 \leq j \leq n
\end{array}\right.
$$

- $\mu(x), \nu(x)$ and $u_{0}(x)$ are L-periodic functions $\left(L=\left(L_{j}\right)_{j}\right)$.

Introduction

We prove an inequality of stability by using a Carleman estimate for the following parabolic periodic problem :

$$
\left\{\begin{array}{llll}
\partial_{t} u & =\Delta u+\mu(x) u-\nu(x) u^{2}, & & 0<t<T, x \in \Omega \tag{1}\\
u(0, x) & =u_{0}(x) & & x \in \Omega \\
\left.u\right|_{\Gamma_{j}^{0}} & =\left.u\right|_{\Gamma_{j}},\left.\quad \frac{\partial u}{\partial x_{j}}\right|_{\Gamma_{j}^{0}}=\left.\frac{\partial u}{\partial x_{j}}\right|_{\Gamma_{j}}, & & 1 \leq j \leq n
\end{array}\right.
$$

- $\mu(x), \nu(x)$ and $u_{0}(x)$ are L-periodic functions $\left(L=\left(L_{j}\right)_{j}\right)$.
- $\mu(x)$ unknown, $\nu(x)$ known.

Introduction

We prove an inequality of stability by using a Carleman estimate for the following parabolic periodic problem :

$$
\left\{\begin{array}{lll}
\partial_{t} u & =\Delta u+\mu(x) u-\nu(x) u^{2}, & 0<t<T, x \in \Omega \tag{1}\\
u(0, x) & =u_{0}(x) & x \in \Omega \\
\left.u\right|_{\Gamma_{j}^{0}}=\left.u\right|_{\Gamma_{j}^{1}},\left.\quad \frac{\partial u}{\partial x_{j}}\right|_{\Gamma_{j}^{0}}=\left.\frac{\partial u}{\partial x_{j}}\right|_{\Gamma_{j}^{1}}, & & 1 \leq j \leq n
\end{array}\right.
$$

- $\mu(x), \nu(x)$ and $u_{0}(x)$ are L-periodic functions $\left(L=\left(L_{j}\right)_{j}\right)$.
- $\mu(x)$ unknown, $\nu(x)$ known.
- where $\Omega=\Pi_{j=1}^{n}\left(0, L_{j}\right), Q=(0, T) \times \Omega, Q_{0}=\left(t_{0}, T\right) \times \Omega$ $\Sigma=(0, T) \times \partial \Omega$,
$\partial \Omega$ is the boundary of Ω,

$$
\Gamma_{j}^{0}=\partial \Omega \cap\left\{x_{j}=0\right\}, \Gamma_{j}^{1}=\partial \Omega \cap\left\{x_{j}=L_{j}\right\}
$$

Introduction

In ecology, this problem can modelize the spreading of insects in field of fruit trees.
In biology:

- u is the population density.
- μ is the intrinsic growth rate.
- ν measures the effects of competition.

Introduction

In ecology, this problem can modelize the spreading of insects in field of fruit trees.
In biology:

- u is the population density.
- μ is the intrinsic growth rate.
- ν measures the effects of competition.

Introduction

In ecology, this problem can modelize the spreading of insects in field of fruit trees.
In biology:

- u is the population density.
- μ is the intrinsic growth rate.
- ν measures the effects of competition.

Objectives

Our main goal is to reconstruct the coefficient $\mu(x)$ from partial measurements of the solution u :

- We improve a Carleman inequality established by J.Choi ${ }^{1}$ for a linear problem, by eliminating the constraints of the set of observation.
- We apply this inequality to a nonlinear problem.
- To end we prove the stability of the potential $\mu(x)$ (growth rate) with regard to the observations by using this Carleman inequality.

[^0]
Objectives

Our main goal is to reconstruct the coefficient $\mu(x)$ from partial measurements of the solution u :

- We improve a Carleman inequality established by J.Choi ${ }^{1}$ for a linear problem, by eliminating the constraints of the set of observation.
- We apply this inequality to a nonlinear problem.
- To end we prove the stability of the potential $\mu(x)$ (growth rate)
with regard to the observations by using this Carleman inequality.

[^1]
Objectives

Our main goal is to reconstruct the coefficient $\mu(x)$ from partial measurements of the solution u :

- We improve a Carleman inequality established by J.Choi ${ }^{1}$ for a linear problem, by eliminating the constraints of the set of observation.
- We apply this inequality to a nonlinear problem.
- To end we prove the stability of the potential $\mu(x)$ (growth rate) with regard to the observations by using this Carleman inequality.

[^2]
Objectives

- Our goal is to prove the following theorem :

Theorem
Let $\omega \subset \Omega$ an open set, $\theta \in(0, T)$ fixed, then there exists a constant $C>0, C=C(\omega, \Omega, T, \theta)$, such that :

$$
\|\mu-\tilde{\mu}\|_{L^{2}(\Omega)} \leq C\left(\|u-\tilde{u}\|_{H^{1}\left(0, T ; L^{2}(\omega)\right)}+\|(u-\tilde{u})(\theta, .)\|_{H^{2}(\Omega)}\right)
$$

Existence and uniqueness

Nonlinear case :

Theorem of existence and uniqueness (Berestycki-Hamel-Roques 2005)

We assume that $\mu, \nu \in \mathcal{C}^{m}\left(\mathbb{R}^{n}\right), m \in(0,1), \mu(x), \nu(x)$ et $u_{0}(x)$ are periodic functions, $\nu(x)>0$. Then the problem (1) have an unique solution in $\mathcal{C}^{1+\frac{m}{2}, 2+m}\left((0, \infty) \times \mathbb{R}^{n}\right) \cap \mathcal{C}\left([0, \infty) \times \mathbb{R}^{n}\right)$.

Lemma (Carleman inequality)

Let $\omega \subset \Omega, \omega \neq \Omega$, there exists s_{0}, there exists constant $C>0$,
$C=C(\omega, \Omega, \theta, T)$, such that $\forall s \geq s_{0}$ the solution of the problem $L z=g$ with periodic conditions boundary verifies the following inequality :

$$
\begin{aligned}
\int_{Q_{t_{0}}} & \left(\frac{1}{s \varphi}\left(\left|\frac{\partial z}{\partial t}\right|^{2}+|\Delta z|^{2}\right)+s \varphi|\nabla z|^{2}+s^{3} \varphi^{3}|z|^{2}\right) e^{2 s \alpha} d x d t \\
& \leq C\left(\int_{Q_{t_{0}}}|g|^{2} e^{2 s \alpha} d x d t+\int_{] t_{0}, T[\times \omega} s^{3} \varphi^{3}|z|^{2} e^{2 s \alpha} d x d t\right)
\end{aligned}
$$

with

$$
L z=\frac{\partial z}{\partial t}-\Delta z=g(t, x) \quad \text { in } \quad Q
$$

Lemma (Weight function)

Let $\omega \subset \bar{\Omega}, \omega \neq \Omega$. Then there exists a periodic function $\psi \in \mathcal{C}^{2}(\bar{\Omega})$, such that :

$$
\psi(x)>0, \forall x \in \Omega, \quad \text { et } \quad \nabla \psi(x) \neq 0, \quad \text { si } \quad x \notin \omega
$$

$$
\left.\psi\right|_{\Gamma_{j}^{0}}=\left.\psi\right|_{\Gamma_{j}^{1}},\left.\quad \frac{\partial \psi}{\partial x_{j}}\right|_{\Gamma_{j}^{0}}=\left.\frac{\partial \psi}{\partial x_{j}}\right|_{\Gamma_{j}^{1}}, \quad \text { pour } \quad 1 \leq j \leq n
$$

$$
\varphi(t, x)=\frac{e^{\lambda \psi(x)}}{\left(t-t_{0}\right)(T-t)},
$$

and

$$
\alpha(t, x)=\frac{e^{\lambda \psi}-e^{2 \lambda\|\psi\|_{C(\bar{\Omega})}}}{\left(t-t_{0}\right)(T-t)}<0 .
$$

Remark

We use this periodic weight function to eliminate the boundary terms. Because of the boundary terms, Choi had to:
(1) consider two weight functions ${ }^{2}$.
(2) assume that the open set ω (on which the gradient of the weight function can vanish) contains corners (in \mathbb{R}^{2}).
2. A V. Fursikov-O Y. Imanuvilov, Controllability of Evolution Equations, 1996

Remark

We use this periodic weight function to eliminate the boundary terms. Because of the boundary terms, Choi had to :
(1) consider two weight functions ${ }^{2}$.
(2) assume that the open set ω (on which the gradient of the weight function can vanish) contains corners (in \mathbb{R}^{2}).
2. A V. Fursikov-O Y. Imanuvilov, Controllability of Evolution Equations, 1996

Inverse problem

We have :

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\partial_{t} u(t, x) & =\Delta u(t, x)-p(x, u) u(t, x) & t_{0}<t<T, x \in \Omega \\
u\left(t_{0}, x\right) & =u_{0}(x) \\
\left.u\right|_{\Gamma_{j}^{0}} & =\left.u\right|_{\Gamma_{j}^{1}},\left.\quad \frac{\partial u}{\partial x_{j}}\right|_{\Gamma_{j}^{0}}=\left.\frac{\partial u}{\partial x_{j}}\right|_{\Gamma_{j}^{1}}, & 1 \leq j \leq n
\end{array} \quad\left(P_{\mu, u_{0}}\right)\right. \\
& \text { with } p(x, u)=\mu(x)-\nu(x) u .
\end{aligned}
$$

Inverse problem

 and$$
\left\{\begin{array}{lll}
\partial_{t} \tilde{u}(t, x) & =\Delta \tilde{u}(t, x)-\tilde{p}(x, u) \tilde{u}(t, x) & t_{0}<t<T, x \in \Omega \\
\tilde{u}\left(t_{0}, x\right) & =\tilde{u}_{0}(x) \\
\left.\tilde{u}\right|_{\Gamma_{j}^{0}}=\tilde{u}_{\Gamma_{j}^{1}},\left.\quad \frac{\partial \tilde{u}}{\partial x_{j}}\right|_{\Gamma_{j}^{0}}=\left.\frac{\partial \tilde{u}}{\partial x_{j}}\right|_{\Gamma_{j}^{1}}, & 1 \leq j \leq n
\end{array}\left(P_{\tilde{\mu}, \tilde{u}_{0}}\right)\right.
$$

with $\tilde{p}(x, \tilde{u})=\tilde{\mu}(x)-\nu(x) \tilde{u}$.

Inverse problem

We formulate the inverse problem. Let u, (resp. $\tilde{u})$ solution of the $\operatorname{problem}\left(P_{\mu, u_{0}}\right)$, (resp. $\left.P_{\tilde{\mu}, \tilde{u}_{0}}\right)$.
Let $w=u-\tilde{u}, f=\mu-\tilde{\mu}, a()=.u(\theta,)-.\tilde{u}(\theta,$.
We obtain :

$$
\left\{\begin{array}{lll}
w_{t} & =\Delta w+\mu w+\tilde{u} f-\nu w(u+\tilde{u}), & 0 \leq t \leq T, x \in \Omega \\
w(0, x) & =u_{0}(x)-\tilde{u}_{0}(x), & x \in \Omega \\
\left.w\right|_{\Gamma_{j}^{0}}=\left.w\right|_{\Gamma_{j}^{1}},\left.\quad \frac{\partial w}{\partial x_{j}}\right|_{\Gamma_{j}^{0}}=\left.\frac{\partial w}{\partial x_{j}}\right|_{\Gamma_{j}^{1}}, & 0 \leq t \leq T
\end{array}\right.
$$

Inverse problem

We set: $z(t, x)=w(t, x) / \tilde{u}(t, x)$

$$
\left\{\begin{array}{lll}
z_{t} & =\Delta z+P_{1}(z)+f, & \\
z(\theta, x) & =a(x) / \tilde{u}(\theta, x), & \\
z \in \Omega \leq T, x \in \Omega \\
\left.z\right|_{\Gamma_{j}^{0}}=\left.z\right|_{\Gamma_{j}^{1}},\left.\quad \frac{\partial z}{\partial x_{j}}\right|_{\Gamma_{j}^{0}}=\left.\frac{\partial z}{\partial x_{j}}\right|_{\Gamma_{j}^{1}}, & & t_{0} \leq t \leq T
\end{array}\right.
$$

P_{1} : first order operator.

$$
P_{1}(z)=a_{1}(t, x) z+A_{1}(t, x) \nabla z
$$

Inverse problem

We set $y=z_{t}$

$$
\left\{\begin{aligned}
y_{t} & =\Delta y+T_{1}(y)+Q_{1}(z) \\
\left.y\right|_{\Gamma_{j}^{0}} & =\left.y\right|_{\Gamma_{j}^{1}},\left.\quad \frac{\partial y}{\partial x_{j}}\right|_{\Gamma_{j}^{0}}=\left.\frac{\partial y}{\partial x_{j}}\right|_{\Gamma_{j}^{1}}, \quad t_{0} \leq t \leq T, x \in \Omega
\end{aligned}\right.
$$

$T_{1}, Q_{1}:$ first order operator.

Inverse problem

By applying Carleman inequality to y, we obtain :

$$
\begin{aligned}
& \int_{Q_{t_{0}}}\left(\frac{1}{s \varphi}\left(\left|\frac{\partial y}{\partial t}\right|^{2}+|\Delta y|^{2}\right)+s \varphi|\nabla y|^{2}+s^{3} \varphi^{3}|y|^{2}\right) e^{2 s \alpha} d x d t \\
\leq & C\left(\int_{Q_{t_{0}}}\left(\left(Q_{1}(z)+T_{1}(y)\right)^{2} e^{2 s \alpha} d x d t+\int_{] t_{0}, T[\times \omega} s^{3} \varphi^{3}|y|^{2} e^{2 s \alpha} d x d t\right)\right.
\end{aligned}
$$

Inverse problem

To summarise, from :

$$
f=\mu-\tilde{\mu},
$$

$$
f=z_{t}-\Delta z-P_{1}(z)
$$

and

$$
y=z_{t}
$$

The Carleman estimate gives the following inequality of stability :

$$
\|\mu-\tilde{\mu}\|_{L^{2}(\Omega)} \leq C\left(\|u-\tilde{u}\|_{H^{1}\left(0, T ; L^{2}(\omega)\right)}+\|(u-\tilde{u})(\theta, .)\|_{H^{2}(\Omega)}\right)
$$

Work in progress

(1) We study the same problem, but with non-smooth coefficient $\mu(x)$.
(2) We use another idea for the reconstruction of the potential $\mu(x)$, we work in \mathbb{R}^{n} with the same problem but we use differents data.

Work in progress

(1) We study the same problem, but with non-smooth coefficient $\mu(x)$.
(2) We use another idea for the reconstruction of the potential $\mu(x)$, we work in \mathbb{R}^{n} with the same problem but we use differents data.

Thank you for your attention.

[^0]: 1. ("Inverse problem for a parabolic equation with space-periodic boundary conditions by a Carleman estimate",Inverse. III-posed Problems, 2003)
[^1]: 1. ("Inverse problem for a parabolic equation with space-periodic boundary conditions by a Carleman estimate",Inverse. III-posed Problems, 2003)
[^2]: 1. ("Inverse problem for a parabolic equation with space-periodic boundary conditions by a Carleman estimate",Inverse. III-posed Problems, 2003)
