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Introduction

Introduction

Direct problem : the coefficients are known.
→ we determine solution.
Inverse problem : the solution is known (partially).
→ we determine one of several coefficients.
In general the inverse problems are ill posed in the sense of
Hadamard :

1 The solution can “not exist”.
2 The solution can “not be unique”.
3 The solution can “not be stable”.
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Introduction

Introduction

We prove an inequality of stability by using a Carleman estimate for
the following parabolic periodic problem :

∂tu = ∆u + µ(x)u − ν(x)u2, 0 < t < T , x ∈ Ω
u(0, x) = u0(x) x ∈ Ω

u
∣∣
Γ0

j
= u

∣∣
Γ1

j
, ∂u

∂xj

∣∣∣
Γ0

j

= ∂u
∂xj

∣∣∣
Γ1

j

, 1 ≤ j ≤ n
(1)

µ(x), ν(x) and u0(x) are L-periodic functions (L = (Lj)j ).
µ(x) unknown, ν(x) known.
where Ω = Πn

j=1(0,Lj), Q = (0,T )× Ω, Q0 = (t0,T )× Ω
Σ = (0,T )× ∂Ω,
∂Ω is the boundary of Ω,
Γ0

j = ∂Ω ∩ {xj = 0}, Γ1
j = ∂Ω ∩ {xj = Lj}.
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Introduction

Introduction

In ecology, this problem can modelize the spreading of insects in field
of fruit trees.
In biology :

u is the population density.
µ is the intrinsic growth rate.
ν measures the effects of competition.
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Objectives

Objectives

Our main goal is to reconstruct the coefficient µ(x) from partial
measurements of the solution u :

We improve a Carleman inequality established by J.Choi 1 for a
linear problem, by eliminating the constraints of the set of
observation.
We apply this inequality to a nonlinear problem.
To end we prove the stability of the potential µ(x) (growth rate)
with regard to the observations by using this Carleman inequality.

1. (“Inverse problem for a parabolic equation with space-periodic boundary
conditions by a Carleman estimate”,Inverse. Ill-posed Problems, 2003)
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Objectives

Objectives

Our goal is to prove the following theorem :

Theorem
Let ω ⊂ Ω an open set, θ ∈ (0,T ) fixed, then there exists a constant
C > 0, C = C(ω,Ω,T , θ), such that :

||µ− µ̃||L2(Ω) ≤ C(||u − ũ||H1(0,T ;L2(ω)) + ||(u − ũ)(θ, .)||H2(Ω))
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Existence and uniqueness

Existence and uniqueness

Nonlinear case :

Theorem of existence and uniqueness (Berestycki-Hamel-Roques
2005)

We assume that µ, ν ∈ Cm(Rn), m ∈ (0,1), µ(x), ν(x) et u0(x) are
periodic functions, ν(x) > 0. Then the problem (1) have an unique
solution in C1+ m

2 ,2+m((0,∞)× Rn) ∩ C([0,∞)× Rn).
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Carleman inequality

Lemma (Carleman inequality)

Let ω ⊂ Ω, ω 6= Ω, there exists s0, there exists constant C > 0,
C = C(ω,Ω, θ,T ), such that ∀s ≥ s0 the solution of the problem Lz = g
with periodic conditions boundary verifies the following inequality :∫

Qt0

(
1

sϕ

(∣∣∣∣∂z
∂t

∣∣∣∣2 + |∆z|2
)

+ sϕ|∇z|2 + s3ϕ3|z|2
)

e2sαdx dt

≤ C
(∫

Qt0

|g|2e2sαdxdt +

∫
]t0,T [×ω

s3ϕ3|z|2e2sαdxdt
)

with
Lz =

∂z
∂t
−∆z = g(t , x) in Q
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Carleman inequality

Lemma (Weight function)

Let ω ⊂ Ω, ω 6= Ω. Then there exists a periodic function ψ ∈ C2(Ω),
such that :

ψ(x) > 0, ∀x ∈ Ω, et ∇ψ(x) 6= 0, si x 6∈ ω

ψ
∣∣
Γ0

j
= ψ

∣∣
Γ1

j
,

∂ψ

∂xj

∣∣∣
Γ0

j

=
∂ψ

∂xj

∣∣∣
Γ1

j

, pour 1 ≤ j ≤ n.

ϕ(t , x) =
eλψ(x)

(t − t0)(T − t)
,

and

α(t , x) =
eλψ − e2λ||ψ||C(Ω)

(t − t0)(T − t)
< 0.
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Carleman inequality

Remark

We use this periodic weight function to eliminate the boundary terms.
Because of the boundary terms, Choi had to :

1 consider two weight functions 2.
2 assume that the open set ω (on which the gradient of the weight

function can vanish) contains corners (in R2).

2. A V. Fursikov-O Y. Imanuvilov, Controllability of Evolution Equations,
1996
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Inverse problem

Inverse problem

We have :
∂tu(t , x) = ∆u(t , x)− p(x ,u)u(t , x) t0 < t < T , x ∈ Ω
u(t0, x) = u0(x)

u
∣∣
Γ0

j
= u

∣∣
Γ1

j
, ∂u

∂xj

∣∣∣
Γ0

j

= ∂u
∂xj

∣∣∣
Γ1

j

, 1 ≤ j ≤ n
(Pµ,u0)

with p(x ,u) = µ(x)− ν(x)u.
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Inverse problem

Inverse problem

and


∂t ũ(t , x) = ∆ũ(t , x)− p̃(x ,u)ũ(t , x) t0 < t < T , x ∈ Ω
ũ(t0, x) = ũ0(x)

ũ
∣∣
Γ0

j
= ũ

∣∣
Γ1

j
, ∂ũ

∂xj

∣∣∣
Γ0

j

= ∂ũ
∂xj

∣∣∣
Γ1

j

, 1 ≤ j ≤ n
(Pµ̃,ũ0

)

with p̃(x , ũ) = µ̃(x)− ν(x)ũ.
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Inverse problem

Inverse problem

We formulate the inverse problem. Let u, (resp. ũ) solution of the
problem (Pµ,u0), (resp. Pµ̃,ũ0

).
Let w = u − ũ, f = µ− µ̃, a(.) = u(θ, .)− ũ(θ, .)
We obtain :


wt = ∆w + µw + ũf − νw(u + ũ), 0 ≤ t ≤ T , x ∈ Ω
w(0, x) = u0(x)− ũ0(x), x ∈ Ω

w
∣∣
Γ0

j
= w

∣∣
Γ1

j
, ∂w

∂xj

∣∣∣
Γ0

j

= ∂w
∂xj

∣∣∣
Γ1

j

, 0 ≤ t ≤ T
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Inverse problem

Inverse problem

We set : z(t , x) = w(t , x)/ũ(t , x)
zt = ∆z + P1(z) + f , t0 ≤ t ≤ T , x ∈ Ω
z(θ, x) = a(x)/ũ(θ, x), x ∈ Ω

z
∣∣
Γ0

j
= z

∣∣
Γ1

j
, ∂z

∂xj

∣∣∣
Γ0

j

= ∂z
∂xj

∣∣∣
Γ1

j

, t0 ≤ t ≤ T

P1 : first order operator.

P1(z) = a1(t , x)z + A1(t , x)∇z
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Inverse problem

Inverse problem

We set y = zt yt = ∆y + T1(y) + Q1(z) t0 ≤ t ≤ T , x ∈ Ω,

y
∣∣
Γ0

j
= y

∣∣
Γ1

j
, ∂y

∂xj

∣∣∣
Γ0

j

= ∂y
∂xj

∣∣∣
Γ1

j

, t0 ≤ t ≤ T

T1, Q1 : first order operator.
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Inverse problem

Inverse problem

By applying Carleman inequality to y , we obtain :∫
Qt0

(
1

sϕ

(∣∣∣∣∂y
∂t

∣∣∣∣2 + |∆y |2
)

+ sϕ|∇y |2 + s3ϕ3|y |2
)

e2sαdx dt

≤ C
(∫

Qt0

((Q1(z) + T1(y))2e2sαdxdt +

∫
]t0,T [×ω

s3ϕ3|y |2e2sαdxdt
)
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Inverse problem

Inverse problem

To summarise, from :
f = µ− µ̃,

f = zt −∆z − P1(z)

and

y = zt

The Carleman estimate gives the following inequality of stability :

||µ− µ̃||L2(Ω) ≤ C(||u − ũ||H1(0,T ;L2(ω)) + ||(u − ũ)(θ, .)||H2(Ω))
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Work in progress

Work in progress

1 We study the same problem, but with non-smooth coefficient µ(x).
2 We use another idea for the reconstruction of the potential µ(x),

we work in Rn with the same problem but we use differents data.
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Work in progress

Thank you for your attention.
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