

Optimal Dirichlet boundary control for the Navier–Stokes equations

L. John¹ O. Steinbach¹

¹Institute of Computational Mathematics Graz University of Technology

Control of Fluid–Structure Systems and Inverse Problems Toulouse, June 25–28, 2012

Outline

Optimal Dirichlet boundary control

Optimality system Discretization and stabilized FEM Numerical examples

Application to arterial blood flow Numerical examples

Conclusion and Outlook

Optimal control problem

Let $\Omega \subset \mathbb{R}^n$ (n = 2, 3) bounded Lipschitz domain, with boundary $\Gamma = \partial \Omega$.

- $\blacktriangleright \ \overline{\Gamma} = \overline{\Gamma}_D \cup \overline{\Gamma}_N \cup \overline{\Gamma}_c$
- $\blacktriangleright \ \overline{\Gamma}_D \cap \overline{\Gamma}_c \neq \emptyset \text{ and } \overline{\Gamma}_N \cap \overline{\Gamma}_c = \emptyset$

Optimal control problem

Let $\Omega \subset \mathbb{R}^n$ (n = 2, 3) bounded Lipschitz domain, with boundary $\Gamma = \partial \Omega$. $\blacktriangleright \overline{\Gamma} = \overline{\Gamma}_D \cup \overline{\Gamma}_N \cup \overline{\Gamma}_c$

$$\blacktriangleright \ \overline{\Gamma}_D \cap \overline{\Gamma}_c \neq \emptyset \text{ and } \overline{\Gamma}_N \cap \overline{\Gamma}_c = \emptyset$$

Problem

$$\text{min } \mathcal{J}(\underline{\textit{u}},\underline{\textit{z}}) = \frac{1}{2} \left\|\underline{\textit{u}} - \overline{\underline{\textit{u}}}\right\|_{\textit{L}_{2}(\Omega)}^{2} + \frac{1}{2} \varrho \left|\underline{\textit{z}}\right|_{\textit{H}^{1/2}(\Gamma_{c})}^{2}$$

under the constraint

$$\begin{aligned} -\nu\Delta\underline{u} + (\underline{u}\cdot\nabla)\underline{u} + \nabla p &= \underline{f} & \text{ in } \Omega, \\ \nabla\cdot\underline{u} &= 0 & \text{ in } \Omega, \\ \underline{u} &= \underline{g} & \text{ on } \Gamma_{D}, \\ \nu(\nabla\underline{u})\underline{n} - p\underline{n} &= \underline{0} & \text{ on } \Gamma_{N}, \\ \underline{u} &= \underline{z} & \text{ on } \Gamma_{c}, \end{aligned}$$

viscosity constant $\nu > 0$, cost coefficient $\varrho > 0$.

Realization of the $H^{1/2}$ semi-norm

Auxiliary problem

$$\begin{split} -\Delta \underline{u}_z &= \underline{0} & \text{ in } \Omega, \\ \underline{u}_z &= \underline{0} & \text{ on } \Gamma_{\mathrm{D}}, \\ (\nabla \underline{u}_z) \underline{n} &= \underline{0} & \text{ on } \Gamma_{\mathrm{N}}, \\ \underline{u}_z &= \underline{z} & \text{ on } \Gamma_{\mathrm{c}}. \end{split}$$

Realization of the $H^{1/2}$ semi-norm

Auxiliary problem

$$\begin{split} -\Delta \underline{u}_z &= \underline{0} & \text{ in } \Omega, \\ \underline{u}_z &= \underline{0} & \text{ on } \Gamma_{\mathrm{D}}, \\ (\nabla \underline{u}_z) \underline{n} &= \underline{0} & \text{ on } \Gamma_{\mathrm{N}}, \\ \underline{u}_z &= \underline{z} & \text{ on } \Gamma_{\mathrm{c}}. \end{split}$$

Steklov–Poincaré operator

$$S: [\widetilde{H}^{1/2}(\Gamma_{c})]^{n} \rightarrow [H^{-1/2}(\Gamma_{c})]^{n}$$

with

$$[\widetilde{H}^{1/2}(\Gamma_c)]^n := \left\{ \underline{\nu} = \underline{\widetilde{\nu}}|_{\Gamma_c} : \underline{\widetilde{\nu}} \in [H^{1/2}(\Gamma)]^n, \ \text{supp}(\underline{\widetilde{\nu}}) \subseteq \overline{\Gamma}_c \right\}$$

Realization of the $H^{1/2}$ semi-norm

Auxiliary problem

$$\begin{split} -\Delta \underline{u}_z &= \underline{0} & \text{ in } \Omega, \\ \underline{u}_z &= \underline{0} & \text{ on } \Gamma_{\mathrm{D}}, \\ (\nabla \underline{u}_z) \underline{n} &= \underline{0} & \text{ on } \Gamma_{\mathrm{N}}, \\ \underline{u}_z &= \underline{z} & \text{ on } \Gamma_{\mathrm{c}}. \end{split}$$

Steklov–Poincaré operator

$$S: [\widetilde{H}^{1/2}(\Gamma_{c})]^{n} \rightarrow [H^{-1/2}(\Gamma_{c})]^{n}$$

with

$$[\widetilde{H}^{1/2}(\Gamma_c)]^n := \left\{ \underline{\nu} = \underline{\tilde{\nu}}|_{\Gamma_c} : \underline{\tilde{\nu}} \in [H^{1/2}(\Gamma)]^n, \ \text{supp}(\underline{\tilde{\nu}}) \subseteq \overline{\Gamma}_c \right\}$$

satisfying

$$|\underline{z}|^{2}_{H^{1/2}(\Gamma_{c})} = \langle S\underline{z}, \underline{z} \rangle_{\Gamma_{c}} = \langle (\nabla \underline{u}_{z})\underline{n}, \underline{z} \rangle_{\Gamma_{c}}.$$

for all $\underline{z} \in [H^{1/2}(\Gamma_c)]^n$. [Of, Than, Steinbach, 2009]

Optimality system

Primal problem

$\nu \Delta \underline{u} + (\underline{u} \cdot \nabla) \underline{u} + \nabla p = \underline{f}$	$ \text{in } \ \Omega,$
$ abla \cdot \underline{u} = 0$	in Ω ,
$\underline{u} = \underline{g}$	on $\Gamma_D,$
$\nu(\nabla \underline{u})\underline{n} - p\underline{n} = \underline{0}$	on $\Gamma_N,$
$\underline{u} = \underline{z}$	on Γ_c ,

Adjoint problem

$$\begin{split} -\nu\Delta\underline{w} - (\nabla\underline{w})\underline{u} - (\nabla\underline{w})^{\top}\underline{u} - \nabla r &= \underline{u} - \overline{\underline{u}} & \text{ in } \Omega, \\ \nabla \cdot \underline{w} &= 0 & \text{ in } \Omega, \\ \underline{w} &= \underline{0} & \text{ on } \Gamma_{\mathrm{D}} \cup \Gamma_{\mathrm{c}}, \\ \nu(\nabla\underline{w})\underline{n} + (\underline{u} \cdot \underline{w})\underline{n} + (\underline{u} \cdot \underline{n})\underline{w} + r\underline{n} &= \underline{0} & \text{ on } \Gamma_{\mathrm{N}}, \end{split}$$

Optimality condition

$$-\nu(\nabla \underline{w})\underline{n} - (\underline{u} \cdot \underline{w})\underline{n} - (\underline{u} \cdot \underline{n})\underline{w} - r\underline{n} + \varrho S\underline{z} = \underline{0} \qquad \text{on } \Gamma_{c}.$$

Discretization and stabilized FEM

Finite dimensional subspaces

$$V_h \subset [H_0^1(\Omega, \Gamma_D \cup \Gamma_c)]^n, \qquad Q_h \subset L_2(\Omega).$$

Discretization and stabilized FEM

Finite dimensional subspaces

$$V_h \subset [H^1_0(\Omega, \Gamma_D \cup \Gamma_c)]^n, \qquad Q_h \subset L_2(\Omega).$$

• \mathcal{P}_1 - \mathcal{P}_1 element with Dohrmann-Bochev stabilization

$$c(q_h,p_h):=rac{1}{
u}\int_\Omega(p_h-\Pi_hp_h)(q_h-\Pi_hq_h)\;dx$$

with $L_2(\Omega)$ -projection $\Pi_h : L_2(\Omega) \to Q_h^0$.

[Dohrmann, Bochev 2004]

Discretization and stabilized FEM

Finite dimensional subspaces

$$V_h \subset [H^1_0(\Omega, \Gamma_D \cup \Gamma_c)]^n, \qquad Q_h \subset L_2(\Omega).$$

• \mathcal{P}_1 - \mathcal{P}_1 element with Dohrmann-Bochev stabilization

$$c(q_h,p_h):=rac{1}{
u}\int_{\Omega}(p_h-\Pi_hp_h)(q_h-\Pi_hq_h)\;dx$$

with
$$L_2(\Omega)$$
–projection $\Pi_h: L_2(\Omega) o Q_h^0$.

[Dohrmann, Bochev 2004]

Realization of the Steklov–Poincaré operator

Linear system for auxiliary problem

$$\begin{pmatrix} A_{II} & A_{IC} \\ A_{CI} & A_{CC} \end{pmatrix} \begin{pmatrix} \underline{u}_{I} \\ \underline{z}_{C} \end{pmatrix} = \begin{pmatrix} \underline{0} \\ S_{h}\underline{z}_{C} \end{pmatrix}$$

For the Galerkin matrix S_h :

$$\Rightarrow S_{h\underline{Z}_{C}} = (A_{CC} - A_{CI}A_{II}^{-1}A_{IC})\underline{Z}_{C}$$

Numerical example

• $\Omega = (0,1)^2$ with $\Gamma = \Gamma_c$ • $\underline{u} = (x_2(x_2 - 1) + 1, x_1(x_1 - 1) + 1)^\top$ • $\nu = 1, \ \varrho = 1$ • $\underline{f} = \underline{1}$

Numerical example

•
$$\Omega = (0, 1)^2$$
 with $\Gamma = \Gamma_c$ • $\underline{\overline{u}} = (x_2(x_2 - 1) + 1, x_1(x_1 - 1) + 1)^\top$
• $\nu = 1, \ \varrho = 1$ • $\underline{f} = \underline{1}$

Table: Errors and eoc for the control \underline{z} .

Optimal Dirichlet boundary control for the Navier-Stokes equations

Application to arterial blood flow

Optimal control of the inflow in a bypass

Application to arterial blood flow

Velocity <u>u</u>

Figure: $L_2(\Gamma_c)$ control (left), $H^{1/2}(\Gamma_c)$ control (right)

Applications to arterial blood flow

Control <u>z</u>

Figure: $L_2(\Gamma_c)$ control (left), $H^{1/2}(\Gamma_c)$ control (right)

Applications to arterial blood flow

Control <u>z</u>

Figure: $L_2(\Gamma_c)$ control (left), $H^{1/2}(\Gamma_c)$ control (right)

Conclusion

- Optimal Dirichlet boundary control
 - Realization of the $H^{1/2}$ semi-norm
 - Discretization and stabilized FEM
 - Numerical examples
- Applications to arterial blood flow

Conclusion

- Optimal Dirichlet boundary control
 - Realization of the $H^{1/2}$ semi-norm
 - Discretization and stabilized FEM
 - Numerical examples
- Applications to arterial blood flow

Outlook

- Optimal control of wall shear stresses
- Instationary problem
 - Solvers
 - Periodic bc's for pulsative flow
- Non–Newtonian fluids
- Optimal control of FSI

Optimal Dirichlet boundary control for the Navier–Stokes equations

L. John¹ O. Steinbach¹

¹Institute of Computational Mathematics Graz University of Technology

Control of Fluid–Structure Systems and Inverse Problems Toulouse, June 25–28, 2012