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Indirect damping for coupled systems

Lindirect stabilization

a weakly coupled system

Q C R" bounded. Coupling a conservative and a damped wave
equation through zero order terms

Pu—Au+ou+av=0 .
{8?v—Av—|—au:0 n QxR M

B.C. u=0=v on 00 xR
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Lindirecl stabilization

a weakly coupled system

Q c R™ bounded. Coupling a conservative and a damped wave
equation through zero order terms

Pu—Au+ou+av=0 .
{8t2v—Av—|—au:O n QxR M

B.C. u=0=v on 00 xR

any kind of stability for o # 07

MIIE ¢



Indirect damping for coupled systems
I—indirect stabilization

lack of exponential stability

Rewrite the system (1) as an evolution equation in
H = [H}(Q) x L(Q)?
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Lindirecl stabilization

lack of exponential stability

Rewrite the system (1) as an evolution equation in
H = [Hy(Q) x LA(Q)]?

/
u u u
u (LK u’ _.r u’
v K L v ' % ’
4 4 4

Ly, L, generators of Co-semigroups on HJ(2) x L3(Q)

K< L’;’, > = < o?u ) compact operator in HJ(Q) x L2(Q),
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Lindire(:l stabilization

lack of exponential stability (ctnd)

wo (L) type of the semigroup generated by £

(blind to compact perturbation)

wo(£) >0 = system cannot be exponentially stable!
Nevertheless, the total energy of the system is non-increasing,
since it satisfies a dissipation relation

se(u) = - [ opax

Hope to stabilize the full system by a single feedback! ‘
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a system of second order evolutions equations

in a separable Hilbert space H

uv'+Au+Bu +av=0
V' +Av+au=0
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Labstract set-up

a system of second order evolutions equations
in a separable Hilbert space H
V' +Av+au=0

(H1) A;: D(Aj)) c H— H (i =1,2) are densely defined closed
linear operators such that

{ U +Aiu+Bu +av=0

A=A, (Aju,u) > (‘L),'|U|2 (w1, wo > 0)
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a system of second order evolutions equations

in a separable Hilbert space H

uv'+Au+Bu +av=0
V' 4+ Av+au=0

(H1) A;: D(A})) c H— H (i =1,2) are densely defined closed
linear operators such that

A=A, (Auu) >wiu?  (wr,we > 0)
(H2) Bis a bounded linear operator on H such that

BZB*? (BU,U>25|U’2 (6>0)
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Labstract set-up

a system of second order evolutions equations

in a separable Hilbert space H

uv'+Au+Bu +av=0
V' 4+ Av+au=0

(H1) A;: D(A})) c H— H (i =1,2) are densely defined closed
linear operators such that

A=A, (Auu) >wiu?  (wr,we > 0)
(H2) Bis a bounded linear operator on H such that

B=B*, (Buu)>Blu? (8>0)
(H3) 0 < |a| < \/wiwz
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I—abstract set-up

energies
energies associated to Ay, A>

1
Ei(u,p) = 5 (14]%ul? +p[?)
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Labstract set-up

energies
energies associated to Ay, A>
1/ ,1)2
Ei(u.p) = 5 (141"%ul® + |oP)
total energy of the system U = (u,p, v, q)
E(U) = Ey(u,p) + Ex(v,q) + o(u, v)
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L abstract set-up

energies
energies associated to Aq, A>
: _ Y a2,2 0 102
Ei(u,p) = 5 (14]%ul? +p[?)
total energy of the system U = (u,p, v, q)

E(U) := Ex(u,p) + Ex(v.q) + alu, v)

assumptions yield

E(U) > v(a)|Ei(u,p) + Ex(v,q)|, v(a)>0.
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I—abstract set-up

reduction to a first order system

y - D(A1/2) (A1/2)
(Ul) = <A”2uA‘/2> +(p,P)
+(AYRv, AYPVY +(Q,3) + a(u, V) + (v, T)
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Labstract set-up

reduction to a first order system

9 - D(A1/2) (A1/2)
o) = (A, A”2> +(p,P)
HAYPV, AP0 +(q,3) + alu, V) + alv, T)

system takes the equivalent form

U'(t) = AU()
U(0) = Up := (u% u',vO,v1).

with A : D(A) C H — H defined by
D(A) = D(Ay) x D(A/?) x D(A) x D(AY?)
AU = (p, —Aju— Bp — av,q, —Axv — al)
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I—Stabilization results

stability result for standard boundary conditions

Theorem (Alabau Boussouira—Cannarsa—Komornik)
Assume, for some integerj > 2,

Ayl < c|AfPul  vue DAY (ACK)
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stability result for standard boundary conditions

Theorem (Alabau Boussouira—Cannarsa—Komornik)
Assume, for some integerj > 2,

Ayl < clAfPul  vVue D(Aj/z) (ACK)

» Uy € D(A™) (some n > 1) = E(U(t)) Z EWUR(0
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LStabilization results

stability result for standard boundary conditions

Theorem (Alabau Boussouira—Cannarsa—Komornik)
Assume, for some integerj > 2,

Ayl < clAfPul  vVue D(Af'/2) (ACK)
» Uy € D(A™) (some n > 1) = E(U(t)) t”/l ZS(U("

» VUp e H, E(U(t)) -0 as t— .
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LStabilization results

stability result for standard boundary conditions

Theorem (Alabau Boussouira—Cannarsa—Komornik)
Assume, for some integerj > 2,

Ayl < clAfPul  vVue D(Af'/2) (ACK)
» Uy € D(A™) (some n > 1) = E(U(t)) t”/l Zs(u(k

» VUp e H, E(U(t)) -0 as t— .

Observe
(ACK) < D(AY®) c D(A) & |AA2ul < clul
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LStabilizalion results

example 1: Dirichlet boundary conditions

Q cR"” bounded F=0Q

2 — =
{8tu Au+owu+av=0 N Qx(0,+c0)

O2v—Av+au=0

with boundary conditions

u(-,t)=0=v(,1t) on I Vi>0

in this example Ay =A= A, with

D(A) = H*(Q) N H{(Q), Au=-Au

sothat (ACK) : |Asu| < c|AY%u| holds with j = 2
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LStabilization results

example 1: conclusion

OPu—Au+0u+av=0 .
{8?V—Av+au:0 in 2x(0, +o0)

u(-t)=0=v(1) on I Vi>0

U(X,O) = UO(X), U/(X,O) _ U1 (X)
{ V(X70):VO(X), VI(X,O):V1(X) X €Q
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LStabilizalion results

example 1: conclusion
02U — AU+ 0 +av=0 .
{8t2v—Av+au:O in £ (0,400)
u(-,t)=0=v(-,1t) on I Vi>0

U(X7O) = UO(X)a U/(X, 0) —_— (X)
{ v(x,0) = vO(x), V/(x,0) = v!(x) x e

conclusion: for 0 < |a| < Cq, for every t > 0,
/ (|8tu\2 +|Vu® 4 |9¢v]? + |Vv]2) dx
Q

2 12
5t v H1,Q>

Cli,002 12 0
< 2 (IeP1B o+ U3 o + 11V
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more classes of examples

Indeed, (ACK) applies to larger classes of examples:
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Indeed, (ACK) applies to larger classes of examples:
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LStabilizalion results

more classes of examples

Indeed, (ACK) applies to larger classes of examples:

(A1, D(A1)) = (A2, D(A)) for j =25

D(Ay) = D(A>) (isomorphic as Banach spaces) for j = 2 ;
Ay = A2 with j = 2 ;

Ay = Aswithj=4.

v

v

v

v
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LStabilizalion results

more classes of examples

Indeed, (ACK) applies to larger classes of examples:
(A1, D(A1)) = (A2, D(Ap)) for j = 2 ;

v

v

> Ay = A2 with j = 2 ;
> A :Agwithj:4
conclusion: for all the previous situations, we deduce that

t”/l Zs (U0

forevery t > 0, for Uy € D(A") .

D(Ay) = D(A>) (isomorphic as Banach spaces) for j = 2 ;
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I—Stabilization results

example 2: hybrid boundary conditions

Consider the problem

2 — =
8,2u Au+oiu+av=0 in Q x (0, o)
Ofv—Av+au=0
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LStabilization results

example 2: hybrid boundary conditions

Consider the problem

20— A =

8,2u u+oiu+av=_0 in Q x (0, +00)
ofv—Av+au=0

with boundary conditions

ou
(ay+“>("t) =0onrl vt 0
v(-,t) =0onTl

The compatibility condition (ACK) does NOT apply!
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I—Stabilization results

second stability result

Theorem (Alabau Boussouira—Cannarsa—G.)
Assume

D(Az) C D(AI®) & |Al2u| < c|Axu| Yu e D(Az) (ACG)
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LStabilization results
.

second stability result
Theorem (Alabau Boussouira—Cannarsa—G.)

Assume
D(Az) C D(AI®) & |Al2u| < c|Axu| Yu e D(Az) (ACG)

Then
» Uy € D(A™) (some n> 1) = E(U(t)) Zg(UW 0))
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second stability result
Theorem (Alabau Boussouira—Cannarsa—G.)

Assume
D(Az) C D(AI®) & |Al2u| < c|Axu| Yu e D(Az) (ACG)

Then

» Uy € D(A™) (some n> 1) = E(U(t)) Zg(UW 0))
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LStabilization results

second stability result
Theorem (Alabau Boussouira—Cannarsa—G.)

Assume
D(Az) C D(AI®) & |Al2u| < c|Axu| Yu e D(Az) (ACG)

Then
» Uy e D(A™) (somen>1) = E(U(t)) < <. /4 Zg(u )(0))

» VUpeH, E(U()—0 as t— 0.

Observe

MIIE ¢
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I—Stabilization results

main tools

proof uses

» energy dissipation

d /
EU) = —[B2U (D)

(Uo € D(A))
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I—Stabilization results

main tools

proof uses
» energy dissipation

d /
EU) = —[B2U (D)

» multipliers of the form A;'v and A, 'u

(Uo € D(A))
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LStabilizalion results

main tools

proof uses
» energy dissipation

d /
W) = —-|B"2u(t)?

» multipliers of the form A;'v and Ay 'u
» an abstract decay lemma
» interpolation techniques

(Uo € D(A))
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LStabilizalion results

example 2: (ACG) applies

the energy of the solution to the boundary-value problem

2 — =
8,2u Au+oiu+av=0 in Q x (0, -+0)
ofv—Av+au=0

ou
(8”+u>(-,t) =0 onl V>0
v(-,t) =0 onTl

satisfies, for 0 < |a| < Cq, for every t > 0,

Ex(u(), U'(1) + Eo(v(1), V(1))

C
< oor (1R 4 AR 4 1A P 1 A2V P)
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LFinal remarks and open problems

some remarks

» The compatibility conditions (ACG) also covers systems
with operators of different orders

» We can consider different coupling coefficients in the two
equations

U'(t) + Aru(t) + BU(f) + aqv(t) = 0
V(1) + Apv(t) + apu(t) = 0.

» we show that stabilization does not occur when the
coupling acts only in one components
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LFinal remarks and open problems

open problems

» study localized damping with hybrid boundary conditions
» consider boundary control with hybrid boundary conditions
» obtain similar decay rates for problems in exterior domains
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LFinal remarks and open problems

open problems

» study localized damping with hybrid boundary conditions
» consider boundary control with hybrid boundary conditions
» obtain similar decay rates for problems in exterior domains

Thank you for your attention
Merci bien!
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