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Indirect damping for coupled systems

indirect stabilization

a weakly coupled system

Ω ⊂ Rn bounded. Coupling a conservative and a damped wave
equation through zero order terms{

∂2
t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× R (1)

B.C. u = 0 = v on ∂Ω× R

any kind of stability for α 6= 0?
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indirect stabilization

lack of exponential stability

Rewrite the system (1) as an evolution equation in
H = [H1

0 (Ω)× L2(Ω)]2
u
u′

v
v ′


′

=

(
L1 K
K L2

)
u
u′

v
v ′

 =: L


u
u′

v
v ′

 ,

L1,L2 generators of C0-semigroups on H1
0 (Ω)× L2(Ω)

K
(

u
u′

)
=

(
0
αu

)
compact operator in H1

0 (Ω)× L2(Ω),
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indirect stabilization

lack of exponential stability (ctnd)

ω0(L) type of the semigroup generated by L
(blind to compact perturbation)
ω0(L) ≥ 0 ⇒ system cannot be exponentially stable!
Nevertheless, the total energy of the system is non-increasing,
since it satisfies a dissipation relation

d
dt
E(U(t)) = −

∫
Ω
|u′(t)|2dx

Hope to stabilize the full system by a single feedback!

Then, we look for weaker decay rates—of polynomial type.
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Indirect damping for coupled systems

abstract set-up

a system of second order evolutions equations

in a separable Hilbert space H{
u′′ + A1u + Bu′ + αv = 0
v ′′ + A2v + αu = 0

(H1) Ai : D(Ai) ⊂ H → H (i = 1,2) are densely defined closed
linear operators such that

Ai = A∗i , 〈Aiu,u〉 ≥ ωi |u|2 (ω1, ω2 > 0)

(H2) B is a bounded linear operator on H such that

B = B∗ , 〈Bu,u〉 ≥ β|u|2 (β > 0)

(H3) 0 < |α| < √ω1ω2
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abstract set-up

energies

energies associated to A1,A2

Ei(u,p) =
1
2

(
|A1/2

i u|2 + |p|2
)

total energy of the system U = (u,p, v ,q)

E(U) := E1(u,p) + E2(v ,q) + α〈u, v〉

assumptions yield

E(U) ≥ ν(α)
[
E1(u,p) + E2(v ,q)

]
, ν(α) > 0 .
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abstract set-up

reduction to a first order system

H = D(A1/2
1 )× H × D(A1/2

2 )× H

(U|Û) = 〈A1/2
1 u,A1/2

1 û〉+ 〈p, p̂〉

+〈A1/2
2 v ,A1/2

2 v̂〉+ 〈q, q̂〉+ α〈u, v̂〉+ α〈v , û〉

system takes the equivalent form{
U ′(t) = AU(t)
U(0) = U0 := (u0,u1, v0, v1) .

with A : D(A) ⊂ H → H defined by{
D(A) = D(A1)× D(A1/2

1 )× D(A2)× D(A1/2
2 )

AU = (p,−A1u − Bp − αv ,q,−A2v − αu)
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Stabilization results

stability result for standard boundary conditions

Theorem (Alabau Boussouira–Cannarsa–Komornik)
Assume, for some integer j ≥ 2,

|A1u| ≤ c|Aj/2
2 u| ∀u ∈ D(Aj/2

2 ) (ACK )

I U0 ∈ D(An) (some n ≥ 1)⇒ E(U(t)) ≤ cn

tn/j

n∑
k=0

E(U(k)(0))

I ∀U0 ∈ H, E(U(t))→ 0 as t →∞ .

Observe

(ACK ) ⇐⇒ D(Aj/2
2 ) ⊂ D(A1) & |A1A−j/2

2 u| ≤ c|u|
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Stabilization results

example 1: Dirichlet boundary conditions

Ω ⊂ Rn bounded Γ = ∂Ω{
∂2

t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× (0,+∞)

with boundary conditions

u(·, t) = 0 = v(·, t) on Γ ∀t > 0

in this example A1 = A = A2 with

D(A) = H2(Ω) ∩ H1
0 (Ω) , Au = −∆u

so that (ACK ) : |A1u| ≤ c|Aj/2
2 u| holds with j = 2
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Stabilization results

example 1: conclusion
{
∂2

t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× (0,+∞)

u(·, t) = 0 = v(·, t) on Γ ∀t > 0{
u(x ,0) = u0(x) , u′(x ,0) = u1(x)
v(x ,0) = v0(x) , v ′(x ,0) = v1(x)

x ∈ Ω

conclusion: for 0 < |α| < CΩ, for every t > 0,∫
Ω

(
|∂tu|2 + |∇u|2 + |∂tv |2 + |∇v |2

)
dx

≤ c
t

(
‖u0‖22,Ω + ‖u1‖21,Ω + ‖v0‖22,Ω + ‖v1‖21,Ω

)
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Stabilization results

more classes of examples

Indeed, (ACK ) applies to larger classes of examples:
I (A1,D(A1)) = (A2,D(A2)) for j = 2 ;
I D(A1) = D(A2) (isomorphic as Banach spaces) for j = 2 ;
I A2 = A2

1 with j = 2 ;
I A1 = A2

2 with j = 4 .
conclusion: for all the previous situations, we deduce that

E(U(t)) ≤ cn

tn/j

n∑
k=0

E(U(k)(0))

for every t > 0, for U0 ∈ D(An) .
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Stabilization results

example 2: hybrid boundary conditions

Consider the problem{
∂2

t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× (0,+∞)

with boundary conditions(
∂u
∂ν

+ u
)

(·, t) = 0 on Γ

v(·, t) = 0 on Γ
∀t > 0

The compatibility condition (ACK) does NOT apply!
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Stabilization results

second stability result
Theorem (Alabau Boussouira–Cannarsa–G.)
Assume

D(A2) ⊂ D(A1/2
1 ) & |A1/2

1 u| ≤ c|A2u| ∀u ∈ D(A2) (ACG)

Then

I U0 ∈ D(An) (some n ≥ 1)⇒ E(U(t)) ≤ cn

tn/4

n∑
k=0

E(U(k)(0))

I ∀U0 ∈ H, E(U(t))→ 0 as t →∞ .

Observe

(ACG) ⇐⇒ |〈A1u, v〉| ≤ c|A2v |〈A1u,u〉1/2
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Stabilization results

main tools

proof uses
I energy dissipation

d
dt
E(U(t)) = −|B1/2u′(t)|2 (U0 ∈ D(A))

I multipliers of the form A−1
1 v and A−1

2 u
I an abstract decay lemma
I interpolation techniques
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Stabilization results

example 2: (ACG) applies
the energy of the solution to the boundary-value problem{

∂2
t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× (0,+∞)

(
∂u
∂ν

+ u
)

(·, t) = 0 on Γ

v(·, t) = 0 on Γ
∀t > 0

satisfies, for 0 < |α| < CΩ, for every t > 0,

E1(u(t),u′(t)) + E2(v(t), v ′(t))

≤ c
t1/4

(
|A1u0|2 + |A1/2

1 u1|2 + |A2v0|2 + |A1/2
2 v1|2

)
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Final remarks and open problems

some remarks

I The compatibility conditions (ACG) also covers systems
with operators of different orders

I We can consider different coupling coefficients in the two
equations{

u′′(t) + A1u(t) + Bu′(t) + α1v(t) = 0
v ′′(t) + A2v(t) + α2u(t) = 0 .

I we show that stabilization does not occur when the
coupling acts only in one components
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Final remarks and open problems

open problems

I study localized damping with hybrid boundary conditions
I consider boundary control with hybrid boundary conditions
I obtain similar decay rates for problems in exterior domains

Thank you for your attention
Merci bien!
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