# Indirect stabilization of weakly coupled systems 

Roberto Guglielmi

Universitá Tor Vergata (Italy)<br>Université de Lorraine (France)

Control of Fluid-Structure Systems and Inverse Problems
Toulouse, France June 25, 2012

## Indirect damping for coupled systems

Outline

## Outline

Indirect stabilization of weakly coupled systems

## Indirect damping for coupled systems

Outline

## Outline

Indirect stabilization of weakly coupled systems

Abstract set-up

Stabilization results and compatibility conditions

Concluding remarks

## Outline

Indirect stabilization of weakly coupled systems

Abstract set-up

Stabilization results and compatibility conditions

Concluding remarks

## Outline

Indirect stabilization of weakly coupled systems

Abstract set-up

Stabilization results and compatibility conditions

Concluding remarks

## a weakly coupled system

$\Omega \subset \mathbb{R}^{n}$ bounded. Coupling a conservative and a damped wave equation through zero order terms

$$
\begin{gather*}
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u+\partial_{t} u+\alpha v=0 \\
\partial_{t}^{2} v-\Delta v+\alpha u=0
\end{array} \quad \text { in } \Omega \times \mathbb{R}\right.  \tag{1}\\
\text { B.C. } u=0=v \quad \text { on } \quad \partial \Omega \times \mathbb{R}
\end{gather*}
$$

## a weakly coupled system

$\Omega \subset \mathbb{R}^{n}$ bounded. Coupling a conservative and a damped wave equation through zero order terms

$$
\begin{gather*}
\left\{\begin{array}{c}
\partial_{t}^{2} u-\Delta u+\partial_{t} u+\alpha v=0 \\
\partial_{t}^{2} v-\Delta v+\alpha u=0
\end{array} \quad \text { in } \Omega \times \mathbb{R}\right.  \tag{1}\\
\text { B.C. } \quad u=0=v \quad \text { on } \quad \partial \Omega \times \mathbb{R}
\end{gather*}
$$

## lack of exponential stability

Rewrite the system (1) as an evolution equation in $\mathcal{H}=\left[H_{0}^{1}(\Omega) \times L^{2}(\Omega)\right]^{2}$

## lack of exponential stability

Rewrite the system (1) as an evolution equation in $\mathcal{H}=\left[H_{0}^{1}(\Omega) \times L^{2}(\Omega)\right]^{2}$

$$
\left(\begin{array}{c}
u \\
u^{\prime} \\
v \\
v^{\prime}
\end{array}\right)^{\prime}=\left(\begin{array}{ll}
L_{1} & K \\
K & L_{2}
\end{array}\right)\left(\begin{array}{c}
u \\
u^{\prime} \\
v \\
v^{\prime}
\end{array}\right)=: \mathcal{L}\left(\begin{array}{c}
u \\
u^{\prime} \\
v \\
v^{\prime}
\end{array}\right)
$$

$L_{1}, L_{2}$ generators of $\mathcal{C}_{0}$-semigroups on $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$
$K\binom{u}{u^{\prime}}=\binom{0}{\alpha u} \quad$ compact operator in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$,

## lack of exponential stability (ctnd)

$\omega_{0}(\mathcal{L})$ type of the semigroup generated by $\mathcal{L}$ (blind to compact perturbation)

## lack of exponential stability (ctnd)

$\omega_{0}(\mathcal{L})$ type of the semigroup generated by $\mathcal{L}$ (blind to compact perturbation) $\omega_{0}(\mathcal{L}) \geq 0$
since it satisfies a dissipation relation

## lack of exponential stability (ctnd)

$\omega_{0}(\mathcal{L})$ type of the semigroup generated by $\mathcal{L}$ (blind to compact perturbation) $\omega_{0}(\mathcal{L}) \geq 0 \quad \Rightarrow \quad$ system cannot be exponentially stable!
since it satisfies a dissipation relation

## lack of exponential stability (ctnd)

$\omega_{0}(\mathcal{L})$ type of the semigroup generated by $\mathcal{L}$
(blind to compact perturbation) $\omega_{0}(\mathcal{L}) \geq 0 \Rightarrow$ system cannot be exponentially stable! Nevertheless, the total energy of the system is non-increasing, since it satisfies a dissipation relation

## lack of exponential stability (ctnd)

$\omega_{0}(\mathcal{L})$ type of the semigroup generated by $\mathcal{L}$
(blind to compact perturbation) $\omega_{0}(\mathcal{L}) \geq 0 \Rightarrow$ system cannot be exponentially stable! Nevertheless, the total energy of the system is non-increasing, since it satisfies a dissipation relation

$$
\frac{d}{d t} \mathcal{E}(U(t))=-\int_{\Omega}\left|u^{\prime}(t)\right|^{2} d x
$$

## lack of exponential stability (ctnd)

$\omega_{0}(\mathcal{L})$ type of the semigroup generated by $\mathcal{L}$
(blind to compact perturbation)
$\omega_{0}(\mathcal{L}) \geq 0 \Rightarrow$ system cannot be exponentially stable! Nevertheless, the total energy of the system is non-increasing, since it satisfies a dissipation relation

$$
\frac{d}{d t} \mathcal{E}(U(t))=-\int_{\Omega}\left|u^{\prime}(t)\right|^{2} d x
$$

Hope to stabilize the full system by a single feedback!

## lack of exponential stability (ctnd)

$\omega_{0}(\mathcal{L})$ type of the semigroup generated by $\mathcal{L}$
(blind to compact perturbation)
$\omega_{0}(\mathcal{L}) \geq 0 \Rightarrow$ system cannot be exponentially stable! Nevertheless, the total energy of the system is non-increasing, since it satisfies a dissipation relation

$$
\frac{d}{d t} \mathcal{E}(U(t))=-\int_{\Omega}\left|u^{\prime}(t)\right|^{2} d x
$$

Hope to stabilize the full system by a single feedback!

Then, we look for weaker decay rates-of polynomial type.

## a system of second order evolutions equations

in a separable Hilbert space $H$

$$
\left\{\begin{array}{l}
u^{\prime \prime}+A_{1} u+B u^{\prime}+\alpha v=0 \\
v^{\prime \prime}+A_{2} v+\alpha u=0
\end{array}\right.
$$


$(\mathrm{H} 2) B$ is a bounded linear operator on $H$ such that

## a system of second order evolutions equations

in a separable Hilbert space $H$

$$
\left\{\begin{array}{l}
u^{\prime \prime}+A_{1} u+B u^{\prime}+\alpha v=0 \\
v^{\prime \prime}+A_{2} v+\alpha u=0
\end{array}\right.
$$

(H1) $A_{i}: D\left(A_{i}\right) \subset H \rightarrow H(i=1,2)$ are densely defined closed linear operators such that

$$
A_{i}=A_{i}^{*}, \quad\left\langle A_{i} u, u\right\rangle \geq \omega_{i}|u|^{2} \quad\left(\omega_{1}, \omega_{2}>0\right)
$$

$\left(\mathrm{H}_{2}\right) B$ is a bounded linear operator on $H$ such that

## a system of second order evolutions equations

in a separable Hilbert space $H$

$$
\left\{\begin{array}{l}
u^{\prime \prime}+A_{1} u+B u^{\prime}+\alpha v=0 \\
v^{\prime \prime}+A_{2} v+\alpha u=0
\end{array}\right.
$$

(H1) $A_{i}: D\left(A_{i}\right) \subset H \rightarrow H(i=1,2)$ are densely defined closed linear operators such that

$$
A_{i}=A_{i}^{*}, \quad\left\langle A_{i} u, u\right\rangle \geq \omega_{i}|u|^{2} \quad\left(\omega_{1}, \omega_{2}>0\right)
$$

$(\mathrm{H} 2) B$ is a bounded linear operator on $H$ such that

$$
B=B^{*}, \quad\langle B u, u\rangle \geq \beta|u|^{2} \quad(\beta>0)
$$

## a system of second order evolutions equations

in a separable Hilbert space $H$

$$
\left\{\begin{array}{l}
u^{\prime \prime}+A_{1} u+B u^{\prime}+\alpha v=0 \\
v^{\prime \prime}+A_{2} v+\alpha u=0
\end{array}\right.
$$

(H1) $A_{i}: D\left(A_{i}\right) \subset H \rightarrow H(i=1,2)$ are densely defined closed linear operators such that

$$
A_{i}=A_{i}^{*}, \quad\left\langle A_{i} u, u\right\rangle \geq \omega_{i}|u|^{2} \quad\left(\omega_{1}, \omega_{2}>0\right)
$$

$(\mathrm{H} 2) B$ is a bounded linear operator on $H$ such that

$$
B=B^{*}, \quad\langle B u, u\rangle \geq \beta|u|^{2} \quad(\beta>0)
$$

(H3) $0<|\alpha|<\sqrt{\omega_{1} \omega_{2}}$

## energies

energies associated to $A_{1}, A_{2}$

$$
E_{i}(u, p)=\frac{1}{2}\left(\left|A_{i}^{1 / 2} u\right|^{2}+|p|^{2}\right)
$$

## assumptions yield

## energies

energies associated to $A_{1}, A_{2}$

$$
E_{i}(u, p)=\frac{1}{2}\left(\left|A_{i}^{1 / 2} u\right|^{2}+|p|^{2}\right)
$$

total energy of the system $U=(u, p, v, q)$

$$
\mathcal{E}(U):=E_{1}(u, p)+E_{2}(v, q)+\alpha\langle u, v\rangle
$$

assumptions yield

## energies

energies associated to $A_{1}, A_{2}$

$$
E_{i}(u, p)=\frac{1}{2}\left(\left|A_{i}^{1 / 2} u\right|^{2}+|p|^{2}\right)
$$

total energy of the system $U=(u, p, v, q)$

$$
\mathcal{E}(U):=E_{1}(u, p)+E_{2}(v, q)+\alpha\langle u, v\rangle
$$

assumptions yield

$$
\mathcal{E}(U) \geq \nu(\alpha)\left[E_{1}(u, p)+E_{2}(v, q)\right], \quad \nu(\alpha)>0
$$

## reduction to a first order system

## system takes the equivalent form



## reduction to a first order system

$$
\begin{aligned}
\mathcal{H}= & D\left(A_{1}^{1 / 2}\right) \times H \times D\left(A_{2}^{1 / 2}\right) \times H \\
(U \mid \widehat{U})= & \left\langle A_{1}^{1 / 2} u, A_{1}^{1 / 2} \widehat{u}\right\rangle+\langle p, \widehat{p}\rangle \\
& +\left\langle A_{2}^{1 / 2} v, A_{2}^{1 / 2} \widehat{v}\right\rangle+\langle q, \widehat{q}\rangle+\alpha\langle u, \widehat{v}\rangle+\alpha\langle v, \widehat{u}\rangle
\end{aligned}
$$

## reduction to a first order system

$$
\begin{aligned}
\mathcal{H}= & D\left(A_{1}^{1 / 2}\right) \times H \times D\left(A_{2}^{1 / 2}\right) \times H \\
(U \mid \widehat{U})= & \left\langle A_{1}^{1 / 2} u, A_{1}^{1 / 2} \widehat{u}\right\rangle+\langle p, \widehat{p}\rangle \\
& +\left\langle A_{2}^{1 / 2} v, A_{2}^{1 / 2} \widehat{v}\right\rangle+\langle q, \widehat{q}\rangle+\alpha\langle u, \widehat{v}\rangle+\alpha\langle v, \widehat{u}\rangle
\end{aligned}
$$

system takes the equivalent form

$$
\left\{\begin{array}{l}
U^{\prime}(t)=\mathcal{A} U(t) \\
U(0)=U_{0}:=\left(u^{0}, u^{1}, v^{0}, v^{1}\right) .
\end{array}\right.
$$

with $\mathcal{A}: D(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H}$ defined by

$$
\left\{\begin{array}{l}
D(\mathcal{A})=D\left(A_{1}\right) \times D\left(A_{1}^{1 / 2}\right) \times D\left(A_{2}\right) \times D\left(A_{2}^{1 / 2}\right) \\
\mathcal{A} U=\left(p,-A_{1} u-B p-\alpha v, q,-A_{2} v-\alpha u\right)
\end{array}\right.
$$

## stability result for standard boundary conditions



## stability result for standard boundary conditions

Theorem (Alabau Boussouira-Cannarsa-Komornik) Assume, for some integer $j \geq 2$,

$$
\left|A_{1} u\right| \leq c\left|A_{2}^{j / 2} u\right| \quad \forall u \in D\left(A_{2}^{j / 2}\right)
$$

## stability result for standard boundary conditions

Theorem (Alabau Boussouira-Cannarsa-Komornik) Assume, for some integer $j \geq 2$,

$$
\begin{array}{r}
\left|A_{1} u\right| \leq c\left|A_{2}^{j / 2} u\right| \quad \forall u \in D\left(A_{2}^{j / 2}\right) \quad(A C K) \\
-U_{0} \in D\left(\mathcal{A}^{n}\right)(\text { some } n \geq 1) \Rightarrow \mathcal{E}(U(t)) \leq \frac{c_{n}}{t^{n / j}} \sum_{k=0}^{n} \mathcal{E}\left(U^{(k)}(0)\right)
\end{array}
$$

## Observe

## stability result for standard boundary conditions

Theorem (Alabau Boussouira-Cannarsa-Komornik) Assume, for some integer $j \geq 2$,

$$
\begin{equation*}
\left|A_{1} u\right| \leq c\left|A_{2}^{j / 2} u\right| \quad \forall u \in D\left(A_{2}^{j / 2}\right) \tag{ACK}
\end{equation*}
$$

- $U_{0} \in D\left(\mathcal{A}^{n}\right)($ some $n \geq 1) \Rightarrow \mathcal{E}(U(t)) \leq \frac{c_{n}}{t^{n / j}} \sum_{k=0}^{n} \mathcal{E}\left(U^{(k)}(0)\right)$
- $\forall U_{0} \in \mathcal{H}, \quad \mathcal{E}(U(t)) \rightarrow 0 \quad$ as $\quad t \rightarrow \infty$.


## stability result for standard boundary conditions

Theorem (Alabau Boussouira-Cannarsa-Komornik) Assume, for some integer $j \geq 2$,

$$
\begin{array}{r}
\left|A_{1} u\right| \leq c\left|A_{2}^{j / 2} u\right| \quad \forall u \in D\left(A_{2}^{j / 2}\right) \quad(A C K)  \tag{ACK}\\
-U_{0} \in D\left(\mathcal{A}^{n}\right)(\text { some } n \geq 1) \Rightarrow \mathcal{E}(U(t)) \leq \frac{c_{n}}{t^{n / j}} \sum_{k=0}^{n} \mathcal{E}\left(U^{(k)}(0)\right)
\end{array}
$$

- $\forall U_{0} \in \mathcal{H}, \quad \mathcal{E}(U(t)) \rightarrow 0 \quad$ as $t \rightarrow \infty$.

Observe

$$
(A C K) \Longleftrightarrow D\left(A_{2}^{j / 2}\right) \subset D\left(A_{1}\right) \quad \& \quad\left|A_{1} A_{2}^{-j / 2} u\right| \leq c|u|
$$

## example 1: Dirichlet boundary conditions



## example 1: Dirichlet boundary conditions

$\Omega \subset \mathbb{R}^{n}$ bounded $\Gamma=\partial \Omega$

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u+\partial_{t} u+\alpha v=0 \\
\partial_{t}^{2} v-\Delta v+\alpha u=0 \quad \text { in } \quad \Omega \times(0,+\infty)
\end{array}\right.
$$

with boundary conditions

$$
u(\cdot, t)=0=v(\cdot, t) \quad \text { on } \quad \Gamma \quad \forall t>0
$$

in this example $\quad A_{1}=A=A_{2} \quad$ with

$$
D(A)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \quad A u=-\Delta u
$$

so that $(A C K):\left|A_{1} u\right| \leq c\left|A_{2}^{j / 2} u\right|$ holds with $j=2$

## example 1: conclusion



## example 1: conclusion

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u+\partial_{t} u+\alpha v=0 \\
\partial_{t}^{2} v-\Delta v+\alpha u=0
\end{array} \quad \text { in } \quad \Omega \times(0,+\infty)\right. \\
& u(\cdot, t)=0=v(\cdot, t) \quad \text { on } \quad \Gamma \quad \forall t>0 \\
& \left\{\begin{array}{lll}
u(x, 0)=u^{0}(x), & u^{\prime}(x, 0)=u^{1}(x) \\
v(x, 0)=v^{0}(x), & & v^{\prime}(x, 0)=v^{1}(x)
\end{array} \quad x \in \Omega\right.
\end{aligned}
$$

## example 1: conclusion

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u+\partial_{t} u+\alpha v=0 \\
\partial_{t}^{2} v-\Delta v+\alpha u=0
\end{array} \quad \text { in } \quad \Omega \times(0,+\infty)\right. \\
u(\cdot, t)=0=v(\cdot, t) \quad \text { on } \quad \Gamma \quad \forall t>0
\end{array}\right\} \begin{array}{ll}
u(x, 0)=u^{0}(x), \quad u^{\prime}(x, 0)=u^{1}(x) \\
v(x, 0)=v^{0}(x), \quad v^{\prime}(x, 0)=v^{1}(x) & x \in \Omega
\end{array}
$$

conclusion: for $0<|\alpha|<C_{\Omega}$, for every $t>0$,

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\partial_{t} u\right|^{2}+|\nabla u|^{2}+\left|\partial_{t} v\right|^{2}+|\nabla v|^{2}\right) d x \\
& \leq \frac{c}{t}\left(\left\|u^{0}\right\|_{2, \Omega}^{2}+\left\|u^{1}\right\|_{1, \Omega}^{2}+\left\|v^{0}\right\|_{2, \Omega}^{2}+\left\|v^{1}\right\|_{1, \Omega}^{2}\right)
\end{aligned}
$$

## more classes of examples

Indeed, $(A C K)$ applies to larger classes of examples:

## more classes of examples

Indeed, $(A C K)$ applies to larger classes of examples:

- $\left(A_{1}, D\left(A_{1}\right)\right)=\left(A_{2}, D\left(A_{2}\right)\right)$ for $j=2$;


## more classes of examples

Indeed, (ACK) applies to larger classes of examples:

- $\left(A_{1}, D\left(A_{1}\right)\right)=\left(A_{2}, D\left(A_{2}\right)\right)$ for $j=2$;
- $D\left(A_{1}\right)=D\left(A_{2}\right)$ (isomorphic as Banach spaces) for $j=2$;


## more classes of examples

Indeed, (ACK) applies to larger classes of examples:

- $\left(A_{1}, D\left(A_{1}\right)\right)=\left(A_{2}, D\left(A_{2}\right)\right)$ for $j=2$;
- $D\left(A_{1}\right)=D\left(A_{2}\right)$ (isomorphic as Banach spaces) for $j=2$;
- $A_{2}=A_{1}^{2}$ with $j=2$;


## more classes of examples

Indeed, (ACK) applies to larger classes of examples:

- $\left(A_{1}, D\left(A_{1}\right)\right)=\left(A_{2}, D\left(A_{2}\right)\right)$ for $j=2$;
- $D\left(A_{1}\right)=D\left(A_{2}\right)$ (isomorphic as Banach spaces) for $j=2$;
- $A_{2}=A_{1}^{2}$ with $j=2$;
- $A_{1}=A_{2}^{2}$ with $j=4$.


## more classes of examples

Indeed, (ACK) applies to larger classes of examples:

- $\left(A_{1}, D\left(A_{1}\right)\right)=\left(A_{2}, D\left(A_{2}\right)\right)$ for $j=2$;
- $D\left(A_{1}\right)=D\left(A_{2}\right)$ (isomorphic as Banach spaces) for $j=2$;
- $A_{2}=A_{1}^{2}$ with $j=2$;
- $A_{1}=A_{2}^{2}$ with $j=4$.
conclusion: for all the previous situations, we deduce that

$$
\mathcal{E}(U(t)) \leq \frac{c_{n}}{t^{n / j}} \sum_{k=0}^{n} \mathcal{E}\left(U^{(k)}(0)\right)
$$

for every $t>0$, for $U_{0} \in D\left(\mathcal{A}^{n}\right)$.

# example 2: hybrid boundary conditions 



## example 2 : hybrid boundary conditions

Consider the problem

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u+\partial_{t} u+\alpha v=0 \\
\partial_{t}^{2} v-\Delta v+\alpha u=0
\end{array} \quad \text { in } \Omega \times(0,+\infty)\right.
$$

with boundary conditions

## example 2 : hybrid boundary conditions

Consider the problem

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u+\partial_{t} u+\alpha v=0 \\
\partial_{t}^{2} v-\Delta v+\alpha u=0
\end{array} \quad \text { in } \Omega \times(0,+\infty)\right.
$$

with boundary conditions

$$
\begin{aligned}
\left(\frac{\partial u}{\partial \nu}+u\right)(\cdot, t) & =0 \text { on } \Gamma \\
v(\cdot, t) & =0 \text { on } \Gamma
\end{aligned} \quad \forall t>0
$$

The compatibility condition (ACK) does NOT apply!

## second stability result

Theorem (Alabau Boussouira-Cannarsa-G.)

## Assume



Then

## second stability result

Theorem (Alabau Boussouira-Cannarsa-G.)
Assume

$$
D\left(A_{2}\right) \subset D\left(A_{1}^{1 / 2}\right) \quad \& \quad\left|A_{1}^{1 / 2} u\right| \leq c\left|A_{2} u\right| \quad \forall u \in D\left(A_{2}\right) \quad(A C G)
$$

## second stability result

Theorem (Alabau Boussouira-Cannarsa-G.)
Assume

$$
D\left(A_{2}\right) \subset D\left(A_{1}^{1 / 2}\right) \quad \& \quad\left|A_{1}^{1 / 2} u\right| \leq c\left|A_{2} u\right| \quad \forall u \in D\left(A_{2}\right) \quad(A C G)
$$

Then

- $U_{0} \in D\left(\mathcal{A}^{n}\right)($ some $n \geq 1) \Rightarrow \mathcal{E}(U(t)) \leq \frac{c_{n}}{t^{n / 4}} \sum_{k=0}^{n} \mathcal{E}\left(U^{(k)}(0)\right)$


## second stability result

Theorem (Alabau Boussouira-Cannarsa-G.)
Assume

$$
D\left(A_{2}\right) \subset D\left(A_{1}^{1 / 2}\right) \quad \& \quad\left|A_{1}^{1 / 2} u\right| \leq c\left|A_{2} u\right| \quad \forall u \in D\left(A_{2}\right) \quad(A C G)
$$

Then

- $U_{0} \in D\left(\mathcal{A}^{n}\right)($ some $n \geq 1) \Rightarrow \mathcal{E}(U(t)) \leq \frac{c_{n}}{t^{n / 4}} \sum_{k=0}^{n} \mathcal{E}\left(U^{(k)}(0)\right)$
- $\forall U_{0} \in \mathcal{H}, \quad \mathcal{E}(U(t)) \rightarrow 0 \quad$ as $\quad t \rightarrow \infty$.


## second stability result

Theorem (Alabau Boussouira-Cannarsa-G.)
Assume

$$
D\left(A_{2}\right) \subset D\left(A_{1}^{1 / 2}\right) \quad \& \quad\left|A_{1}^{1 / 2} u\right| \leq c\left|A_{2} u\right| \quad \forall u \in D\left(A_{2}\right) \quad(A C G)
$$

Then

- $U_{0} \in D\left(\mathcal{A}^{n}\right)($ some $n \geq 1) \Rightarrow \mathcal{E}(U(t)) \leq \frac{c_{n}}{t^{n / 4}} \sum_{k=0}^{n} \mathcal{E}\left(U^{(k)}(0)\right)$
- $\forall U_{0} \in \mathcal{H}, \quad \mathcal{E}(U(t)) \rightarrow 0 \quad$ as $\quad t \rightarrow \infty$.

Observe
$(A C G) \Longleftrightarrow\left|\left\langle A_{1} u, v\right\rangle\right| \leq c\left|A_{2} v\right|\left\langle A_{1} u, u\right\rangle^{1 / 2}$

## Indirect damping for coupled systems

Stabilization results

## main tools

## proof uses

## main tools

## proof uses

- energy dissipation

$$
\frac{d}{d t} \mathcal{E}(U(t))=-\left|B^{1 / 2} u^{\prime}(t)\right|^{2} \quad\left(U_{0} \in D(\mathcal{A})\right)
$$

- multipliers of the form $A_{1}^{-1} v$ and $A_{2}^{-1} u$
- an abstract decay lemma


## main tools

## proof uses

- energy dissipation

$$
\frac{d}{d t} \mathcal{E}(U(t))=-\left|B^{1 / 2} u^{\prime}(t)\right|^{2} \quad\left(U_{0} \in D(\mathcal{A})\right)
$$

- multipliers of the form $A_{1}^{-1} v$ and $A_{2}^{-1} u$
- an abstract decay lemma
- interpolation techniques


## main tools

proof uses

- energy dissipation

$$
\frac{d}{d t} \mathcal{E}(U(t))=-\left|B^{1 / 2} u^{\prime}(t)\right|^{2} \quad\left(U_{0} \in D(\mathcal{A})\right)
$$

- multipliers of the form $A_{1}^{-1} v$ and $A_{2}^{-1} u$
- an abstract decay lemma
- interpolation techniques


## example 2: (ACG) applies

the energy of the solution to the boundary-value problem


## example 2: (ACG) applies

the energy of the solution to the boundary-value problem

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u+\partial_{t} u+\alpha v=0 \\
\partial_{t}^{2} v-\Delta v+\alpha u=0
\end{array} \quad \text { in } \Omega \times(0,+\infty)\right. \\
& \qquad \begin{aligned}
\left(\frac{\partial u}{\partial \nu}+u\right)(\cdot, t) & =0 \\
v(\cdot, t) & =0
\end{aligned} \quad \text { on } \Gamma \quad \text { on } \Gamma \quad \forall t>0
\end{aligned}
$$

satisfies, for $0<|\alpha|<C_{\Omega}$, for every $t>0$,

$$
\begin{aligned}
& E_{1}\left(u(t), u^{\prime}(t)\right)+E_{2}\left(v(t), v^{\prime}(t)\right) \\
& \quad \leq \frac{c}{t^{1 / 4}}\left(\left|A_{1} u^{0}\right|^{2}+\left|A_{1}^{1 / 2} u^{1}\right|^{2}+\left|A_{2} v^{0}\right|^{2}+\left|A_{2}^{1 / 2} v^{1}\right|^{2}\right)
\end{aligned}
$$

## some remarks

- The compatibility conditions (ACG) also covers systems with operators of different orders
- We can consider different coupling coefficients in the two equations

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+A_{1} u(t)+B u^{\prime}(t)+\alpha_{1} v(t)=0 \\
v^{\prime \prime}(t)+A_{2} v(t)+\alpha_{2} u(t)=0
\end{array}\right.
$$

- we show that stabilization does not occur when the coupling acts only in one components


## open problems

- study localized damping with hybrid boundary conditions
- consider boundary control with hybrid boundary conditions
- obtain similar decay rates for problems in exterior domains



## open problems

- study localized damping with hybrid boundary conditions
- consider boundary control with hybrid boundary conditions
- obtain similar decay rates for problems in exterior domains


## Thank you for your attention Merci bien!

