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I. Introduction. Two models of a solid embedded in an
incompressible fluid

I We consider the motion of a solid body embedded in an
incompressible fluid in a smooth bounded open domain Ω ⊂ R2.

S(t)F(t) Ω

I S(t) is the solid domain at time t, F(t) is the fluid domain

Ω = S(t) ∪ F(t).

We take the convention that S(t) is closed and F(t) open.
I We will only examine the situation where dist(S(t), ∂Ω) > 0. In

particular dist(S(0), ∂Ω) > 0.
I We will consider the two cases of a viscous and an inviscid fluid.



Solid motions
I The solid S(t) is obtained by a rigid motion with respect to its

initial position :
S(t) = τ(t)S0,

where τ(t) ∈ SE (2), the special Euclidean group :

τ(t) · x = h(t) + Q(t)(x − h(0)),

where h(t) the position of the center of mass of S at time t and

Q(t) :=

[
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
,

so that the angle θ(t) measures the rotation between S(t) and S0.

I We denote
`(t) := h′(t) and r(t) := θ′(t),

the velocity of the center of mass and the angular velocity of the
body, respectively.



The first model : a solid in a perfect incompressible fluid

I We now turn to our first model where the fluid is supposed to be
inviscid (in addition to being incompressible).

I Hence it satisfies the incompressible Euler equation in the fluid
domain :

∂u
∂t

+ (u · ∇)u +∇p = 0 for x ∈ F(t)

div u = 0 for x ∈ F(t).

I Here u(t, ·) : F(t)→ R2 is the velocity field and p(t, ·) : F(t)→ R
is the pressure field in the fluid.



A solid in a perfect incompressible fluid, 2
I On the outer boundary and on the solid boundary, the fluid satisfies

the non-penetration condition :

u · n = uS · n on ∂S(t) and u · n = 0 on ∂Ω,

where uS is the solid velocity :

uS(t, x) := `+ r(x − h(t))⊥.

We used the notation (x1, x2)⊥ := (−x2, x1).
I The solid motion is given by Newton’s law. It evolves under the

influence of the fluid pressure on its surface :

mh′′(t) =

∫
∂S(t)

p n dσ,

J θ′′(t) =

∫
∂S(t)

p (x − h(t))⊥ · n dσ.

Here m > 0 and J > 0 denote respectively the mass and the inertia
of the body.



The second model : a solid in a viscous incompressible fluid

I We now turn to our first model where the fluid is supposed to be
Newtonionian and viscous :

I Hence it satisfies the incompressible Navier-Stokes equation in the
fluid domain :

∂u
∂t

+ (u · ∇)u −∆u +∇p = 0 for x ∈ F(t)

div u = 0 for x ∈ F(t).

I On the outer boundary and on the solid boundary, the fluid satisfies
the no-slip condition :

u = uS = `+ r(x − h(t))⊥ on ∂S(t) and u = 0 on ∂Ω.



A solid in a viscous incompressible fluid, 2

I The solid motion is given by Newton’s law. It evolves under the
influence of the whole Cauchy stress tensor :

mh′′(t) = −
∫
∂S(t)

Tn dσ,

J θ′′(t) = −
∫
∂S(t)

Tn · (x − h(t))⊥ dσ,

where

T(u, p) := −pId + 2Du with Du :=
1
2

(∇u +∇uT ).



II. The inviscid model

I Recall the model

∂u
∂t

+ (u · ∇)u +∇p = 0 for x ∈ F(t),

div u = 0 for x ∈ F(t)

u · n = uS · n = [`+ r(x − h(t))⊥] · n on ∂S(t) and u · n = 0 on ∂Ω,

mh′′(t) =

∫
∂S(t)

p n dσ,

J θ′′(t) =

∫
∂S(t)

p (x − h(t))⊥ · n dσ.

I We add initial conditions :

h(0) = h0, h′(0) = `0, θ(0) = 0, r(0) = r0, u(0) = u0 in F0,

with

div u0 = 0 in F0, u0·n = (`0+r0(x−h0)⊥)·n on ∂S0, u0·n = 0 on ∂Ω.



References for the Cauchy problem
I Ortega-Rosier-Takahashi (2005, 2007) : case of a single solid in the

whole plane (Ω = R2). Existence and uniqueness of classical
solutions (C 1,α) .

I Rosier-Rosier (2009), classical solutions for a ball in the whole space
R3.

I Houot-San Martin-Tucsnak (2010) classical solutions (in Sobolev
spaces) in a bounded domain of R3.

I G.-Lacave-Sueur (2011) weak solutions for a single solid in the whole
plane :

ω := curl u ∈ Lp
c (Ω), p > 2.

This corresponds to solutions à la Yudovich when p = +∞ and to
solutions à la Di Perna-Majda when p < +∞. Moreover, one has
uniqueness when p = +∞.

I Xin-Wang (2012) : in the whole plane, finite-energy weak solutions
for ω ∈ L1 ∩ Lp, p > 4/3 and G.-Sueur (2012) for ω ∈ Lp

c , p > 1.
I Sueur (2012) : in the whole plane, finite-energy weak solutions for ω

bounded Radon measure with symmetry.



Functional spaces

I Given functional space X , the notation L∞(0,T ;X (F(t))) or
C ([0,T ];X (F(t))) stands for the space of functions :

I defined for each t in the fluid domain F(t),

I that can be extended to functions in L∞(0,T ;X (R2)) or
C([0,T ];X (R2)).

I Here LL(F(t)) stands for the space of log-Lipschitz functions on
F(t), that is the set of functions f ∈ L∞(F(t)) such that

‖f ‖LL(F(t)) := ‖f ‖L∞(F(t)) + sup
x 6=y

|f (x)− f (y)|
|x − y |(1 + ln− |x − y |)

< +∞.

(1)



Main result in the inviscid case
I We have the following counterpart of Yudovich’s theorem (1963) :

Theorem
For any u0 ∈ C 0(F0;R2), (`0, r0) ∈ R2 × R, satisfying the above
compatibility conditions and

ω0 := curl u0 ∈ L∞(F0),

there exists T > 0 and a unique solution

(`, r , u) ∈ C 1([0,T ];R2×R)×[L∞(0,T ;LL(F(t)))∩C 0([0,T ];W 1,q(F(t)))],

for all q ∈ [1,+∞), of the system. Moreover, if T < +∞ is maximal,
then

dist(S(t), ∂Ω)→ 0 as t → T−.



III. The viscous model
I Recall the model

∂u
∂t

+ (u · ∇)u −∆u +∇p = 0 for x ∈ F(t)

div u = 0 for x ∈ F(t),

u = uS = `+ r(x − h(t))⊥ on ∂S(t) and u = 0 on ∂Ω,

mh′′(t) = −
∫
∂S(t)

Tn dσ,

J θ′′(t) = −
∫
∂S(t)

Tn · (x − h(t))⊥ dσ,

T(u, p) := −pId + 2Du with Du :=
1
2

(∇u +∇uT ).

I We add initial conditions :

h(0) = h0, h′(0) = `0, θ(0) = 0, r(0) = r0, u(0) = u0 in F0,

with the compatibility conditions (for regular solutions) :

div u0 = 0 in F0, u0 = (`0 + r0(x − h0)⊥) on ∂S0, u0 = 0 on ∂Ω.



References for the Cauchy problem
There are many references concerning the Cauchy problem for this system :

I Weinberger (1973),
I Judakov (1974),
I Serre (1987),
I Galdi (1998, 1999, 2002)
I Hoffmann-Starovoitov (1999, 2000)
I Desjardins-Esteban (1999, 2000)
I Conca-San Martín-Tucsnak (2000)
I Grandmont-Maday (2000)
I Gunzburger-Lee-Seregin (2000)
I Feireisl (2001, 2002, 2003)
I Galdi-Silvestre (2002, 2005, 2006)
I San Martín-Starovoitov-Tucsnak (2002)
I Takahashi (2003)
I Takahashi-Tucsnsak (2004)
I Cumsille-Takahashi (2008)
I Geissert-Götze-Hieber (2012)
I . . .

(Not to mention compressible/non-Newtonian fluids, flexible structures, etc.)



Extended velocity and density
We define

I an initial density globally on Ω by setting

ρ0(x) = ρS0(x) in S0 and ρ0(x) = 1 in F0.

I the solid density at time t by

ρS(t, x) = ρS0((τ(t))−1(x)) in S(t) and ρS(t, x) = 0 in F(t),

with τ , S(t) := τ(t)(S0) and F(t) = Ω \ S(t) determined by (`, r).
I a density at time t globally on Ω by setting

ρ(t, x) = ρS(t, x) in S(t) and ρ(x) = 1 in F(t).

I We will say that u in L2(0,T ;H1(Ω)) is compatible with (`, r) when

u(t, x) = uS(t, x) = `(t) + r(t)(x − h(t))⊥ for x ∈ S(t),

for almost every t.



Weak solutions “à la Leray”

Definition
Let u0 ∈ L2(F0;R2) and (`0, r0) ∈ R2 × R satisfying :

div u0 = 0 in F0, u0 ·n = (`0 + r0(x−h0)⊥) ·n on ∂S0, u0 ·n = 0 on ∂Ω.

We say that

(`, r , u) ∈ C 0([0,T ];R2 × R)× [C ([0,T ]; L2(Ω)) ∩ L2(0,T ;H1(Ω))]

is a weak solution of the system with the initial data (`0, r0, u0) if
I u is divergence free,
I u is compatible with (`, r),
I and for any divergence free vector field φ ∈ C∞c ([0,T ]×Ω;R2) such

that Dφ(t, x) = 0 when t ∈ [0,T ] and x ∈ S(t), there holds :∫
Ω

ρ0u0·φ|t=0 −
∫

Ω

(ρu·φ)|t=T +

∫
(0,T )×Ω

ρu·∂φ
∂t

+ (u⊗u−2Du) : Dφ = 0.



Existence of weak solutions

Theorem (Gunzburger-Lee-Seregin, Desjardins-Esteban,
Feireisl, San Martin-Starovoitov-Tucsnak)
For any u0 ∈ L2(F0;R2) and (`0, r0) ∈ R2 × R compatible, for any
T > 0, there exists a corresponding weak solution

(`, r , u) ∈ C 0([0,T ];R2 × R)× [C ([0,T ]; L2(Ω)) ∩ L2(0,T ;H1(Ω))].

Moreover, for any t ∈ [0,T ],

1
2

∫
Ω

ρ(t, ·)|u(t, ·)|2 dx + 2
∫

(0,t)×Ω

ρ(s, x)Du(s, x) : Du(s, x) dx ds

=
1
2

∫
Ω

ρ0(x)|u0(x)|2 dx .



Uniqueness of weak solutions
Our second main result states that the solution given by the previous
theorem is unique as long as there is no collision.

Theorem
Let T > 0 and (`, r , u) be as in the the previous theorem. Assume that
for any t ∈ [0,T ], dist(S(t), ∂Ω)) > 0. Let (˜̀, r̃ , ũ) be another weak
solution on [0,T ] with the same initial data. Then (˜̀, r̃ , ũ) = (`, r , u).

I This extends a result by Takahashi (2003) where u0 is assumed to
be in H1(F0;R2).

I The possibility of a collision is excluded in some particular cases, see
Hesla (2005), Hillairet (2007), Gérard-Varet and Hillairet (2010).

I Such a weak solution cannot be unique if a collision occurs, see
Hoffmann and Starovoitov (1999), Starovoitov (2005).



IV. Ideas of proof
A basic lemma

I Given A ⊂ R2 and δ > 0, we denote

Vδ(A) :=
{
x ∈ R2

/
dist(x ,A) ≤ δ

}
.

I Let Diff(Ω) denote the set of C∞-diffeomorphisms of Ω.

Proposition (Inoue-Wakimoto)
Let Ω and S0 be fixed as previously. There exist a compact neighborhood
U of Id in SE (2), δ > 0 and Ψ ∈ C∞(U;Diff(Ω)) such that Ψ[Id] = Id
and that for all τ ∈ U,

Ψ[τ ] is volume-preserving,

Ψ[τ ](x) = τ(x) on Vδ(S0) and Ψ[τ ](x) = x on Vδ(∂Ω) ∩ Ω.



A corollary
I We consider SE (2) ⊂ R3 so that we can use the R3 norm on the

elements of SE (2).

I When we consider a time-dependent family of rigid motions
(τ(t))t∈[0,T ], we will write τt := τ(t, ·).

I {Ψ[τ̃t ]}−1 denotes the inverse of Ψ[τ̃t ] with respect to the variable x .

Corollary
Reducing U if necessary one has for some C > 0 :,

∀τ, τ̃ ∈ U, ‖Ψ[τ ] ◦ {Ψ[τ̃ ]}−1 − Id ‖C2(Ω) ≤ C‖τ − τ̃‖R3 ,

and if τt , τ̃t ∈ C 1([0,T ]; SE (2)), then for all t0 ∈ [0,T ],

∥∥∥∥∥
[
d
dt
(
Ψ[τt ] ◦ {Ψ[τ̃t ]}−1)]

t=t0

∥∥∥∥∥
C1(Ω)

≤ C
(
‖τ̃ ′t0‖R3 ‖τt0−τ̃t0‖R3+‖τ ′t0−τ̃

′
t0‖R3

)
.



Existence of solutions à la Yudovich

The structure of the proof is as follows.

I We first consider the case where the solid movement is prescribed. In
this case the existence of solutions à la Yudovich is proved by
Schauder’s fixed point theorem. Uniqueness follows from Yudovich’s
argument for the case of a fixed boundary.

I We prove that these solutions depend continuously in C 0 on the
solid movement.

I Then the existence of solutions à la Yudovich is obtained by a
second Schauder’s fixed point argument on (`, r) relying on an
added mass argument.



Added mass, 1
We use the decomposition of the pressure ∇p :

∇p = ∇µ−∇

(
(Φi )i=1,2,3 ·

[
`
r

]′)
,

where the functions Φi = Φi (t, x) (the Kirchhoff potentials) and the
function µ = µ(t, x) are :
−∆Φi = 0 for x ∈ F(t),
∂Φi

∂n
= Ki for x ∈ ∂S(t),

∂Φi

∂n
= 0 for x ∈ ∂Ω,

where Ki :=

{
ni if i = 1, 2,
(x − h(t))⊥ · n if i = 3,

and, defining ρ as the signed distance to the boundary,
−∆µ = trace(∇u · ∇u) for x ∈ F(t),
∂µ
∂n = ∇2ρ {u − uS , u − uS} − n ·

(
r (2u − uS − `)⊥

)
for x ∈ ∂S(t),

∂µ
∂n = −∇2ρ(u, u) for x ∈ ∂Ω.



Added mass, 2

Using Green’s theorem, the equations for the solid can be recast as :

M
[
`
r

]′
=

[∫
F(t)

∇µ · ∇Φi dx
]

i∈{1,2,3}
,

M :=M1 +M2,

M1 :=

[
m Id2 0
0 J

]
and M2 :=

[∫
F(t)
∇Φi · ∇Φj dx

]
i,j∈{1,2,3}

.



A priori estimates estimates for solutions à la Yudovich
I These solutions satisfy the following a priori estimates : for any t,

∀q ∈ [2,∞], ‖ curl u(t, ·)‖Lq(F(t)) = ‖ curl u0‖Lq(F0),

‖u(t, ·)‖2L2(F(t)) + m|`(t)|2 + J |r(t)|2 = ‖u0‖2L2(F0) + m|`0|2 + J |r0|2.

I Moreover, one has for all t ∈ [0,T ] (before collision) and q ∈ [2,∞),

‖u(t, ·)‖W 1,q(F(t)) ≤ Cq
(
‖ω0‖Lq(F0) + |`0|+ |r0|+ γ

)
.

(γ takes into account the circulations around the connected
components of the boundary, which are conserved by Kelvin’s
theorem).

I Using again the added mass effect, we infer that uniformly in [0,T ] :

‖u(t)‖H1(F(t)) + ‖∂tu‖L2(F(t)) + ‖∇p‖L2(F(t)) ≤ C .



Proof of uniqueness
I Consider (`1, r1, u1) and (`2, r2, u2) two solutions defined on [0,T ].
I It is sufficient to prove the uniqueness for T > 0 small.
I We let τ1 and τ2 in C 2([0,T ]; SE (2)) the corresponding rigid

movements associated to these solutions. For each t ∈ [0,T ] we
introduce ϕt and ψt in Diff(Ω) by

ϕt := Ψ[τ2(t)] ◦ {Ψ[τ1(t)]}−1, ψt := ϕ−1
t .

ϕt is volume preserving and sends F1(t) into F2(t).
I Now we define

ũ2(t, x) := [dϕt(x)]−1 · u2(t, ϕt(x)), x ∈ F1(t),

the pullback of u2 by ϕt , which is a solenoidal vector field on F1(t).
I We also define

p̃2(t, x) := p2(t, ϕt(x)), x ∈ F1(t), and ˜̀2 := d(τ1◦τ−1
2 )·`2 = Q1·Q−1

2 ·`2.



Proof of uniqueness of solutions à la Yudovich
Now we define

û(t, x) := u1(t, x)− ũ2(t, x) and p̂(t, x) := p1(t, x)− p̃2(t, x) in F1(t),

ĥ := h1 − h2, θ̂ := θ1 − θ2, ˆ̀ := `1 − ˜̀2 and r̂ := r1 − r2.

We deduce that

∂t û + (u1 · ∇)û + (û · ∇)ũ2 +∇p̂ = f̃ in F1(t),

with

f̃ i = (∂kϕ
i−δik)∂t ũk

2 +∂kϕ
i ∂l ũk

2 (∂tψ
l)+(∂k∂tϕ

i )ũk
2 +(∂2

klϕ
i ) (∂tψ

l) ũk
2

+ ũl
2 ∂l ũk

2 (∂kϕ
i − δik) + (∂2

lkϕ
i ) ũl ũk + ∂k p̃2 (∂iψ

k − δik).

In the above equation, all the factors between parentheses are small (in
L∞ norm) whenever ‖ϕt − Id ‖C2(Ω) + ‖∂tϕt‖C1(Ω) is small.



Energy estimate
Multiplying the previous equation by û and integrating over F1(t), we
deduce∫
F1(t)

(∂t û + (u1 · ∇)û) · û dx +

∫
F1(t)

û · (û · ∇)ũ2 dx +

∫
F1(t)

û · ∇p̂ dx

=

∫
F1(t)

û · f̃ dx .

But ∫
F1(t)

(∂t û + (u1 · ∇)û) · û dx =
d
dt

∫
F1(t)

|û|2

2
dx ,∣∣∣∣∣

∫
F1(t)

û · (û · ∇)ũ2 dx

∣∣∣∣∣ ≤ ‖∇ũ2‖Lq‖û2‖Lq′ ≤ C0q ‖û2‖
2
q′

L2 ,∫
F1(t)

û · ∇p̂ dx =
1
2
d
dt
(
m|ˆ̀|2 + J |r̂ |2

)
−mr̂ ˆ̀· ˜̀⊥

2 .



Right hand side
Concerning the right hand side, we see that∣∣∣∣∣
∫
F1(t)

û · f̃ dx

∣∣∣∣∣ ≤ C‖û(t)‖L2(F1(t))

[
‖ϕt − Id ‖C2(Ω) + ‖∂tϕt‖C1(Ω)

]
×
(
1 + ‖∂t ũ2(t)‖L2(F1(t)) + ‖ũ2(t)‖2H1(F1(t)) + ‖∇p̃2(t)‖L2(F1(t))

)
.

≤ C (Ψ, `0, r0, u0) ‖û(t)‖L2(F1(t))

(
‖(ĥ, θ̂)(t)‖R3 + ‖(ˆ̀, r̂)(t)‖R3

)
.

Summing up, we obtain that for any q ∈ [2,∞) :

d
dt

(
‖û‖2L2(F1(t)) + |ˆ̀|2 + |r̂ |2

)
≤ C0

(
q‖û‖

2
q′

L2(F1(t)) + ‖û‖2L2(F1(t)) + |ˆ̀|2 + |r̂ |2 + |ĥ|2 + |θ̂|2
)
.



Proof of uniqueness
I Concerning the solid movement, we have

|ĥ′| = |`1 − `2| ≤ |`1 − ˜̀2|+ |`2 − ˜̀2| ≤ C (|ˆ̀|+ |θ̂|),

so
d
dt

(
|ĥ|2 + |θ̂|2

)
≤ C

(
|ˆ̀|2 + |r̂ |2 + |ĥ|2 + |θ̂|2

)
.

I Hence we obtain that
d
dt

(
‖û‖2L2(F1(t)) + |ˆ̀|2 + |r̂ |2 + |ĥ|2 + |θ̂|2

)
≤ C1

(
q‖û‖

2
q′

L2(F1(t)) + |ˆ̀|2 + |r̂ |2 + |ĥ|2 + |θ̂|2
)

≤ C1q
(
‖û‖2L2(F1(t)) + |ˆ̀|2 + |r̂ |2 + |ĥ|2 + |θ̂|2

) 1
q′
,

by considering T sufficiently small.
I a comparison argument proves that

‖û‖2L2 + |ˆ̀|2 + |r̂ |2 + |ĥ|2 + |θ̂|2 ≤ (C1t)q,

and we conclude that ĥ = 0, θ̂ = 0 and û = 0 for t < 1/C1 by
letting q → +∞.



A priori estimates of the solutions à la Leray
We begin by giving a priori estimates on a solution given by the above
existence theorem.
We will also use, for T > 0, the notation

FT := ∪t∈(0,T ){t} × F(t).

Moreover we assume that dist(S(t), ∂Ω) > 0 on [0,T ]. There holds

u, (u · ∇)u ∈ L
4
3 (FT ,R4).

Proposition
There holds

tu ∈ L
4
3 (0,T ;W 2, 43 (F(t))), (t∂tu, t∇p) ∈ L

4
3 (FT ;R4).



Sketch of proof of the proposition
The proof relies in a crucial way on the following auxiliary system with
unknown (l, r, v) :

∂v
∂t
−∆v +∇q = g for x ∈ F(t),

div v = 0 for x ∈ F(t),

v = vS for x ∈ ∂S(t), and v = 0 for x ∈ ∂Ω,

ml′(t) = −
∫
∂S(t)

T(v , p)n dσ + mg1,

J r′(t) = −
∫
∂S(t)

T(v , p)n · (x − h(t))⊥ dσ + J g2,

vS(t, x) := l + r(x − h(t))⊥,

where
I g , g1 and g2 are some source terms,
I F(t) and S(t) are prescribed as associated to the solution (`, r , u)

above,
I h(t) =

∫ t
0 `.



Sketch of proof of the proposition

Let us now explain how this system enters into the game. We define

v := tu, q := tp, l := t`, and r := tr .

From the original equations we infer that (l, r, v) is a weak solution of the
previous system, with vanishing initial data and with, as source terms,

g := u − t(u · ∇)u ∈ L
4
3 (FT ;R2),

(g1, g2) := (`, r) ∈ L
4
3 (0,T ;R2 × R).



Regular solutions for the auxiliary system
Then we have the following result about the existence of regular solutions
to the auxiliary system, see Geissert, Götze and Hieber (2012).

Theorem
There exists a unique solution of the auxiliary system on [0,T ] with
vanishing initial data, and this solution satisfies

v ∈ L
4
3 (0,T ;W 2, 43 (F(t))), (∂tv ,∇q) ∈ L

4
3 (FT ;R4),

(l, r) ∈W 1, 43 ((0,T );R3).

This result is obtained by using :
I the same type of change of variable as before,
I maximal regularity theory for the Stokes equation,
I an argument of added mass to deal with the non-homogeneous

boundary term (see also the monograph of Galdi (2002)).



Proof of the uniqueness of solutions à la Leray
I We consider (`1, r1, u1) and (`2, r2, u2) two solutions in [0,T ] in the

sense of the above existence theorem.

I It is sufficient to prove uniqueness for T > 0 small enough.

I We perform the same change of variable than in the proof of
uniqueness of solutions à la Yudovich :

ũ2(t, x) := [dϕt(x)]−1 · u2(t, ϕt(x)), x ∈ F1(t),

p̃2(t, x) := p2(t, ϕt(x)), x ∈ F1(t),

˜̀2 := d(τ1 ◦ τ−1
2 ) · `2 = Q1 · Q−1

2 · `2.

with ϕt := Ψ[τ2(t)] ◦ {Ψ[τ1(t)]}−1, ψt := ϕ−1
t .

I We define as well

û(t, x) := u1(t, x)− ũ2(t, x),

p̂(t, x) := p1(t, x)− p̃2(t, x) in F1(t),

ĥ := h1 − h2, θ̂ := θ1 − θ2, ˆ̀ := `1 − ˜̀2 and r̂ := r1 − r2.



Proof of the uniqueness of solutions à la Leray
We obtain the following equations :

∂t û + (u1 · ∇)û + (û · ∇)ũ2 +∇p̂ −∆û = f̃ in F1(t),

û = ˆ̀(t) + r̂(t)(x − h1(t))⊥ for x ∈ ∂S1(t), û = 0 for x ∈ ∂Ω,

m ˆ̀′ = −
∫
∂S1(t)

T(û, p̂)n1 dσ + mr̂ ˜̀⊥
2 ,

J r̂ ′(t) = −
∫
∂S1(t)

T(û, p̂)n1 · (x − h1(t))⊥ dσ.

where

f̃ i =(∂kϕ
i − δik)∂t ũk

2 + ∂kϕ
i ∂l ũk

2 (∂tψ
l) + (∂k∂tϕ

i )ũk
2

+ (∂2
klϕ

i ) (∂tψ
l) ũk

2 + ũl
2 ∂l ũk

2 (∂kϕ
i − δik) + (∂2

lkϕ
i ) ũl

2 ũ
k
2

+ ∂k p̃2 (∂iψ
k − δik)− ∂jψ

m(∂2
mkϕ

i ) ∂l ũk
2 ∂jψ

l

− (∂kϕ
i∂jψ

m∂jψ
l − δikδjmδjl)∂2

ml ũ
k
2 − ∂kϕ

i ∂l ũk
2 (∂2

j ψ
l)

− ∂jψ
m(∂3

mlkϕ
i ) ∂jψ

l ũk
2 − (∂2

lkϕ
i ) ∂2

jjψ
l ũk

2 − (∂2
lkϕ

i ) ∂jψ
l ∂jψ

m ∂mũk
2 .



Proof of the uniqueness of solutions à la Leray
Multiplying the previous equation by û and integrating over F1(t), we
deduce that for a.e. t > 0∫

F1(t)

(∂t û + (u1 · ∇)û) · û dx +

∫
F1(t)

û · (û · ∇)ũ2 dx +

∫
F1(t)

û · ∇p̂ dx

−
∫
F1(t)

û ·∆û dx =

∫
F1(t)

û · f̃ dx .

Proceeding as in the proof for Euler, we have∫
F1(t)

(∂t û + (u1 · ∇)û) · û dx =
d
dt

∫
F1(t)

|û|2

2
dx ,∣∣∣∣∣

∫
F1(t)

û · (û · ∇)ũ2 dx

∣∣∣∣∣ ≤ C‖∇ũ2‖2L2‖û‖2L2 +
1
4
‖∇û‖2L2 ,∫

F1(t)

û · ∇p̂ dx −
∫
F1(t)

û ·∆û dx = 2
∫
F1(t)

Dû : Dû dx

+
1
2
d
dt
(
m|ˆ̀|2 + J |r̂ |2

)
−mr̂ ˆ̀· ˜̀⊥

2 .



Proof of the uniqueness of solutions à la Leray
Regarding the right hand side of the energy identity, we obtain that for
some constant C > 0 depending on the geometry only and defining the
function B ∈ L1(0,T ) by

B(t) := ‖ũ2‖L∞(0,T ;L2(F1(t)))(1 + ‖∇ũ2(t, ·)‖L2(F1(t)))

+‖ũ2‖1/2L∞(0,T ;L2(F1(t)))‖∇ũ2(t)‖1/2L2(F1(t))‖t∇ũ2(t)‖L4(F1(t))

+
(
‖t∂t ũ2‖L4/3(F1(t)) + ‖tũ2‖W 2,4/3(F1(t)) + ‖t∇p̃2‖L4/3(F1(t))

)4/3
,

one has the following estimate on the right hand side :∣∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃ dx dt

∣∣∣∣∣ ≤ 1
4

∫ T

0

∫
F1(t)

|∇û|2 dx dt

+C
∫ T

0
B(t)

[
max
τ∈[0,t]

‖û(τ, ·)‖2L2(F1(t)) + max
[0,t]
|(ĥ, θ̂, ˆ̀, r̂)|2

]
dt.



Proof of the uniqueness of solutions à la Leray
Now we use that ∫

F1(t)

|∇û|2 dx ≤ 2
∫
F1(t)

|Dû|2 dx .

and we take into account the vanishing initial condition for (ˆ̀, r̂ , û) to
deduce that for any T > 0 sufficiently small,

m|ˆ̀(T )|2 + J |r̂(T )|2 + ‖û(T )‖2L2(F1(T ))

≤ C
∫ T

0
B(t)

[
max
τ∈[0,t]

‖û(τ, ·)‖2L2(F1(t)) + max
[0,t]
|(ĥ, θ̂, ˆ̀, r̂)(t)|2

]
dt.

We get as before

d
dt

(
|ĥ|2 + |θ̂|2

)
≤ C

(
|ˆ̀|2 + |r̂ |2 + |ĥ|2 + |θ̂|2

)
.

Hence using B(t) ∈ L1 and Gronwall’s lemma concludes the proof.


