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Motivations

Self-propulsion at micro-scales?

Many applications are concerned, on fertility, on
human diagnosis and therapy...

Physicians and biologists noticed that the wall attract
micro-swimmers: Berke and P. Allison. (2008) - J.R
Blake. et al (1971, 2009,2010), H. Winet et
al.,(1984), R. Zargar, A. Najafi, and M. Miri. (2009),..

What is the influence of the presence of the wall on
the controllability of such micro-swimmers?
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Model swimmer/fluid
The swimmer is described by the vector (ξ, p) such as :

ξ is a function which defines the shape of the swimmer.

p = (c,R) ∈ R3 × SO(3) parametrizes the swimmer’s position.

The swimmer changes its shape =⇒ ξ(t) pushes the fluid.
The fluid reacts, under the Stokes Equation[

−ν∆u +∇p = f ,
divu = 0.

Self-propulsion constraints =⇒
{ ∑

Forces = 0
Torque = 0

⇐⇒


∫
∂Ω

DNp,ξ

(
(∂pΦ)ṗ + (∂ξΦ)ξ̇

)
dx0 = 0∫

∂Ω
x0 × DNp,ξ

(
(∂pΦ)ṗ + (∂ξΦ)ξ̇

)
dx0 = 0.

As a result the swimmer moves, under the ODE

ṗ = V (p, ξ)ξ̇ .
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(∂pΦ)ṗ + (∂ξΦ)ξ̇

)
dx0 = 0.

As a result the swimmer moves, under the ODE
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Controllability issues

{
ṗ = V (p, ξ)ξ̇
p0

Questions
Is it possible to control the state of the system (ξ and p)
using as controls only the rate of shape changes d

dt ξ?
Does the boundary have an effect on the controllability of
the swimmer?

P0

∂B

PG?

?

?
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The swimmers

The swimmer that we consider consists of 3 or 4 spheres
connected by a thin jacks.
The change of the swimmer’s shape consists in changing the
length of its arms (ξi)i .

where S := ( 2a√
3
,+∞)3, the lower bound being chosen in order to avoid overlaps of

the balls, P = R2 × R, and the functions Xi are now defined as

Xi(ξ, c, α, r) = c + Rθ(ξiti + r) ∀i ∈ {1, 2, 3} .

Notice that the functions Xi are still analytic in (ξ, c, θ), and we use them to compute
the instantaneous velocity on the sphere Bi

vi =
∂Xi

∂t
(ξ, c, θ, r) = ċ + θ̇e3 × (ξiti + r) + Rθtiξ̇i ,

where e3 is the vertical unit vector. Eventually, due to the symmetries of the system,
the swimmer stays in the horizontal plane.

2.3. The four sphere swimmer moving in space (4S). We now turn to
the more difficult situation of a swimmer able to move in the whole three dimensional
space and rotate in any direction. In this case, we fix N = 4 and we consider a regular
reference tetrahedron (S1, S2, S3, S4) with center O ∈ R3 such that dist(O,Si) = 1

and as before, we call ti = �OSi for i = 1, 2, 3, 4.
The position and orientation in the three dimensional space of the tetrahedron

are described by the coordinates of the center c ∈ R3 and a rotation R ∈ SO(3), in
such a way that d = 6.

We place the center of the ball Bi at xi = c + ξiRti with ξi > 0 for i = 1, 2, 3, 4
as depicted in Fig. 2.3 and forbid possible rotation of the spheres around the axes. A
global rotation (R �= Id) of the swimmer is however allowed.

The four ball cluster is now completely described by the list of parameters X =

(ξ, c,R) ∈ S × P, where S := (
�

3
2 ,+∞)4 and P = R3 × SO(3). Again, the lower

bound for ξi is chosen in order to avoid overlaps of the balls.

x4
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x2

x3

r1,2

Fig. 2.3. The four sphere swimmer (4S).

Furthermore, the function Xi are now defined as

Xi(ξ, c,R, r) = c + R(ξiti + r) ∀i ∈ {1, 2, 3, 4} ,

which are still analytic in (ξ, c,R), from which we compute the instantaneous velocity
on the sphere Bi

vi =
∂Xi

∂t
(ξ, c,R, r) = ċ + ω × (ξiti + r) + Rtiξ̇i
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Four sphere swimmer
Three sphere swimmer
[Golestanian, Najafi 2004]

Example of stroke
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Controllability’s result in R3 [Alouges, DeSimone,
Heltai, Lefevbre, Merlet (Preprint)]
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The 4-sphere swimmer is globally
controllable on R3.

The 3-sphere swimmer is globally
controllable on R.

Does a confined environnement modify the swimmer’s reachable
set?
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Influence of a plane wall - Joint work with F. Alouges
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The 4-sphere swimmer is controllable
on an dense open set.

θ

θ =
π

2

y

y

For almost (x0, y0, θ0), such that
θ0 6= π

2 , the 3-sphere swimmer is
locally controllable on (x0, y0, θ0).

If θ0 = π
2 then it moves along a

vertical line.
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Influence of a rough no slip wall - Work in Progress
with D. Gérard-Varet

The rough wall is defined by z = εh(x , y), ‖h‖ = 1.

The 4-sphere remain controllable on an dense open set.

The dimension of the reachable set of the 3-sphere swimmer is greater
than or equal to 5.

+�

−�
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Conclusion and outlook

Do The 3-sphere be more controllable?
Influence on the optimal trajectories

ξ1

ξ2

ξ1

ξ2

ξ1

ξ2

±�
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Thank you for your attention

L. Giraldi


