On the Steady Motion of a Coupled System Solid-Liquid

Giovanni P. Galdi

University of Pittsburgh

Toulouse, June 262012

Preliminary Considerations

Preliminary Considerations

Liquid-solid interaction (LSI) is a relatively new and fascinating branch of applied mathematics. Actually, systematic (analytical and numerical) studies started less than 15 years ago.

Preliminary Considerations

Liquid-solid interaction (LSI) is a relatively new and fascinating branch of applied mathematics. Actually, systematic (analytical and numerical) studies started less than 15 years ago.

Late start and current increasing interest are probably due to the following reasons:

- The intrinsic difficulties related to this type of problems. In fact, the presence of the solid (rigid or elastic) affects the flow of the liquid, and this, in turn, affects the motion of the solid, so that the problem of determining the flow characteristics is highly coupled.
- A rapidly increasing attention that, over the past decade, these questions have acquired in many fields of applied sciences, like bioengineering, animal locomotion, damage of structures, etc.

Preliminary Considerations

In a nutshell, LSI problems present the following basic challenges:

Preliminary Considerations

In a nutshell, LSI problems present the following basic challenges:

C1 In the case of a rigid (undeformable) body, the interaction between the body and the liquid is nonlocal: forces and torques exerted by the liquid on the body are given through integral quantities.

Preliminary Considerations

Liquid \mathcal{L} :

$$
\begin{aligned}
& \left.\begin{array}{l}
\rho\left(\partial_{t} \boldsymbol{v}+\boldsymbol{v} \cdot \nabla \boldsymbol{v}\right)=\operatorname{div} \boldsymbol{\mathcal { T }}(\boldsymbol{v}, p) \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \bigcup_{t>0}[\widetilde{\mathcal{D}}(t) \times\{t\}] \\
& \quad \boldsymbol{v}(\boldsymbol{x}, t)=\boldsymbol{\eta}+\boldsymbol{\Omega} \times \boldsymbol{x}, \quad(\boldsymbol{x}, t) \in \bigcup_{t>0}[\partial \widetilde{\mathcal{D}}(t) \times\{t\}]
\end{aligned}
$$

Rigid Body \mathcal{B} :

$$
\begin{aligned}
& m \frac{d \boldsymbol{\eta}}{d t}=\boldsymbol{F}-\int_{\partial \widetilde{\mathcal{D}}(t)} \boldsymbol{\mathcal { T }}(\boldsymbol{v}, p) \cdot \boldsymbol{N} \\
& \frac{d(\boldsymbol{J} \cdot \boldsymbol{\Omega})}{d t}=\boldsymbol{M}_{C}-\int_{\partial \widetilde{\mathcal{D}}(t)}\left(\boldsymbol{x}-\boldsymbol{x}_{C}\right) \times \boldsymbol{\mathcal { T }}(\boldsymbol{v}, p) \cdot \boldsymbol{N}
\end{aligned}
$$

Preliminary Considerations

C2 In the case of an elastic (deformable) body, the deformation of the body due to the action of the liquid becomes a further unknown. Moreover, the motion of the elastic body is naturally described in the Lagrangean formalism, while that of the liquid requires the Eulerian formalism.

Preliminary Considerations

These features produce a number of distinctive traits that are completely new compared to the analogous "classical" fluid dynamical problems, such as:

Preliminary Considerations

These features produce a number of distinctive traits that are completely new compared to the analogous "classical" fluid dynamical problems, such as:

- Steady-state and time-periodic problems may lack of the corresponding uniqueness property, at arbitrarily small (even zero!) value of the relevant physical parameters (e.g. Reynolds number);
- Dynamics can be very rich, also at relatively small Reynolds number. Multiple bifurcation phenomena (steady and time-periodic) may occur.
Therefore,
- Stability and/or Control Analysis of the solutions is of the utmost importance, to find out which solution is "physically meaningful".

Preliminary Considerations

These features produce a number of distinctive traits that are completely new compared to the analogous "classical" fluid dynamical problems, such as:

- Steady-state and time-periodic problems may lack of the corresponding uniqueness property, at arbitrarily small (even zero!) value of the relevant physical parameters (e.g. Reynolds number);
- Dynamics can be very rich, also at relatively small Reynolds number. Multiple bifurcation phenomena (steady and time-periodic) may occur.
Therefore,
- Stability and/or Control Analysis of the solutions is of the utmost importance, to find out which solution is "physically meaningful".

Most of the above phenomena remain basically unresolved from a mathematical viewpoint.

Body in a Viscous Liquid subject to a Constant Body Force

Body in a Viscous Liquid subject to a Constant Body Force

Josef BEMELMANS (RWTH Aachen)
\&
Mads KYED (TU Darmstadt)

Archive Ratl Mech. Anal. (2011), Memoirs of the AMS (2012)

Body in a Viscous Liquid subject to a Constant Body Force

Hans WEINBERGER, Proc. Symp. Pure Math. (1973)

Body in a Viscous Liquid subject to a Constant Body Force

\mathcal{B} is an elastic (deformable) body, that with respect to the inertial frame \mathcal{J} moves in a viscous liquid filling the exterior of \mathcal{B}, under the action of a constant (time-independent) body force \boldsymbol{b}.

Body in a Viscous Liquid subject to a Constant Body Force

\mathcal{B} is an elastic (deformable) body, that with respect to the inertial frame \mathcal{J} moves in a viscous liquid filling the exterior of \mathcal{B}, under the action of a constant (time-independent) body force \boldsymbol{b}.

After a "transient time", B may reach a "terminal" equilibrium state.

Body in a Viscous Liquid subject to a Constant Body Force

\mathcal{B} is an elastic (deformable) body, that with respect to the inertial frame \mathcal{J} moves in a viscous liquid filling the exterior of \mathcal{B}, under the action of a constant (time-independent) body force \boldsymbol{b}.

After a "transient time", B may reach a "terminal" equilibrium state. Namely, there exists a frame, \mathcal{S}, with respect to which the displacement field (and so, the deformation) evaluated from a given reference configuration is time-independent.

Body in a Viscous Liquid subject to a Constant Body Force

The liquid produces a traction on the surface of \mathcal{B}, which, therefore, with respect to the frame \mathcal{S} should be time-independent as well.

Body in a Viscous Liquid subject to a Constant Body Force

The liquid produces a traction on the surface of \mathcal{B}, which, therefore, with respect to the frame \mathcal{S} should be time-independent as well.
This will happen if, with respect to \mathcal{S}, the motion of the liquid is steady.

Body in a Viscous Liquid subject to a Constant Body Force

The liquid produces a traction on the surface of \mathcal{B}, which, therefore, with respect to the frame \mathcal{S} should be time-independent as well.
This will happen if, with respect to \mathcal{S}, the motion of the liquid is steady. If such a frame \mathcal{S} exists, we say that the the coupled system body-liquid executes a steady motion.

Body in a Viscous Liquid subject to a Constant Body Force

The liquid produces a traction on the surface of \mathcal{B}, which, therefore, with respect to the frame \mathcal{S} should be time-independent as well.
This will happen if, with respect to \mathcal{S}, the motion of the liquid is steady. If such a frame \mathcal{S} exists, we say that the the coupled system body-liquid executes a steady motion.

Remark
The unknown frame S will be identified once we know the velocity of its origin and its angular velocity with respect to J.

Body in a Viscous Liquid subject to a Constant Body Force

The liquid produces a traction on the surface of \mathcal{B}, which, therefore, with respect to the frame \mathcal{S} should be time-independent as well.
This will happen if, with respect to \mathcal{S}, the motion of the liquid is steady. If such a frame \mathcal{S} exists, we say that the the coupled system body-liquid executes a steady motion.

Remark
The unknown frame S will be identified once we know the velocity of its origin and its angular velocity with respect to J.

Examples of Steady Motions:

Body in a Viscous Liquid subject to a Constant Body Force

The liquid produces a traction on the surface of \mathcal{B}, which, therefore, with respect to the frame \mathcal{S} should be time-independent as well.
This will happen if, with respect to \mathcal{S}, the motion of the liquid is steady. If such a frame \mathcal{S} exists, we say that the the coupled system body-liquid executes a steady motion.

Remark
The unknown frame S will be identified once we know the velocity of its origin and its angular velocity with respect to J.

Examples of Steady Motions:

- Free fall of an elastic body in a liquid under the action of its own weight (density of the liquid \ll density of the body)

Body in a Viscous Liquid subject to a Constant Body Force

The liquid produces a traction on the surface of \mathcal{B}, which, therefore, with respect to the frame \mathcal{S} should be time-independent as well.
This will happen if, with respect to \mathcal{S}, the motion of the liquid is steady. If such a frame \mathcal{S} exists, we say that the the coupled system body-liquid executes a steady motion.

Remark
The unknown frame S will be identified once we know the velocity of its origin and its angular velocity with respect to J.

Examples of Steady Motions:

- Free fall of an elastic body in a liquid under the action of its own weight (density of the liquid \ll density of the body)
- Towing of airborne or underwater bodies by powered aircrafts or boats.

Body in a Viscous Liquid subject to a Constant Body Force

The liquid produces a traction on the surface of \mathcal{B}, which, therefore, with respect to the frame \mathcal{S} should be time-independent as well.
This will happen if, with respect to \mathcal{S}, the motion of the liquid is steady. If such a frame \mathcal{S} exists, we say that the the coupled system body-liquid executes a steady motion.

Remark
The unknown frame S will be identified once we know the velocity of its origin and its angular velocity with respect to J.

Examples of Steady Motions:

- Free fall of an elastic body in a liquid under the action of its own weight (density of the liquid \ll density of the body)
- Towing of airborne or underwater bodies by powered aircrafts or boats.
- etc.

The Solid-Liquid Problem in the Frame J

The Solid-Liquid Problem in the Frame \mathcal{J}

Equations of Motion for the Elastic Body

The Solid-Liquid Problem in the Frame J

Equations of Motion for the Elastic Body

$$
\rho_{E} \partial_{t}^{2} \boldsymbol{u}^{*}=\operatorname{div} \boldsymbol{\sigma}\left(\boldsymbol{u}^{*}\right)+\rho_{E} \boldsymbol{b} \text { in } \Omega \times(0, \infty)
$$

The Solid-Liquid Problem in the Frame J

Equations of Motion for the Elastic Body

$$
\rho_{E} \partial_{t}^{2} \boldsymbol{u}^{*}=\operatorname{div} \boldsymbol{\sigma}\left(\boldsymbol{u}^{*}\right)+\rho_{E} \boldsymbol{b} \text { in } \Omega \times(0, \infty)
$$

Ω is the reference configuration, $\boldsymbol{u}^{*}(x, t)$ is the displacement field

The Solid-Liquid Problem in the Frame J

Equations of Motion for the Elastic Body

$$
\rho_{E} \partial_{t}^{2} \boldsymbol{u}^{*}=\operatorname{div} \boldsymbol{\sigma}\left(\boldsymbol{u}^{*}\right)+\rho_{E} \boldsymbol{b} \text { in } \Omega \times(0, \infty)
$$

Ω is the reference configuration, $\boldsymbol{u}^{*}(x, t)$ is the displacement field

ρ_{E} is the constant density (in the reference configuration), $\boldsymbol{\sigma}$ is the (first) Piola-Kirchhoff tensor.

The Solid-Liquid Problem in the Frame J

To fix the ideas, we will consider St.-Venant-Kirchhoff elastic bodies, for which

$$
\begin{aligned}
& \boldsymbol{\sigma}\left(\boldsymbol{u}^{*}\right)=\left(\boldsymbol{I}+\nabla \boldsymbol{u}^{*}\right)\left(\lambda_{E} \operatorname{Tr} \boldsymbol{E}\left(\boldsymbol{u}^{*}\right) \boldsymbol{I}+2 \mu_{E} \boldsymbol{E}\left(\boldsymbol{u}^{*}\right)\right) \\
& \boldsymbol{E}\left(\boldsymbol{u}^{*}\right)=\frac{1}{2}\left(\nabla \boldsymbol{u}^{*}+\nabla \boldsymbol{u}^{* \top}+\nabla \boldsymbol{u}^{* \top} \nabla \boldsymbol{u}^{*}\right)
\end{aligned}
$$

$\boldsymbol{I}=$ identity matrix, $\mu_{E}>0$ and $\lambda_{E}>-\frac{2}{3} \mu_{E}$ are the Lame constants.

The Solid-Liquid Problem in the Frame J

Equations of Motion for the Viscous Liquid

The Solid-Liquid Problem in the Frame J

Equations of Motion for the Viscous Liquid
The deformed configuration of the body is:

$$
\Omega \boldsymbol{u}^{*}(t)=\left\{\boldsymbol{x}^{*} \in \mathbb{R}^{3}: \boldsymbol{x}^{*}=\boldsymbol{x}+\boldsymbol{u}^{*}(x, t), \boldsymbol{x} \in \bar{\Omega}\right\}, \quad t>0,
$$

The Solid-Liquid Problem in the Frame J

Equations of Motion for the Viscous Liquid
The deformed configuration of the body is:

$$
\Omega_{\boldsymbol{u}^{*}}(t)=\left\{\boldsymbol{x}^{*} \in \mathbb{R}^{3}: \boldsymbol{x}^{*}=\boldsymbol{x}+\boldsymbol{u}^{*}(x, t), \boldsymbol{x} \in \bar{\Omega}\right\}, \quad t>0,
$$

The liquid occupies the region, $\mathcal{E}=\mathcal{E}(t)$, exterior to $\Omega \boldsymbol{u}^{*}(t)$, that is,

$$
\mathcal{E}(t):=\mathbb{R}^{3}-\Omega \boldsymbol{u}^{*}(t) .
$$

The Solid-Liquid Problem in the Frame J

Equations of Motion for the Viscous Liquid
The deformed configuration of the body is:

$$
\Omega_{\boldsymbol{u}^{*}}(t)=\left\{\boldsymbol{x}^{*} \in \mathbb{R}^{3}: \boldsymbol{x}^{*}=\boldsymbol{x}+\boldsymbol{u}^{*}(x, t), \boldsymbol{x} \in \bar{\Omega}\right\}, \quad t>0,
$$

The liquid occupies the region, $\mathcal{E}=\mathcal{E}(t)$, exterior to $\Omega \boldsymbol{u}^{*}(t)$, that is,

$$
\mathcal{E}(t):=\mathbb{R}^{3}-\Omega \boldsymbol{u}^{*}(t) .
$$

We thus have

$$
\left.\begin{array}{l}
\rho\left(\partial_{t} \boldsymbol{v}^{*}+\left(\nabla \boldsymbol{v}^{*}\right) \boldsymbol{v}^{*}\right)=\mu \Delta \boldsymbol{v}^{*}-\nabla p^{*} \\
\operatorname{div} \boldsymbol{v}^{*}=0
\end{array}\right\} \quad \text { in } \cup_{t>0}[\mathcal{E}(t) \times\{t\}] .
$$

\boldsymbol{v}^{*} is the velocity, p^{*} is the pressure,
ρ is the density, μ is the shear viscosity coefficient

The Solid-Liquid Problem in the Frame J

Conditions at the Solid-Liquid Interface $\partial \Omega_{\boldsymbol{u}^{*}}(t)$

The Solid-Liquid Problem in the Frame J

Conditions at the Solid-Liquid Interface $\partial \Omega \boldsymbol{u}^{*}(t)$

For sufficiently "regular" $\boldsymbol{u}^{*}(\cdot, t)\left(\left|\nabla \boldsymbol{u}^{*}(\cdot, t)\right|<1\right)$, we have

$$
x \in \partial \Omega \Longleftrightarrow x+\boldsymbol{u}^{*}(x, t) \in \partial \Omega \boldsymbol{u}^{*}(t)
$$

The Solid-Liquid Problem in the Frame J

Conditions at the Solid-Liquid Interface $\partial \Omega \boldsymbol{u}^{*}(t)$
For sufficiently "regular" $\boldsymbol{u}^{*}(\cdot, t)\left(\left|\nabla \boldsymbol{u}^{*}(\cdot, t)\right|<1\right)$, we have

$$
x \in \partial \Omega \Longleftrightarrow x+\boldsymbol{u}^{*}(x, t) \in \partial \Omega \boldsymbol{u}^{*}(t)
$$

No-Slip Boundary Conditions:

$$
\boldsymbol{v}^{*}\left(x+\boldsymbol{u}^{*}(x, t), t\right)=\partial_{t} \boldsymbol{u}^{*}(x, t), \quad(x, t) \in \partial \Omega \times(0, \infty) .
$$

The Solid-Liquid Problem in the Frame J

Conditions at the Solid-Liquid Interface $\partial \Omega \boldsymbol{u}^{*}(t)$

For sufficiently "regular" $\boldsymbol{u}^{*}(\cdot, t)\left(\left|\nabla \boldsymbol{u}^{*}(\cdot, t)\right|<1\right)$, we have

$$
x \in \partial \Omega \Longleftrightarrow x+\boldsymbol{u}^{*}(x, t) \in \partial \Omega \boldsymbol{u}^{*}(t)
$$

No-Slip Boundary Conditions:

$$
\boldsymbol{v}^{*}\left(x+\boldsymbol{u}^{*}(x, t), t\right)=\partial_{t} \boldsymbol{u}^{*}(x, t), \quad(x, t) \in \partial \Omega \times(0, \infty) .
$$

Continuity of the Stress:

$$
\boldsymbol{T}_{L} \cdot \boldsymbol{n}=\boldsymbol{T}_{E} \cdot \boldsymbol{n} \quad \text { at } \cup_{t>0}\left[\partial \Omega_{\boldsymbol{u}^{*}}(t) \times\{t\}\right],
$$

where
\boldsymbol{T}_{E} is the Cauchy stress tensor of the elastic body
\boldsymbol{T}_{L} is the Cauchy stress tensor of the liquid
\boldsymbol{n} is the outer unit normal to $\partial \Omega \boldsymbol{u}^{*}(t)$.

The Solid-Liquid Problem in the Frame \mathcal{S}

The Solid-Liquid Problem in the Frame \mathcal{S}

We take the origin of \mathcal{S} at $\boldsymbol{x}_{c}^{*}(t)=\boldsymbol{x}_{c}+\boldsymbol{u}^{*}\left(x_{c}, t\right)$, with \boldsymbol{x}_{c} center of mass of Ω.

The Solid-Liquid Problem in the Frame \mathcal{S}

We take the origin of \mathcal{S} at $\boldsymbol{x}_{c}^{*}(t)=\boldsymbol{x}_{c}+\boldsymbol{u}^{*}\left(x_{c}, t\right)$, with \boldsymbol{x}_{c} center of mass of Ω.
Let $\boldsymbol{\omega}$ be the unknown constant angular velocity of the frame \mathcal{S} with respect to the inertial frame \mathcal{J}, and set

$$
\widehat{\boldsymbol{\omega}}=\left(\begin{array}{rrr}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right) .
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

We take the origin of \mathcal{S} at $\boldsymbol{x}_{c}^{*}(t)=\boldsymbol{x}_{c}+\boldsymbol{u}^{*}\left(x_{c}, t\right)$, with \boldsymbol{x}_{c} center of mass of Ω.
Let $\boldsymbol{\omega}$ be the unknown constant angular velocity of the frame \mathcal{S} with respect to the inertial frame \mathcal{J}, and set

$$
\widehat{\boldsymbol{\omega}}=\left(\begin{array}{rrr}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right)
$$

If $\boldsymbol{x}^{*}=\boldsymbol{x}+\boldsymbol{u}^{*}(x, t)$, we make the following change of variables

$$
\boldsymbol{y}=e^{-\widehat{\boldsymbol{\omega}} t} \cdot\left(\boldsymbol{x}^{*}-\boldsymbol{x}_{c}^{*}\right), \quad x \in \Omega ; \quad e^{-\widehat{\boldsymbol{\omega}} t} \in S O(3), \quad t \geq 0
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

We take the origin of \mathcal{S} at $\boldsymbol{x}_{c}^{*}(t)=\boldsymbol{x}_{c}+\boldsymbol{u}^{*}\left(x_{c}, t\right)$, with \boldsymbol{x}_{c} center of mass of Ω.
Let $\boldsymbol{\omega}$ be the unknown constant angular velocity of the frame \mathcal{S} with respect to the inertial frame \mathcal{J}, and set

$$
\widehat{\boldsymbol{\omega}}=\left(\begin{array}{rrr}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right) .
$$

If $\boldsymbol{x}^{*}=\boldsymbol{x}+\boldsymbol{u}^{*}(x, t)$, we make the following change of variables

$$
\boldsymbol{y}=e^{-\widehat{\boldsymbol{\omega}} t} \cdot\left(\boldsymbol{x}^{*}-\boldsymbol{x}_{c}^{*}\right), \quad x \in \Omega ; \quad e^{-\widehat{\boldsymbol{\omega}} t} \in S O(3), \quad t \geq 0 .
$$

Thus, with respect to \mathcal{S}, the displacement field is given by:

$$
\boldsymbol{u}(x, t)=\boldsymbol{y}-\boldsymbol{x}, \quad x \in \Omega
$$

and the velocity of the center of mass:

$$
\boldsymbol{\xi}=e^{-\widehat{\boldsymbol{\omega}} t} \cdot \partial_{t} \boldsymbol{x}_{c}^{*}
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

Equations of Motion for the Elastic Body

$$
\begin{aligned}
\rho_{E}\left[\partial_{t}^{2} \boldsymbol{u}+\boldsymbol{\omega}\right. & \left.\times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))+2 \boldsymbol{\omega} \times \partial_{t} \boldsymbol{u}\right] \\
& +\rho_{E}\left(\boldsymbol{\omega} \times \boldsymbol{\xi}+\partial_{t} \boldsymbol{\xi}\right)=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{b}, \quad \text { in } \Omega \times(0, \infty)
\end{aligned}
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

Equations of Motion for the Elastic Body

$$
\begin{aligned}
\rho_{E}\left[\partial_{t}^{2} \boldsymbol{u}+\boldsymbol{\omega}\right. & \left.\times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))+2 \boldsymbol{\omega} \times \partial_{t} \boldsymbol{u}\right] \\
& +\rho_{E}\left(\boldsymbol{\omega} \times \boldsymbol{\xi}+\partial_{t} \boldsymbol{\xi}\right)=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{b}, \quad \text { in } \Omega \times(0, \infty)
\end{aligned}
$$

We are interested in equilibrium configurations, where \boldsymbol{u} and $\boldsymbol{\xi}$ are independent of time. Therefore:

The Solid-Liquid Problem in the Frame \mathcal{S}

Equations of Motion for the Elastic Body

$$
\begin{aligned}
\rho_{E}\left[\partial_{t}^{2} \boldsymbol{u}+\boldsymbol{\omega}\right. & \left.\times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))+2 \boldsymbol{\omega} \times \partial_{t} \boldsymbol{u}\right] \\
& +\rho_{E}\left(\boldsymbol{\omega} \times \boldsymbol{\xi}+\partial_{t} \boldsymbol{\xi}\right)=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{b}, \quad \text { in } \Omega \times(0, \infty)
\end{aligned}
$$

We are interested in equilibrium configurations, where \boldsymbol{u} and $\boldsymbol{\xi}$ are independent of time. Therefore:

$$
\rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))]+\rho_{E} \boldsymbol{\omega} \times \boldsymbol{\xi}=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} e^{-\hat{\boldsymbol{\omega}}^{t}} \cdot \boldsymbol{b} .
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

Equations of Motion for the Elastic Body

$$
\begin{aligned}
\rho_{E}\left[\partial_{t}^{2} \boldsymbol{u}+\boldsymbol{\omega}\right. & \left.\times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))+2 \boldsymbol{\omega} \times \partial_{t} \boldsymbol{u}\right] \\
& +\rho_{E}\left(\boldsymbol{\omega} \times \boldsymbol{\xi}+\partial_{t} \boldsymbol{\xi}\right)=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{b}, \quad \text { in } \Omega \times(0, \infty)
\end{aligned}
$$

We are interested in equilibrium configurations, where \boldsymbol{u} and $\boldsymbol{\xi}$ are independent of time. Therefore:

$$
\rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))]+\rho_{E} \boldsymbol{\omega} \times \boldsymbol{\xi}=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{b}
$$

However, this term may still depend on time.

The Solid-Liquid Problem in the Frame \mathcal{S}

Equations of Motion for the Elastic Body

$$
\begin{aligned}
\rho_{E}\left[\partial_{t}^{2} \boldsymbol{u}+\boldsymbol{\omega}\right. & \left.\times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))+2 \boldsymbol{\omega} \times \partial_{t} \boldsymbol{u}\right] \\
& +\rho_{E}\left(\boldsymbol{\omega} \times \boldsymbol{\xi}+\partial_{t} \boldsymbol{\xi}\right)=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{b}, \quad \text { in } \Omega \times(0, \infty)
\end{aligned}
$$

We are interested in equilibrium configurations, where \boldsymbol{u} and $\boldsymbol{\xi}$ are independent of time. Therefore:

$$
\rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))]+\rho_{E} \boldsymbol{\omega} \times \boldsymbol{\xi}=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} e^{-\hat{\omega}^{t} t} \cdot \boldsymbol{b} .
$$

However, this term may still depend on time. It is time-independent if and only if

$$
\mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}, \quad \mathfrak{b}:=e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{b}
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

Equations of Motion for the Elastic Body

$$
\begin{aligned}
\rho_{E}\left[\partial_{t}^{2} \boldsymbol{u}+\boldsymbol{\omega}\right. & \left.\times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))+2 \boldsymbol{\omega} \times \partial_{t} \boldsymbol{u}\right] \\
& +\rho_{E}\left(\boldsymbol{\omega} \times \boldsymbol{\xi}+\partial_{t} \boldsymbol{\xi}\right)=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{b}, \quad \text { in } \Omega \times(0, \infty)
\end{aligned}
$$

We are interested in equilibrium configurations, where \boldsymbol{u} and $\boldsymbol{\xi}$ are independent of time. Therefore:

$$
\rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))]+\rho_{E} \boldsymbol{\omega} \times \boldsymbol{\xi}=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} e^{-\hat{\omega}^{t} t} \cdot \boldsymbol{b} .
$$

However, this term may still depend on time. It is time-independent if and only if

$$
\mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}, \quad \mathfrak{b}:=e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{b}
$$

The direction of the vector \mathfrak{b} becomes a further unknown.

The Solid-Liquid Problem in the Frame \mathcal{S}

Summarizing, the resolution of the equilibrium problem for the elastic body requires the fulfillment of the following two equations

The Solid-Liquid Problem in the Frame \mathcal{S}

Summarizing, the resolution of the equilibrium problem for the elastic body requires the fulfillment of the following two equations

$$
\begin{gathered}
\rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))]+\rho_{E} \boldsymbol{\omega} \times \boldsymbol{\xi}=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} \mathfrak{b}, \quad \text { in } \Omega \\
\mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}
\end{gathered}
$$

where

$$
\boldsymbol{\omega}, \boldsymbol{\xi}, \mathfrak{b} \text { and } \boldsymbol{u}=\boldsymbol{u}(x), x \in \Omega, \text { are unknown, }
$$

and

$$
|\mathfrak{b}|=|\boldsymbol{b}| \quad \text { is given. }
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

Equations of Motion for the Liquid

The Solid-Liquid Problem in the Frame \mathcal{S}

Equations of Motion for the Liquid
Set

$$
\boldsymbol{v}(\cdot, t)=e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{v}^{*}\left(e^{\widehat{\boldsymbol{\omega}} t} \cdot+\boldsymbol{x}_{c}^{*}, t\right), \quad p(\cdot, t)=e^{-\widehat{\boldsymbol{\omega}} t} p^{*}\left(e^{\widehat{\boldsymbol{\omega}} t} \cdot+\boldsymbol{x}_{c}^{*}, t\right)
$$

and require that (\boldsymbol{v}, p) is steady.

The Solid-Liquid Problem in the Frame \mathcal{S}

Equations of Motion for the Liquid
Set

$$
\boldsymbol{v}(\cdot, t)=e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{v}^{*}\left(e^{\widehat{\boldsymbol{\omega}} t} \cdot+\boldsymbol{x}_{c}^{*}, t\right), \quad p(\cdot, t)=e^{-\widehat{\boldsymbol{\omega}} t} p^{*}\left(e^{\widehat{\boldsymbol{\omega}} t} \cdot+\boldsymbol{x}_{c}^{*}, t\right)
$$

and require that (\boldsymbol{v}, p) is steady.
We then obtain the following equations

$$
\left.\begin{array}{l}
\rho[\nabla \boldsymbol{v}(\boldsymbol{v}-(\boldsymbol{\omega} \times \boldsymbol{y}+\boldsymbol{\xi}))+\boldsymbol{\omega} \times \boldsymbol{v}]=\mu \Delta \boldsymbol{v}-\nabla p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \boldsymbol{y}
$$

where

$$
y:=\mathbb{R}^{3}-\left\{\boldsymbol{z} \in \mathbb{R}^{3}: \boldsymbol{z}=\boldsymbol{x}+\boldsymbol{u}(x), \quad x \in \bar{\Omega}\right\} .
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

Equations of Motion for the Liquid
Set

$$
\boldsymbol{v}(\cdot, t)=e^{-\widehat{\boldsymbol{\omega}} t} \cdot \boldsymbol{v}^{*}\left(e^{\widehat{\boldsymbol{\omega}} t} \cdot+\boldsymbol{x}_{c}^{*}, t\right), \quad p(\cdot, t)=e^{-\widehat{\boldsymbol{\omega}} t} p^{*}\left(e^{\widehat{\boldsymbol{\omega}} t} \cdot+\boldsymbol{x}_{c}^{*}, t\right)
$$

and require that (\boldsymbol{v}, p) is steady.
We then obtain the following equations

$$
\left.\begin{array}{l}
\rho[\nabla \boldsymbol{v}(\boldsymbol{v}-(\boldsymbol{\omega} \times \boldsymbol{y}+\boldsymbol{\xi}))+\boldsymbol{\omega} \times \boldsymbol{v}]=\mu \Delta \boldsymbol{v}-\nabla p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \boldsymbol{y}
$$

where

$$
y:=\mathbb{R}^{3}-\left\{\boldsymbol{z} \in \mathbb{R}^{3}: \boldsymbol{z}=\boldsymbol{x}+\boldsymbol{u}(x), \quad x \in \bar{\Omega}\right\} .
$$

No-slip boundary condition becomes

$$
\boldsymbol{v}=\boldsymbol{\xi}+\boldsymbol{\omega} \times \boldsymbol{y} \text { at } \partial \boldsymbol{y} .
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

So far, we have the following equations

The Solid-Liquid Problem in the Frame \mathcal{S}

So far, we have the following equations

$$
\left.\begin{array}{l}
\rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u})) \boldsymbol{\omega} \times \boldsymbol{\xi}]=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} \mathfrak{b}, \quad \text { in } \Omega \\
\mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0},|\mathfrak{b}|=|\boldsymbol{b}|, \\
\rho[\nabla \boldsymbol{v}(\boldsymbol{v}-(\boldsymbol{\omega} \times \boldsymbol{y}+\boldsymbol{\xi}))+\boldsymbol{\omega} \times \boldsymbol{v}]=\mu \Delta \boldsymbol{v}-\nabla p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } y
$$

where

$$
y:=\mathbb{R}^{3}-\left\{\boldsymbol{z} \in \mathbb{R}^{3}: \boldsymbol{z}=\boldsymbol{x}+\boldsymbol{u}(x), \quad x \in \bar{\Omega}\right\} .
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

So far, we have the following equations

$$
\left.\begin{array}{l}
\rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u})) \boldsymbol{\omega} \times \boldsymbol{\xi}]=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} \mathfrak{b}, \quad \text { in } \Omega \\
\mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0},|\mathfrak{b}|=|\boldsymbol{b}|, \\
\rho[\nabla \boldsymbol{v}(\boldsymbol{v}-(\boldsymbol{\omega} \times \boldsymbol{y}+\boldsymbol{\xi}))+\boldsymbol{\omega} \times \boldsymbol{v}]=\mu \Delta \boldsymbol{v}-\nabla p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } y .
$$

where

$$
y:=\mathbb{R}^{3}-\left\{\boldsymbol{z} \in \mathbb{R}^{3}: \boldsymbol{z}=\boldsymbol{x}+\boldsymbol{u}(x), \quad x \in \bar{\Omega}\right\} .
$$

and boundary conditions

$$
\boldsymbol{v}=\boldsymbol{\xi}+\boldsymbol{\omega} \times \boldsymbol{y} \text { at } \partial \boldsymbol{y} .
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

So far, we have the following equations

$$
\left.\begin{array}{l}
\rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u})) \boldsymbol{\omega} \times \boldsymbol{\xi}]=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} \mathfrak{b}, \quad \text { in } \Omega \\
\mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}, \quad|\mathfrak{b}|=|\boldsymbol{b}|, \\
\rho[\nabla \boldsymbol{v}(\boldsymbol{v}-(\boldsymbol{\omega} \times \boldsymbol{y}+\boldsymbol{\xi}))+\boldsymbol{\omega} \times \boldsymbol{v}]=\mu \Delta \boldsymbol{v}-\nabla p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } y
$$

where

$$
y:=\mathbb{R}^{3}-\left\{\boldsymbol{z} \in \mathbb{R}^{3}: \boldsymbol{z}=\boldsymbol{x}+\boldsymbol{u}(x), \quad x \in \bar{\Omega}\right\} .
$$

and boundary conditions

$$
\boldsymbol{v}=\boldsymbol{\xi}+\boldsymbol{\omega} \times \boldsymbol{y} \text { at } \partial \boldsymbol{y} .
$$

The final step is to rewrite the liquid equations in the exterior of the reference (undeformed) configuration, $\mathbb{R}^{3}-\Omega$.
This can be done if \boldsymbol{u} is "sufficiently regular".

The Solid-Liquid Problem in the Frame \mathcal{S}

Lemma Let $\boldsymbol{u} \in W^{2, q}(\Omega), q>3$, with

$$
\|\boldsymbol{u}\|_{W^{2, q}(\Omega)} \leq M \quad \text { "sufficiently small" }
$$

Then there is a C^{1}-diffeomorphism, $\chi_{\boldsymbol{u}}$, from \mathbb{R}^{3} onto itself satisfying the following properties.
(i) $\chi_{\boldsymbol{u}}(\boldsymbol{x})=\boldsymbol{x}+\boldsymbol{u}(\boldsymbol{x})$ for all $\boldsymbol{x} \in \bar{\Omega}$;
(ii) $\chi_{\boldsymbol{u}}(\boldsymbol{x})=\boldsymbol{x}$, for all \boldsymbol{x} with $|\boldsymbol{x}| \geq R$, some $R>0$.

In particular, $\chi_{\boldsymbol{u}}$ is a C^{1}-diffeomorphism from $\mathbb{R}^{3}-\Omega$ onto y.

The Solid-Liquid Problem in the Frame \mathcal{S}

Lemma Let $\boldsymbol{u} \in W^{2, q}(\Omega), q>3$, with

$$
\|\boldsymbol{u}\|_{W^{2, q}(\Omega)} \leq M \quad \text { "sufficiently small" }
$$

Then there is a C^{1}-diffeomorphism, $\chi_{\boldsymbol{u}}$, from \mathbb{R}^{3} onto itself satisfying the following properties.
(i) $\chi_{\boldsymbol{u}}(\boldsymbol{x})=\boldsymbol{x}+\boldsymbol{u}(\boldsymbol{x})$ for all $\boldsymbol{x} \in \bar{\Omega}$;
(ii) $\chi_{\boldsymbol{u}}(\boldsymbol{x})=\boldsymbol{x}$, for all \boldsymbol{x} with $|\boldsymbol{x}| \geq R$, some $R>0$.

In particular, $\chi_{\boldsymbol{u}}$ is a C^{1}-diffeomorphism from $\mathbb{R}^{3}-\Omega$ onto y.
Using the diffeomorphism $\chi_{\boldsymbol{u}}$ we can rewrite the liquid equations in $\mathbb{R}^{3}-\Omega$ and end up with the following complete set of equations

The Solid-Liquid Problem in the Frame \mathcal{S}

$$
\begin{gathered}
\rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))+\boldsymbol{\omega} \times \boldsymbol{\xi}]=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} \mathfrak{b}, \quad \text { in } \Omega \\
\mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}, \quad|\mathfrak{b}|=|\boldsymbol{b}|
\end{gathered}
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

$$
\left.\begin{array}{l}
\quad \rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))+\boldsymbol{\omega} \times \boldsymbol{\xi}]=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} \mathfrak{b}, \quad \text { in } \Omega \\
\qquad \mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}, \quad|\mathfrak{b}|=|\boldsymbol{b}| \\
\rho \nabla \boldsymbol{v}\left[\mathbf{\Phi}_{\boldsymbol{u}}(\boldsymbol{v}-\boldsymbol{U})\right]+\rho J_{\boldsymbol{u}} \boldsymbol{\omega} \times \boldsymbol{v}=\operatorname{div} \boldsymbol{T}^{(\boldsymbol{u})}(\boldsymbol{v}, p) \\
\operatorname{div}\left(\mathbf{\Phi}_{\boldsymbol{u}} \boldsymbol{v}\right)=0
\end{array}\right\} \text { in } \mathbb{R}^{3}-\Omega .
$$

where

$$
\begin{gathered}
\boldsymbol{T}^{(\boldsymbol{u})}(\boldsymbol{v}, p)=\text { Transformed Liquid Cauchy Tensor } \\
J_{\boldsymbol{u}}:=\operatorname{det}\left(\operatorname{grad} \chi_{\boldsymbol{u}}\right), \quad \boldsymbol{\Phi}_{\boldsymbol{u}}:=J_{\boldsymbol{u}}\left(\operatorname{grad} \chi_{\boldsymbol{u}}\right)^{-1} \\
\boldsymbol{U}:=\boldsymbol{\xi}+\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u})
\end{gathered}
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

$$
\left.\begin{array}{l}
\quad \rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))+\boldsymbol{\omega} \times \boldsymbol{\xi}]=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} \mathfrak{b}, \quad \text { in } \Omega \\
\qquad \mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}, \quad|\mathfrak{b}|=|\boldsymbol{b}| \\
\rho \nabla \boldsymbol{v}\left[\mathbf{\Phi}_{\boldsymbol{u}}(\boldsymbol{v}-\boldsymbol{U})\right]+\rho J_{\boldsymbol{u}} \boldsymbol{\omega} \times \boldsymbol{v}=\operatorname{div} \boldsymbol{T}^{(\boldsymbol{u})}(\boldsymbol{v}, p) \\
\operatorname{div}\left(\mathbf{\Phi}_{\boldsymbol{u}} \boldsymbol{v}\right)=0
\end{array}\right\} \text { in } \mathbb{R}^{3}-\Omega .
$$

where

$$
\begin{gathered}
\boldsymbol{T}^{(\boldsymbol{u})}(\boldsymbol{v}, p)=\text { Transformed Liquid Cauchy Tensor } \\
J_{\boldsymbol{u}}:=\operatorname{det}\left(\operatorname{grad} \boldsymbol{\chi}_{\boldsymbol{u}}\right), \quad \boldsymbol{\Phi}_{\boldsymbol{u}}:=J_{\boldsymbol{u}}\left(\operatorname{grad} \boldsymbol{\chi}_{\boldsymbol{u}}\right)^{-1} \\
\boldsymbol{U}:=\boldsymbol{\xi}+\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u})
\end{gathered}
$$

with interface conditions:

$$
\boldsymbol{\sigma}(\boldsymbol{u}) \cdot \boldsymbol{n}=\boldsymbol{T}^{(\boldsymbol{u})}(\boldsymbol{v}, p) \cdot \boldsymbol{n}, \quad \boldsymbol{v}=\boldsymbol{U} \quad \text { at } \partial \Omega
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

$$
\left.\begin{array}{l}
\quad \rho_{E}[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u}))+\boldsymbol{\omega} \times \boldsymbol{\xi}]=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\rho_{E} \mathfrak{b}, \quad \text { in } \Omega \\
\qquad \mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}, \quad|\mathfrak{b}|=|\boldsymbol{b}| \\
\rho \nabla \boldsymbol{v}\left[\mathbf{\Phi}_{\boldsymbol{u}}(\boldsymbol{v}-\boldsymbol{U})\right]+\rho J_{\boldsymbol{u}} \boldsymbol{\omega} \times \boldsymbol{v}=\operatorname{div} \boldsymbol{T}^{(\boldsymbol{u})}(\boldsymbol{v}, p) \\
\operatorname{div}\left(\boldsymbol{\Phi}_{\boldsymbol{u}} \boldsymbol{v}\right)=0
\end{array}\right\} \text { in } \mathbb{R}^{3}-\Omega .
$$

where

$$
\begin{gathered}
\boldsymbol{T}^{(\boldsymbol{u})}(\boldsymbol{v}, p)=\text { Transformed Liquid Cauchy Tensor } \\
J_{\boldsymbol{u}}:=\operatorname{det}\left(\operatorname{grad} \boldsymbol{\chi}_{\boldsymbol{u}}\right), \quad \boldsymbol{\Phi}_{\boldsymbol{u}}:=J_{\boldsymbol{u}}\left(\operatorname{grad} \boldsymbol{\chi}_{\boldsymbol{u}}\right)^{-1} \\
\boldsymbol{U}:=\boldsymbol{\xi}+\boldsymbol{\omega} \times(\boldsymbol{x}+\boldsymbol{u})
\end{gathered}
$$

with interface conditions:

$$
\boldsymbol{\sigma}(\boldsymbol{u}) \cdot \boldsymbol{n}=\boldsymbol{T}^{(\boldsymbol{u})}(\boldsymbol{v}, p) \cdot \boldsymbol{n}, \quad \boldsymbol{v}=\boldsymbol{U} \quad \text { at } \partial \Omega
$$

Problem. Given $\rho_{E}, \rho, \mu, \lambda_{E}, \mu_{E}, \boldsymbol{b}$ and a reference configuration Ω for \mathcal{B}, find $\boldsymbol{u}, \boldsymbol{v}, p, \boldsymbol{\xi}, \boldsymbol{\omega}$ and \mathfrak{b} satisfying above conditions.

The Solid-Liquid Problem in the Frame \mathcal{S}

This problem can be viewed as a nonlinear eigenvalue problem in a suitable sense.

The Solid-Liquid Problem in the Frame \mathcal{S}

This problem can be viewed as a nonlinear eigenvalue problem in a suitable sense.
Since $\mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}$, and $|\mathfrak{b}|=|\boldsymbol{b}|$ is given, we write $\boldsymbol{\omega}=\lambda \mathfrak{b}, \lambda \in \mathbb{R}$, and scale the equations in such a way $|\mathfrak{b}|=1$:

The Solid-Liquid Problem in the Frame \mathcal{S}

This problem can be viewed as a nonlinear eigenvalue problem in a suitable sense.
Since $\mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}$, and $|\mathfrak{b}|=|\boldsymbol{b}|$ is given, we write $\boldsymbol{\omega}=\lambda \mathfrak{b}, \lambda \in \mathbb{R}$, and scale the equations in such a way $|\mathfrak{b}|=1$:

$$
\left.\left.\begin{array}{l}
\quad \mathcal{T}\left[\lambda^{2} \mathfrak{b} \times(\mathfrak{b} \times(\boldsymbol{x}+\boldsymbol{u}))+\lambda \mathfrak{b} \times \boldsymbol{\xi}\right]=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\mathcal{T} \mathfrak{b}, \quad \text { in } \Omega \\
\mathcal{R T}\left\{\nabla \boldsymbol{v}[\boldsymbol{\Phi} \boldsymbol{u}(\boldsymbol{v}-\boldsymbol{U})]+\lambda J_{\boldsymbol{u}} \mathfrak{b} \times \boldsymbol{v}\right\}=\operatorname{div} \boldsymbol{T}^{(\boldsymbol{u})}(\boldsymbol{v}, p) \tag{1}\\
\operatorname{div}(\boldsymbol{\Phi} \boldsymbol{u} \boldsymbol{v})=0
\end{array}\right\} \text { in } \mathbb{R}^{3}-\Omega\right)
$$

where

$$
\begin{equation*}
\mathcal{T}:=\frac{\rho_{E} D_{0}|\boldsymbol{b}|}{\left(\mu_{E}+\lambda_{E}\right)}, \quad \mathcal{R}:=\frac{\rho}{\rho_{E}}, \quad D_{0}=\operatorname{diam}(\Omega) . \tag{2}
\end{equation*}
$$

The Solid-Liquid Problem in the Frame \mathcal{S}

This problem can be viewed as a nonlinear eigenvalue problem in a suitable sense.
Since $\mathfrak{b} \times \boldsymbol{\omega}=\mathbf{0}$, and $|\mathfrak{b}|=|\boldsymbol{b}|$ is given, we write $\boldsymbol{\omega}=\lambda \mathfrak{b}, \lambda \in \mathbb{R}$, and scale the equations in such a way $|\mathfrak{b}|=1$:

$$
\left.\begin{array}{l}
\quad \mathcal{T}\left[\lambda^{2} \mathfrak{b} \times(\mathfrak{b} \times(\boldsymbol{x}+\boldsymbol{u}))+\lambda \mathfrak{b} \times \boldsymbol{\xi}\right]=\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})+\mathcal{T} \mathfrak{b}, \quad \text { in } \Omega \\
\mathcal{R T}\left\{\nabla \boldsymbol{v}[\boldsymbol{\Phi} \boldsymbol{u}(\boldsymbol{v}-\boldsymbol{U})]+\lambda J_{\boldsymbol{u}} \mathfrak{b} \times \boldsymbol{v}\right\}=\operatorname{div} \boldsymbol{T}^{(\boldsymbol{u})}(\boldsymbol{v}, p) \tag{1}\\
\operatorname{div}(\boldsymbol{\Phi} \boldsymbol{u} \boldsymbol{v})=0
\end{array}\right\} \text { in } \mathbb{R}^{3}-\Omega
$$

where

$$
\begin{equation*}
\mathcal{T}:=\frac{\rho_{E} D_{0}|\boldsymbol{b}|}{\left(\mu_{E}+\lambda_{E}\right)}, \quad \mathcal{R}:=\frac{\rho}{\rho_{E}}, \quad D_{0}=\operatorname{diam}(\Omega) . \tag{2}
\end{equation*}
$$

Unknowns: $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{\xi}, \lambda$ and $\mathfrak{b} \in S^{2}$.

The Solid-Liquid Problem in the Frame \mathcal{S}

For problem (1)-(2), the following properties can be proved:

The Solid-Liquid Problem in the Frame \mathcal{S}

For problem (1)-(2), the following properties can be proved:

- Given any $\lambda \in \mathbb{R}$, (1)-(2) has the solution $\boldsymbol{u} \equiv \boldsymbol{v} \equiv \boldsymbol{\xi} \equiv \operatorname{grad} p \equiv \mathfrak{b} \equiv \mathbf{0}$

The Solid-Liquid Problem in the Frame \mathcal{S}

For problem (1)-(2), the following properties can be proved:

- Given any $\lambda \in \mathbb{R}$, (1)-(2) has the solution $\boldsymbol{u} \equiv \boldsymbol{v} \equiv \boldsymbol{\xi} \equiv \operatorname{grad} p \equiv \mathfrak{b} \equiv \mathbf{0}$
- If $|\nabla \boldsymbol{u}|$ is small (which is our underlying assumption to derive the equations), (1)-(2) may have a non-trivial solution only if $\mathfrak{b} \neq \mathbf{0}$.

The Solid-Liquid Problem in the Frame \mathcal{S}

For problem (1)-(2), the following properties can be proved:

- Given any $\lambda \in \mathbb{R},(1)-(2)$ has the solution $\boldsymbol{u} \equiv \boldsymbol{v} \equiv \boldsymbol{\xi} \equiv \operatorname{grad} p \equiv \mathfrak{b} \equiv \mathbf{0}$
- If $|\nabla \boldsymbol{u}|$ is small (which is our underlying assumption to derive the equations), (1)-(2) may have a non-trivial solution only if $\mathfrak{b} \neq \mathbf{0}$.

Therefore, for the existence, we have to find $\lambda \in \mathbb{R}$ in such a way that (1)-(2) has a solution with a normalized $\mathfrak{b} \neq \mathbf{0}$ (for example, $\mathfrak{b} \in S^{2}$).

Sketch of the Strategy of Proof and Main Results

Sketch of the Strategy of Proof and Main Results

The main idea develops according to the following steps:

- Linearize the problem suitably
- Find a (suitable) solution to the linearized problem
- Iterate around this solution
- Find a solution to the original problem (for small data)

Sketch of the Strategy of Proof and Main Results

Linearization

Sketch of the Strategy of Proof and Main Results

Linearization

$$
\begin{gather*}
\operatorname{div} \boldsymbol{\sigma}^{\mathrm{L}}\left(\boldsymbol{u}_{0}\right) \equiv 2 \nu \nabla\left(\operatorname{div} \boldsymbol{u}_{0}\right)+2(1-2 \nu) \Delta \boldsymbol{u}_{0}=-\mathfrak{T b}_{0} \quad \text { in } \Omega \\
\nu:=\frac{\mu_{E}}{\left.\lambda_{E}+\mu_{E}\right)} \\
\boldsymbol{\sigma}^{\mathrm{L}\left(\boldsymbol{u}_{0}\right) \cdot \boldsymbol{n}=\boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \cdot \boldsymbol{n} \quad \text { at } \partial \Omega} \tag{3}\\
\operatorname{div} \boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \equiv \Delta \boldsymbol{v}_{0}-\nabla p_{0}=\mathbf{0} \\
\operatorname{div} \boldsymbol{v}_{0}=0 \\
\boldsymbol{v}_{0}=\xi+\lambda_{\mathbf{0}} \mathfrak{b} \times \boldsymbol{x}, \quad \text { at } \partial \Omega
\end{gather*}
$$

Sketch of the Strategy of Proof and Main Results

Linearization

$$
\begin{gather*}
\operatorname{div} \boldsymbol{\sigma}^{\mathrm{L}}\left(\boldsymbol{u}_{0}\right) \equiv 2 \nu \nabla\left(\operatorname{div} \boldsymbol{u}_{0}\right)+2(1-2 \nu) \Delta \boldsymbol{u}_{0}=-\mathfrak{T b}_{0} \quad \text { in } \Omega \\
\nu:=\frac{\mu_{E}}{\left.\lambda_{E}+\mu_{E}\right)} \\
\boldsymbol{\sigma}^{\mathrm{L}\left(\boldsymbol{u}_{0}\right) \cdot \boldsymbol{n}=\boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \cdot \boldsymbol{n} \quad \text { at } \partial \Omega} \tag{3}\\
\operatorname{div} \boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \equiv \Delta \boldsymbol{v}_{0}-\nabla p_{0}=\mathbf{0} \\
\operatorname{div} \boldsymbol{v}_{0}=0 \\
\boldsymbol{v}_{0}=\xi+\lambda_{\mathbf{0}} \mathfrak{b} \times \boldsymbol{x}, \quad \text { at } \partial \Omega
\end{gather*}
$$

Compatibility Conditions:

$$
-\mathcal{T}|\Omega| \mathfrak{b}=\int_{\partial \Omega} \boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \cdot \boldsymbol{n}, \quad \int_{\partial \Omega} \boldsymbol{x} \times\left(\boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \cdot \boldsymbol{n}\right)=\mathbf{0}
$$

Sketch of the Strategy of Proof and Main Results

Linearization

$$
\begin{gathered}
\operatorname{div} \boldsymbol{\sigma}^{\mathrm{L}}\left(\boldsymbol{u}_{0}\right) \equiv 2 \nu \nabla\left(\operatorname{div} \boldsymbol{u}_{0}\right)+2(1-2 \nu) \Delta \boldsymbol{u}_{0}=-\mathfrak{T b}_{0} \quad \text { in } \Omega, \\
\nu:=\frac{\mu_{E}}{\left.\lambda_{E}+\mu_{E}\right)} \\
\boldsymbol{\sigma}^{\mathrm{L}}\left(\boldsymbol{u}_{0}\right) \cdot \boldsymbol{n}=\boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \cdot \boldsymbol{n} \quad \text { at } \partial \Omega \\
\operatorname{div} \boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \equiv \Delta \boldsymbol{v}_{0}-\nabla p_{0}=\mathbf{0} \\
\operatorname{div} \boldsymbol{v}_{0}=0 \\
\boldsymbol{v}_{0}=\xi+\lambda_{\mathbf{0}} \mathfrak{b} \times \boldsymbol{x}, \text { at } \partial \Omega
\end{gathered}
$$

Compatibility Conditions:

$$
-\mathcal{T}|\Omega| \mathfrak{b}=\int_{\partial \Omega} \boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \cdot \boldsymbol{n}, \quad \int_{\partial \Omega} \boldsymbol{x} \times\left(\boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \cdot \boldsymbol{n}\right)=\mathbf{0} .
$$

Unknowns: $\boldsymbol{u}_{0}, \boldsymbol{v}_{0}, p_{0}, \lambda_{0}$, and $\mathfrak{b}_{0} \in S^{2}$.

Sketch of the Strategy of Proof and Main Results

Problem (3) can be split into three decoupled problems:

Sketch of the Strategy of Proof and Main Results

Problem (3) can be split into three decoupled problems:
Eigenvalue Problem:

$$
\begin{gather*}
\mathbb{A} \cdot \mathfrak{b}_{0}=\lambda_{0} \mathfrak{b}_{0} \tag{4}\\
\boldsymbol{\xi}_{0}=\boldsymbol{F}\left(\mathfrak{b}_{0}, \lambda_{0}\right)
\end{gather*}
$$

where \mathbb{A} is a real, 3×3 matrix depending only on the "shape" of Ω.

Sketch of the Strategy of Proof and Main Results

Problem (3) can be split into three decoupled problems:
Eigenvalue Problem:

$$
\begin{gather*}
\mathbb{A} \cdot \mathfrak{b}_{0}=\lambda_{0} \mathfrak{b}_{0} \tag{4}\\
\boldsymbol{\xi}_{0}=\boldsymbol{F}\left(\mathfrak{b}_{0}, \lambda_{0}\right)
\end{gather*}
$$

where \mathbb{A} is a real, 3×3 matrix depending only on the "shape" of Ω. Stokes Problem:

$$
\left.\begin{array}{c}
\Delta \boldsymbol{v}_{0}-\nabla p_{0}=\mathbf{0} \\
\operatorname{div} \boldsymbol{v}_{0}=0
\end{array}\right\} \quad \text { in } \mathbb{R}^{3}-\Omega
$$

Sketch of the Strategy of Proof and Main Results

Problem (3) can be split into three decoupled problems:
Eigenvalue Problem:

$$
\begin{gather*}
\mathbb{A} \cdot \mathfrak{b}_{0}=\lambda_{0} \mathfrak{b}_{0} \tag{4}\\
\boldsymbol{\xi}_{0}=\boldsymbol{F}\left(\mathfrak{b}_{0}, \lambda_{0}\right)
\end{gather*}
$$

where \mathbb{A} is a real, 3×3 matrix depending only on the "shape" of Ω.
Stokes Problem:

$$
\begin{gathered}
\Delta \boldsymbol{v}_{0}-\nabla p_{0}=\mathbf{0} \\
\operatorname{div} \boldsymbol{v}_{0}=0 \\
\boldsymbol{v}_{0}=\xi+\lambda_{\mathbf{0}} \mathfrak{b} \times \boldsymbol{x}, \quad \text { at } \partial \Omega
\end{gathered} \quad \text { in } \mathbb{R}^{3}-\Omega
$$

Linearized Elasticity Problem:

$$
\begin{gathered}
2 \nu \nabla\left(\operatorname{div} \boldsymbol{u}_{0}\right)+2(1-2 \nu) \Delta \boldsymbol{u}_{0}=-\mathcal{T b}_{0} \quad \text { in } \Omega \\
\boldsymbol{\sigma}^{\mathrm{L}}\left(\boldsymbol{u}_{0}\right) \cdot \boldsymbol{n}=\boldsymbol{T}\left(\boldsymbol{v}_{0}, p_{0}\right) \cdot \boldsymbol{n} \quad \text { at } \partial \Omega
\end{gathered}
$$

Sketch of the Strategy of Proof and Main Results

One thus shows that linearized problem (3) has at least one solution. In fact, depending on the "shape" of Ω, it may have even an infinite number of solutions.

Sketch of the Strategy of Proof and Main Results

One thus shows that linearized problem (3) has at least one solution. In fact, depending on the "shape" of Ω, it may have even an infinite number of solutions.
The iterative scheme to solve the original problem, works on condition that the "shape" of Ω is such that the eigenvalue problem

$$
\begin{equation*}
\mathbb{A} \cdot \mathfrak{b}_{0}=\lambda_{0} \mathfrak{b}_{0} \tag{4}
\end{equation*}
$$

has at least one eigenvalue of algebraic multiplicity 1.

Sketch of the Strategy of Proof and Main Results

One thus shows that linearized problem (3) has at least one solution. In fact, depending on the "shape" of Ω, it may have even an infinite number of solutions.
The iterative scheme to solve the original problem, works on condition that the "shape" of Ω is such that the eigenvalue problem

$$
\begin{equation*}
\mathbb{A} \cdot \mathfrak{b}_{0}=\lambda_{0} \mathfrak{b}_{0} \tag{4}
\end{equation*}
$$

has at least one eigenvalue of algebraic multiplicity 1.
Theorem 1
Suppose the reference configuration Ω is such that (4) has at least one simple eigenvalue λ_{0}. Then, there is $\epsilon_{0}>0$ such that if

$$
\rho_{E} D_{0}|\boldsymbol{b}| \leq \epsilon_{0}\left(\mu_{E}+\lambda_{E}\right)
$$

the nonlinear problem has at least one solution.

Sketch of the Strategy of Proof and Main Results

What is the physical meaning of the assumption on the eigenvalue λ_{0} ?

Sketch of the Strategy of Proof and Main Results

What is the physical meaning of the assumption on the eigenvalue λ_{0} ?
Consider a homogeneous rigid body, \mathcal{R}, in the shape of Ω in a Stokes liquid, \mathcal{L}, under the action of a constant force.

Sketch of the Strategy of Proof and Main Results

What is the physical meaning of the assumption on the eigenvalue λ_{0} ?
Consider a homogeneous rigid body, \mathcal{R}, in the shape of Ω in a Stokes liquid, \mathcal{L}, under the action of a constant force.

The solvability of the linearized problem implies that the system $\mathcal{R}-\mathcal{L}$ can always execute a steady motion

Sketch of the Strategy of Proof and Main Results

What is the physical meaning of the assumption on the eigenvalue λ_{0} ?
Consider a homogeneous rigid body, \mathcal{R}, in the shape of Ω in a Stokes liquid, \mathcal{L}, under the action of a constant force.

The solvability of the linearized problem implies that the system $\mathcal{R}-\mathcal{L}$ can always execute a steady motion

Sketch of the Strategy of Proof and Main Results

What is the physical meaning of the assumption on the eigenvalue λ_{0} ?
Consider a homogeneous rigid body, \mathcal{R}, in the shape of Ω in a Stokes liquid, \mathcal{L}, under the action of a constant force.

The solvability of the linearized problem implies that the system $\mathcal{R}-\mathcal{L}$ can always execute a steady motion

Sketch of the Strategy of Proof and Main Results

What is the physical meaning of the assumption on the eigenvalue λ_{0} ?
Consider a homogeneous rigid body, \mathcal{R}, in the shape of Ω in a Stokes liquid, \mathcal{L}, under the action of a constant force.

The solvability of the linearized problem implies that the system $\mathcal{R}-\mathcal{L}$ can always execute a steady motion

Sketch of the Strategy of Proof and Main Results

This fact tells us that the assumption on the reference configuration in Theorem 1 is not satisfied for Ω a ball!

Sketch of the Strategy of Proof and Main Results

This fact tells us that the assumption on the reference configuration in Theorem 1 is not satisfied for Ω a ball!
We call Ω symmetric around a direction r, if it is left invariant by a rotation of $2 \pi / k$, for some $k=2,3, \ldots$, around \boldsymbol{r}.

Sketch of the Strategy of Proof and Main Results

This fact tells us that the assumption on the reference configuration in Theorem 1 is not satisfied for Ω a ball!
We call Ω symmetric around a direction \boldsymbol{r}, if it is left invariant by a rotation of $2 \pi / k$, for some $k=2,3, \ldots$, around \boldsymbol{r}.

Theorem 2
Suppose the reference configuration Ω is symmetric. Then, there is $\epsilon_{0}>0$ such that if

$$
\rho_{E} D_{0}|\boldsymbol{b}| \leq \epsilon_{0}\left(\mu_{E}+\lambda_{E}\right)
$$

the nonlinear problem has at least one solution.

Sketch of the Strategy of Proof and Main Results

This fact tells us that the assumption on the reference configuration in Theorem 1 is not satisfied for Ω a ball!
We call Ω symmetric around a direction \boldsymbol{r}, if it is left invariant by a rotation of $2 \pi / k$, for some $k=2,3, \ldots$, around \boldsymbol{r}.

Theorem 2
Suppose the reference configuration Ω is symmetric. Then, there is $\epsilon_{0}>0$ such that if

$$
\rho_{E} D_{0}|\boldsymbol{b}| \leq \epsilon_{0}\left(\mu_{E}+\lambda_{E}\right)
$$

the nonlinear problem has at least one solution.
OPEN QUESTION: Do steady-state regimes exist for reference configurations of arbitrary shape?

Sketch of the Strategy of Proof and Main Results

What is the motion of the body and of the liquid in the original inertial frame J?

Sketch of the Strategy of Proof and Main Results

What is the motion of the body and of the liquid in the original inertial frame J?

Sketch of the Strategy of Proof and Main Results

What is the motion of the body and of the liquid in the original inertial frame J?

Main Open Questions and Trends for Future Research

Main Open Questions and Trends for Future Research

(1) Do steady-state regimes exist for reference configurations of arbitrary shape?

Main Open Questions and Trends for Future Research

(1) Do steady-state regimes exist for reference configurations of arbitrary shape?
(2) Mathematically, it is expected that more than one steady-state can exist, even for "small" data. Which one of these is stable?

Main Open Questions and Trends for Future Research

(1) Do steady-state regimes exist for reference configurations of arbitrary shape?
(2) Mathematically, it is expected that more than one steady-state can exist, even for "small" data. Which one of these is stable?
(0 Are steady-states "terminal states" of unsteady motions? This study involves the large time behavior of a highly coupled and nonlinear system of hyperbolic (elasticity) and "parabolic" (Navier-Stokes) equations.

Main Open Questions and Trends for Future Research

(1) Do steady-state regimes exist for reference configurations of arbitrary shape?
(2) Mathematically, it is expected that more than one steady-state can exist, even for "small" data. Which one of these is stable?
(0 Are steady-states "terminal states" of unsteady motions? This study involves the large time behavior of a highly coupled and nonlinear system of hyperbolic (elasticity) and "parabolic" (Navier-Stokes) equations.
(1) Control analysis to force the coupled system to reach a specific steady state.

Main Open Questions and Trends for Future Research

(1) Do steady-state regimes exist for reference configurations of arbitrary shape?
(2) Mathematically, it is expected that more than one steady-state can exist, even for "small" data. Which one of these is stable?
(0 Are steady-states "terminal states" of unsteady motions? This study involves the large time behavior of a highly coupled and nonlinear system of hyperbolic (elasticity) and "parabolic" (Navier-Stokes) equations.
(- Control analysis to force the coupled system to reach a specific steady state.

Questions 2-4 are open also in the case of a rigid body.

