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Liquid–solid interaction (LSI) is a relatively new and fascinating branch of
applied mathematics. Actually, systematic (analytical and numerical)
studies started less than 15 years ago.

Late start and current increasing interest are probably due to the
following reasons:

The intrinsic difficulties related to this type of problems. In fact, the
presence of the solid (rigid or elastic) affects the flow of the liquid,
and this, in turn, affects the motion of the solid, so that the problem
of determining the flow characteristics is highly coupled.

A rapidly increasing attention that, over the past decade, these
questions have acquired in many fields of applied sciences, like
bioengineering, animal locomotion, damage of structures, etc.
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C1 In the case of a rigid (undeformable) body, the interaction between
the body and the liquid is nonlocal: forces and torques exerted by
the liquid on the body are given through integral quantities.



Preliminary Considerations

In a nutshell, LSI problems present the following basic challenges:

C1 In the case of a rigid (undeformable) body, the interaction between
the body and the liquid is nonlocal: forces and torques exerted by
the liquid on the body are given through integral quantities.



Preliminary Considerations

Liquid L:

ρ (∂tv + v · ∇v) = divT (v, p)

div v = 0

}
in

⋃
t>0

[D̃(t)× {t}]

v(x, t) = η + Ω× x, (x, t) ∈
⋃
t>0

[∂D̃(t)× {t}]

Rigid Body B:

m
dη

dt
= F −

∫
∂ eD(t)

T (v, p)·N

d(J ·Ω)
dt

= MC −
∫

∂ eD(t)

(x− xC)× T (v, p)·N
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C2 In the case of an elastic (deformable) body, the deformation of the
body due to the action of the liquid becomes a further unknown.
Moreover, the motion of the elastic body is naturally described in
the Lagrangean formalism, while that of the liquid requires the
Eulerian formalism.



Preliminary Considerations

These features produce a number of distinctive traits that are completely
new compared to the analogous “classical” fluid dynamical problems,
such as:

Steady-state and time-periodic problems may lack of the
corresponding uniqueness property, at arbitrarily small (even zero!)
value of the relevant physical parameters (e.g. Reynolds number);

Dynamics can be very rich, also at relatively small Reynolds number.
Multiple bifurcation phenomena (steady and time-periodic) may
occur.

Therefore,

Stability and/or Control Analysis of the solutions is of the utmost
importance, to find out which solution is “physically meaningful”.

Most of the above phenomena remain basically unresolved from a
mathematical viewpoint.
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Body in a Viscous Liquid subject to a Constant Body Force

B is an elastic (deformable) body, that with respect to the inertial frame
I moves in a viscous liquid filling the exterior of B, under the action of a
constant (time-independent) body force b.

After a “transient time”, B may reach a “terminal” equilibrium state.

Namely, there exists a frame, S, with respect to which the displacement
field (deformation) evaluated from a given reference configuration is
time-independent.
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B is an elastic (deformable) body, that with respect to the inertial frame
I moves in a viscous liquid filling the exterior of B, under the action of a
constant (time-independent) body force b.

After a “transient time”, B may reach a “terminal” equilibrium state.

Namely, there exists a frame, S, with respect to which the displacement
field (and so, the deformation) evaluated from a given reference
configuration is time-independent.



Body in a Viscous Liquid subject to a Constant Body Force

The liquid produces a traction on the surface of B, which, therefore, with
respect to the frame S should be time-independent as well.

This will happen if, with respect to S, the motion of the liquid is steady.

If such a frame S exists, we say that the the coupled system body-liquid
executes a steady motion.

Remark
The unknown frame S will be identified once we know the velocity of its
origin and its angular velocity with respect to I.

Examples of Steady Motions:
• Free fall of an elastic body in a liquid under the action of its own

weight (density of the liquid � density of the body)

• Towing of airborne or underwater bodies by powered aircrafts or boats.

• etc.
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Equations of Motion for the Elastic Body

ρE∂2
t u∗ = divσ(u∗) + ρEb in Ω× (0,∞)

Ω is the reference configuration, u∗(x, t) is the displacement field

ρE is the constant density (in the reference configuration),

σ is the (first) Piola-Kirchhoff tensor.
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To fix the ideas, we will consider St.-Venant–Kirchhoff elastic bodies, for
which

σ(u∗) = (I +∇u∗)(λETrE(u∗)I + 2µEE(u∗))

E(u∗) = 1
2

(
∇u∗ +∇u∗> +∇u∗>∇u∗

)
I = identity matrix, µE > 0 and λE > − 2

3µE are the Lame constants.
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Equations of Motion for the Viscous Liquid

The deformed configuration of the body is:

Ωu∗(t) = {x∗ ∈ R3 : x∗ = x + u∗(x, t) , x ∈ Ω} , t > 0 ,

The liquid occupies the region, E = E(t), exterior to Ωu∗(t), that is,

E(t) := R3 − Ωu∗(t) .

We thus have

ρ(∂tv
∗ + (∇v∗)v∗) = µ∆v∗ −∇p∗

div v∗ = 0

}
in ∪t>0 [E(t)× {t}] .

v∗ is the velocity, p∗ is the pressure,
ρ is the density, µ is the shear viscosity coefficient
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Conditions at the Solid-Liquid Interface ∂Ωu∗(t)

For sufficiently “regular” u∗(·, t) (|∇u∗(·, t)| < 1), we have

x ∈ ∂Ω ⇐⇒ x + u∗(x, t) ∈ ∂Ωu∗(t) .

No-Slip Boundary Conditions:

v∗(x + u∗(x, t), t) = ∂tu
∗(x, t) , (x, t) ∈ ∂Ω× (0,∞) .

Continuity of the Stress:

T L · n = T E · n at ∪t>0 [∂Ωu∗(t)× {t}] ,

where

T E is the Cauchy stress tensor of the elastic body
T L is the Cauchy stress tensor of the liquid
n is the outer unit normal to ∂Ωu∗(t) .
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We take the origin of S at x∗c(t) = xc + u∗(xc, t), with xc center of
mass of Ω.

Let ω be the unknown constant angular velocity of the frame S with
respect to the inertial frame I, and set

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

If x∗ = x + u∗(x, t), we make the following change of variables

y = e−
bωt · (x∗ − x∗c) , x ∈ Ω ; e−

bωt ∈ SO(3) , t ≥ 0 .

Thus, with respect to S, the displacement field is given by:

u(x, t) = y − x , x ∈ Ω ,

and the velocity of the center of mass:

ξ = e−
bωt · ∂tx

∗
c .
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Equations of Motion for the Elastic Body

ρE [∂2
t u+ω × (ω × (x + u)) + 2ω × ∂tu]

+ρE(ω × ξ + ∂tξ) = divσ(u) + ρE e−
bωt · b , in Ω× (0,∞).

We are interested in equilibrium configurations, where u and ξ are
independent of time. Therefore:

ρE [ω × (ω × (x + u))] + ρEω × ξ = divσ(u) + ρE e−
bωt · b .

However, this term may still depend on time.It is time-independent if and
only if

b× ω = 0 , b := e−
bωt · b .

The direction of the vector b becomes a further unknown.
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Summarizing, the resolution of the equilibrium problem for the elastic
body requires the fulfillment of the following two equations

ρE [ω × (ω × (x + u))] + ρEω × ξ = divσ(u) + ρE b , in Ω

b× ω = 0

where
ω, ξ, b and u = u(x), x ∈ Ω, are unknown,

and
|b| = |b| is given.
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Equations of Motion for the Liquid

Set

v(·, t) = e−
bωt · v∗(e bωt ·+x∗c , t) , p(·, t) = e−

bωt p∗(e bωt ·+x∗c , t)

and require that (v, p) is steady.

We then obtain the following equations

ρ[∇v(v − (ω × y + ξ)) + ω × v] = µ∆v −∇p

div v = 0

}
in Y

where
Y := R3 − {z ∈ R3 : z = x + u(x) , x ∈ Ω} .

No-slip boundary condition becomes

v = ξ + ω × y at ∂Y.
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The final step is to rewrite the liquid equations in the exterior of the
reference (undeformed) configuration, R3 − Ω.

This can be done if u is “sufficiently regular”.
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Lemma Let u ∈ W 2,q(Ω), q > 3, with

‖u‖W 2,q(Ω) ≤ M “sufficiently small”

Then there is a C1-diffeomorphism, χu, from R3 onto itself satisfying
the following properties.

(i) χu(x) = x + u(x) for all x ∈ Ω ;

(ii) χu(x) = x, for all x with |x| ≥ R, some R > 0 .

In particular, χu is a C1-diffeomorphism from R3 − Ω onto Y.

Using the diffeomorphism χu we can rewrite the liquid equations in
R3 − Ω and end up with the following complete set of equations
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ρE [ω × (ω × (x + u)) + ω × ξ] = div σ(u) + ρE b , in Ω

b× ω = 0 , |b| = |b|

ρ∇v [Φu(v −U)] + ρ Ju ω × v = divT (u)(v, p)

div (Φuv) = 0

 in R3 − Ω

where
T (u)(v, p) = Transformed Liquid Cauchy Tensor

Ju := det (grad χu) , Φu := Ju (gradχu)−1

U := ξ + ω × (x + u)

with interface conditions:

σ(u) · n = T (u)(v, p) · n , v = U at ∂Ω

Problem. Given ρE , ρ, µ, λE , µE , b and a reference configuration Ω for
B, find u,v, p, ξ,ω and b satisfying above conditions.
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This problem can be viewed as a nonlinear eigenvalue problem in a
suitable sense.

Since b× ω = 0, and |b| = |b| is given, we write ω = λb, λ ∈ R, and
scale the equations in such a way |b| = 1:

T[λ2b× (b× (x + u)) + λb× ξ] = div σ(u) + T b , in Ω

RT {∇v [Φu(v −U)] + λ Ju b× v} = divT (u)(v, p)

div (Φuv) = 0

 in R3 − Ω

(1)

σ(u) · n = T (u)(v, p) · n , v = U at ∂Ω

where

T :=
ρED0|b|

(µE + λE)
, R :=

ρ

ρE
, D0 = diam(Ω). (2)

Unknowns: u,v, ξ, λ and b ∈ S2.
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The Solid-Liquid Problem in the Frame S

For problem (1)–(2), the following properties can be proved:

Given any λ ∈ R, (1)–(2) has the solution
u ≡ v ≡ ξ ≡ grad p ≡ b ≡ 0

If |∇u| is small (which is our underlying assumption to derive the
equations), (1)–(2) may have a non-trivial solution only if b 6= 0.

Therefore, for the existence, we have to find λ ∈ R in such a way that
(1)–(2) has a solution with a normalized b 6= 0 (for example, b ∈ S2).
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The main idea develops according to the following steps:

Linearize the problem suitably

Find a (suitable) solution to the linearized problem

Iterate around this solution

Find a solution to the original problem (for small data)
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Linearization

div σL(u0) ≡ 2ν∇(div u0) + 2(1− 2ν)∆u0 = −Tb0 in Ω ,

ν :=
µE

λE + µE)
σL(u0) · n = T (v0, p0) · n at ∂Ω

div T (v0, p0) ≡ ∆v0 −∇p0 = 0

div v0 = 0

}
in R3 − Ω

v0 = ξ + λ0b× x , at ∂Ω

(3)

Compatibility Conditions:

−T |Ω|b =
∫

∂Ω

T (v0, p0) · n ,

∫
∂Ω

x× (T (v0, p0) · n) = 0 .

Unknowns: u0,v0, p0, λ0, and b0 ∈ S2.
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Sketch of the Strategy of Proof and Main Results

Problem (3) can be split into three decoupled problems:

Eigenvalue Problem:
A · b0 = λ0b0

ξ0 = F (b0, λ0)
(4)

where A is a real, 3×3 matrix depending only on the “shape” of Ω.

Stokes Problem:

∆v0 −∇p0 = 0

div v0 = 0

}
in R3 − Ω

v0 = ξ + λ0b× x , at ∂Ω

Linearized Elasticity Problem:

2ν∇(div u0) + 2(1− 2ν)∆u0 = −Tb0 in Ω ,

σL(u0) · n = T (v0, p0) · n at ∂Ω .
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One thus shows that linearized problem (3) has at least one solution. In
fact, depending on the “shape” of Ω, it may have even an infinite
number of solutions.

The iterative scheme to solve the original problem, works on condition
that the “shape” of Ω is such that the eigenvalue problem

A · b0 = λ0b0 (4)

has at least one eigenvalue of algebraic multiplicity 1.

Theorem 1

Suppose the reference configuration Ω is such that (4) has at least one
simple eigenvalue λ0. Then, there is ε0 > 0 such that if

ρED0|b| ≤ ε0(µE + λE)

the nonlinear problem has at least one solution.
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What is the physical meaning of the assumption on the eigenvalue λ0?

Consider a homogeneous rigid body, R, in the shape of Ω in a Stokes
liquid, L, under the action of a constant force.

The solvability of the linearized problem implies that the system R−L
can always execute a steady motion
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This fact tells us that the assumption on the reference configuration in
Theorem 1 is not satisfied for Ω a ball!

We call Ω symmetric around a direction r, if it is left invariant by a
rotation of 2π/k, for some k = 2, 3, . . ., around r.

Theorem 2
Suppose the reference configuration Ω is symmetric. Then, there is
ε0 > 0 such that if

ρED0|b| ≤ ε0(µE + λE)

the nonlinear problem has at least one solution.

OPEN QUESTION: Do steady-state regimes exist for reference
configurations of arbitrary shape?



Sketch of the Strategy of Proof and Main Results

This fact tells us that the assumption on the reference configuration in
Theorem 1 is not satisfied for Ω a ball!

We call Ω symmetric around a direction r, if it is left invariant by a
rotation of 2π/k, for some k = 2, 3, . . ., around r.

Theorem 2
Suppose the reference configuration Ω is symmetric. Then, there is
ε0 > 0 such that if

ρED0|b| ≤ ε0(µE + λE)

the nonlinear problem has at least one solution.

OPEN QUESTION: Do steady-state regimes exist for reference
configurations of arbitrary shape?



Sketch of the Strategy of Proof and Main Results

This fact tells us that the assumption on the reference configuration in
Theorem 1 is not satisfied for Ω a ball!

We call Ω symmetric around a direction r, if it is left invariant by a
rotation of 2π/k, for some k = 2, 3, . . ., around r.

Theorem 2
Suppose the reference configuration Ω is symmetric. Then, there is
ε0 > 0 such that if

ρED0|b| ≤ ε0(µE + λE)

the nonlinear problem has at least one solution.

OPEN QUESTION: Do steady-state regimes exist for reference
configurations of arbitrary shape?



Sketch of the Strategy of Proof and Main Results

This fact tells us that the assumption on the reference configuration in
Theorem 1 is not satisfied for Ω a ball!

We call Ω symmetric around a direction r, if it is left invariant by a
rotation of 2π/k, for some k = 2, 3, . . ., around r.

Theorem 2
Suppose the reference configuration Ω is symmetric. Then, there is
ε0 > 0 such that if

ρED0|b| ≤ ε0(µE + λE)

the nonlinear problem has at least one solution.

OPEN QUESTION: Do steady-state regimes exist for reference
configurations of arbitrary shape?



Sketch of the Strategy of Proof and Main Results

What is the motion of the body and of the liquid in the original inertial
frame I?



Sketch of the Strategy of Proof and Main Results

What is the motion of the body and of the liquid in the original inertial
frame I?



Sketch of the Strategy of Proof and Main Results

What is the motion of the body and of the liquid in the original inertial
frame I?



Main Open Questions and Trends for Future Research



Main Open Questions and Trends for Future Research

1 Do steady-state regimes exist for reference configurations of
arbitrary shape?

2 Mathematically, it is expected that more than one steady-state can
exist, even for “small” data. Which one of these is stable?

3 Are steady-states “terminal states” of unsteady motions? This study
involves the large time behavior of a highly coupled and nonlinear
system of hyperbolic (elasticity) and “parabolic” (Navier-Stokes)
equations.

4 Control analysis to force the coupled system to reach a specific
steady state.

Questions 2–4 are open also in the case of a rigid body.
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